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A FORUM FOR RESEARCHERS

This eleventh annual meeting of PME can be singled out for the largest

number of scientific communications ever contributed and for the widest

geographic distribution of its participants. One of the reasons for this success

must be attributed to a constant concern for improvement that can be traced

back to the early beginnings of PME. The founding members will remember that

follnwing the first meeting in Utrecht in 1977, it was decided that research reports

would be called for and that these would be published in Proceedings. At the

very next meeting, in Osnabrack, this tradition was started and has been

maintained ever since.

This concern for establishing a forum for research in mathematics education

was also reflected later on when the aims and objectives were formalized in our

constitution adopted at the Berkeley meeting in 1980, Two of the major goals

mentioned in that document are:

(1) to promote international contacts and exchange of scientific information in

the psychology of mathematics education, and

(2) to promote and stimulate interdisciplinary research In the aforesaid area

with the cooperation of psychologists, mathematicians and mathematics

teachers.

The constitution also emphasizes the importance of research in its

membership qualification, membership being *open to parsons involved in

active research in furtherance of the Group's aims or professionally interested in

the results of such research".

Over the years, several efforts have been made to change the philosophy of

PM:. At different times there have been pressures to transform it variously into a

more teacher oriented organization, or into a general discussion group for

mathematics educators. The objectives pursued in these attempts were quite

laudable, for indeed serious thought must be given to the problem of bringing

research to the teaching profession. Equally important is the realization that

some very serious issues exist in mathematics education which are beyond the

iii
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research domain. But there are many other groups whose vocation is precisely
the discussion of these questions. On the other hand, in mathematics education,

there are no international groups other than PME where researchers can gather
and discuss their work among themselves. Evidence that our association
answers such a need can be found in the very impressive number of research
reports in the PME-XI scientific program. Thus, It seems essential that PME
should continue to be primarily a forum for researchers.

This is not to say that we can ignore the more ganeral issues, such as the
significance of constructivism for mathematical didactics, witness the fact that
this happens to be the theme of our plenary sessions. Indeed, the discussion of
such issues proves to be essential, for it provides us with an opportunity to
situate our own research in a broader perspective. And it is against this
enriched backdrop that we can exchange more profitably the results of our
individual research.

Improving the quality of our scientific exchanges has been an ongoing
concern for many years. This has been discussed at several meetings of the
international Committee (LC.). More recently, at the London meeting of the I.C.,
there was general approval of the suggestion that the PME-XI Program
Committee formulate criteria for the selection of research reports. Following this,
the President, Pear la Nesher, mandated us to carry out this recommendation. At
its October 1986 meeting, the Program Committee (Behr, Bergeron, Herscov(cs,
Kieran, Nesher, Romberg) agreed to the following criteria which were published
In the first announcement:

To allow for a broad range of research issues,
both empirical and theoretical papers will be
included. Papers reporting empirical research ought
to deal explicitly with the following:objectives,
theoretical framework, methodology, data source,
resuits, conclusions, and importance of the study
for the psychology of mathematics education. These
contributions need not be limited to completed
research. Ongoing studies may be reported; however,
preliminary results must appear in the paper.Papers stating merely that results will be
presented at the meeting will not be accepted.
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Theoretical papers are equally important. They
can be quite varied and deal with questions of an
epistemological nature, methodological problems, a
new theoretical approach, a synthesis of the
literature in a specific domain, etc. These papers
must relate the issues under consideration to the
existing relevant literature, indicate how their
perspective differs from others, and how they
contribute to the psychology of mathematics
education.

The criteria we proposed were aimed at improving the readability,

coherence and significance of the research reports. The need to provide a

theoretical framework and to relate issues to the existing literature was

considered essential in order to establish a continuity indispensable for

scientific progress. The formulation of some minimal criteria for theoretical

research reports was to prevent mere *armchair reflection" from being passed

off as research. Our intention was to provide a forum for as many ideas as

possible and to encourage a spirit of disciplined inquiry.

Sorry Innovations

Formulating criteria for research reports was not the only innovation carried

out this year. For the first time, research report proposals were subjected to a

blind review process. Each one was sent to two reviewers with experience in

the given domain. They were asked to use the criteria for research reports as

guidelines in evaluating the proposal and to recommend one of the following:

In evaluating these proposals, please keep in mind
that it is not always feasible to cover all the
criteria in the required 500 to 700 words.

Unconditional Acceptance indicates that the
proposal deals with significant issues in a
coherent manner reflecting the suggested criteria.

Acceptance with reservation indicates that either
the proposal deals with an issue of questionable
importance or that it does not adhere to the
suggested criteria. Please make your remarks
sufficiently detailed so that we can make explicit
suggestions to the author for improving the
research paper.

V
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Rejection indicates either that the issues dealt
with are considered in3ignificant, or that the
proposal is totally incoherent, or that it cannot
qualify as empirical or theoretical research.
Please make your remarks sufficiently detailed so
that the Organizing Committee can provide a
reasoned rejection,

That the Implementation of criteria and a blind review process did not have

a discouraging effect Is evidenced by the record number (185) of research

report proposals received. The review process was carried out by 52

colleagues, time constraints limiting their selection to North Americans. Those

proposals which received unconditional acceptance (44) by both reviewers

were so accepted by us. Where one of the reviewers recommended

acceptance with reservation a: rejection, we gave the proposal a conditional

acceptance (132). Authors were provided with a copy of the reviewers'

comments and were asked to take their remarks into consideration when writing

the final version of their paper. Where both reviewers recommended rejection of

the proposal, we in turn studied each one very carefully. Only 9 proposals were

not accepted as research reports. Their authors were provided with the

reviewers' comments and were urged to submit their contribution in the form of

a poster presentation or as part of a working/discussion group.

The 176 accepted proposals resulted in 155 research reports, since 20

proposals were withdrawn for a variety of reasons (such as lack of travel funds,

conflict with summer schools, etc.) and one paper was rejected for it did not

develop the themes announced in the proposal. We would like to have been

able to read the final drafts of the research reports to see If the suggestions of

the reviewers had been taken into account, but time did not allow it. Thus, every

paper that was not withdrawn or rejected appears in the Proceedings.

In order to continue improving the quality and scope of discussions

surrounding the paper presentations, another innovation was planned. While in

the past many contributions were grouped into subthemes (early arithmetic,

geometry, problem solving, etc.), no attempt was made at bringing the reported

research into perspective and suggesting future directions. Such syntheses are

included in this year's program. Whenever the content of papers was sufficiently

related, they were grouped into subthemes warranting a synthesis. We solicited
vi
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nine established authorities to comment on those grouped sets of papers. Their

task was to prepare a written response to appear in the Proceedings, present it

at the Conference, and load the ensuing discussion. In their commentary, they

were asked to address more specifically the following questions:

How has each paper contributes to this area of research?

Are there common threads to be found in the papers?

(e.g. research questions, methodologies, results, etc.)

What are the major questions in this area of research that

still need to be answered?

Are there any indications in these papers on how to tackle

them?

More than half the research papers (83 out of 155) were grouped into the

nine commented subthemos. The syntheses of these papers should prove to be

highly valuable. On one hand they provide the person unfamiliar with a given

domain with a broad overview of the current research In that area. On the other

hand, for those researchers in a given domain, they provide an opportunity to

relate their individual work to that of others In the same field. Furthermore, those

commentaries should stimulate a higher level of discussion at the Conference.

OUTLINE OF THE PROCEEDINGS

The Plenary Papers

As a theme for the plenary papers, we selected a broad topic of general

:nterest In the psychology of mathematics education: the theory of

constructivism. Current issues involve questions of definition and distinction

from other psychological theories, the status of constructivism as a theory of

knowledge acquisition, its implications for research on teaching and learning in

general and for research on mathematics education in particular. These issues

are addressed by four eminent scholars: Professor Hermine Sinclair who has

written from the perspective of a psychologist, and Professor Jeremy Kilpatrick,

from that of a mathematics educator. These two perspectives are also reflected

in the two reactions given by Dr Gerard Vergnaud and Professor David

Wheeler.
vii



The commented research reports

The commented research papers have boon grouped Into the following

subthemes and commented by:

Affective factors in mathematics learning Douglas B. McLeod

Algebra in computer environments David Tall

Algebraic thinking James J. Kaput

Fractions and rational numbers Thomas E. Kieran

Geometry in computer environments Celia Mary Hoy les

In-service teacher training Michael Shaughnessy

Mathematical problem solving Edward A. Silver

Motacognition and problem solving Frank Lester Jr.

Ratio and proportion Merlyn J. Behr

The uncommented research reports

Those papers were sometimes difficult to group since a given report could

be classified under different topics. We tried as much as possible to retain the

authors' preferred classification. The papers have been grouped under the

following headings:

Arithmetic

Cognitive development

Cornbinatotics

Computer environments

Disabilities and the learning of mathematics

Gender and mathematics

Geometry

High school mathematics

Mathematics instruction

Measurement concepts

Philosophy, epistemology, models of understanding

Pre-service teacher training

Tertiary level mathematics

12
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Papers on the N.C.T.M. Research Agenda Project

The North American Chapter of PME (PME-NA) has sponsored the

reporting of the Research Agenda Project, a two-year project aimed at

developing conceptual frameworks and research agendas in four critical areas

of mathematics education research -- middle school number concepts, the

teaching and learning of algebra, the teaching and evaluation of problem

solving, and effective mathematics teaching. Papers reporting this project are

the following:

The Research Agenda Project : An overview Judith Threadgill-Sowder

Effective mathematics teaching Thomas Cooney and Douglas A. Grouws

Learning in middle school number concepts Merlyn J. Behr and James Hiebert

The teaching and learning of algebra Carolyn Kieran and Sigrid Wagner
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HISTORY AND AIMS OF PME

PME came into existence at the Third international Congress on

Mathematical Education (ICME 3) held in Karlsruhe, Germany, in 1976. PME is

affiliated with the International Commission for Mathematical Instruction (ICMI).

Its past presidents have been Professor Efraim Fischbein of Tel Aviv University,

Professor Richard R. Skemp of Warwick University, Dr Gerard Vergnaud of the

Centre National de la Recherche Scientifique in Paris, and Professor Kevin F.

Collis of the University of Tasmania. The ten previous annual meetings have

taken place in The Netherlands (Utrecht), West Germany, the United Kingdom

(Warwick), the United States, France, Belgium, Israel, Australia, The

Netherlands (Noordwijkerhout), the United Kingdom (London).

The major goals of the Group are:

1. To promote international contacts and the exchange of scientific

information in the psychology of mathematics education;

2. To promote and stimulate interdisciplinary research in the aforesaid area

with the cooperation of psychologists, mathematicians and mathematics

teachers;

3. To further a deeper and better understanding of the psychological aspects

of teaching and learning mathematics and the implications thereof.

International committee members

Present officers of the group :

President Pearla Nesher (Israel)

Vice-President Nicolas Balacheff (France)

Secretary Joop van Dormolen (The Netherlands)

Treasurer Carolyn Kieran (Canada)
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(Austria)

(Israel)

(Japan)

Celia Hoyles (UK)
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Conference Program Committee
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It is tempting to begin by comparing the constructivist movement in

mathematics education, at least as it is being manifested in the United

States, to any of the waves of religious fundamentalism that have Swept our

society in its three-and-a-hnlf-century history. A siege mentality that

seeks to spread the word to an uncomprehending, fallen world; a band of true

believers whose credo demands absolute faith and unquestioning commitment,

whose tolerance for debate is minimal, and who view compromise as sin; an

apocalyptic vision that governs all of life, answers all questions, and puts

an end to doubtthese are some of the parallels that might be drawn.

I shall not begin with such a comparison, however; it would be unfair.

Instead, I shall discuss what constructivism might be for mathematics

eduontors. I was invited to examine what construotivism is from the point of

view of mathematics education, but as one who stands outside both

construotivism as a belief system and philosophy as a profession, I have

decided that it would also be unfair for me to claim that I know, let alone

could tell you,. what it is. As Jere Confrey (1986) recently noted,

presenting "constructivism in all its glory" (p. 347) is a contradiction,

presumably because an understanding of constructivism must itself be

constructed from the inside out; it cannot be simply displayed or presented.

(I am tempted to add that it sounds as though an initial commitment is

prerequisite to that construction, but I shall forgo that temptation too.)

In this paper, I discuss first what constructivism seems to be, to judge

primarily from the writings of some authors who claim to know. Then I

consider various claims that, from the outside, do not seem essential to
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constructivist doctrine. Finally, I explore some direction, that educator,

who consider themselves constructivists might take.

Each of these topics is examined from the ...Ant of view of mathematics

education. Although constructivism has had some influence on literary

studies (von Olaaersfeld, in press), it seems to be having an especially

strong impact on the thinking and activities of mathematics educators. Much

of this impact is .undoubtedly due to our views of mathematics and the

learning of mathematics. We seem to have little difficulty adopting such

language as "Eddie has constructed rational number" or "Sally has constructed

the fundamental theorem of calculus." Our colleagues in other subject

fields, however, probably find it awkward to make such assertions as "Eddie

has constructed osmosis" or "Sally has constructed the Monroe Doctrine." The

claim that there is an independently existing world "out there" that can be

known by the cognizing subject is explicitly avoided by constructivism. That

avoidance leads some mathematics educators to reject the language of discover

in favor of construct when referring to the genesis of mathematical ideas--a

rejection that might seem rather easy and harmless. One can describe the

recent proof of the four-color theorem, for example, as having been

constructed rather than discovered without doing much violence to the ideas

involved. A corresponding rejection in other fields, in contrast, might lead

to such distortions as "Priestley constructed oxygen" or "Cartier constructed

the Saint Lawrence River." The mutual attraction between constructivism and

mathematics is an intriguing theme that cannot be developed fully in the

paper but that is touched on again at the conclusion.
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What Constructivism Seems to Be

Mathematics educators have arrived at their views on students'

construction of mathematical knowledge by many routes, including genetic

epistemology, Information science, and symbolic interaotionism. A

comprehensive analysis of construotivist positions held by contemporary

mathematics educators would undoubtedly reveal many points of agreement and

many divergencies. In North America, the major exponent of constructivism,

As known by mathematics educators, is Ernst von Glasersfeid (1983, 1984,

1985, 1906, in press), who through his writings and his work with Les Steffe

and colleagues (Staff*, von Glasersfeld, Richards, & Cobb, 1983) has argued

for a Instrumentalist theory of cognition in which the mind is modeled as

organizing experience so as to deal with a real world that cannot itself be

known. Although von Glasersfeld's theory la far from being accepted in its

entirety by all who march under the
constructivist banner, it offers the most

coherent and elaborated baste for en initial analysis.

An ancient, unresolved epistemological problem for Western philosophy

concerns how on independent objective reality can ever be known by a

cognizing subject who has no way to check what his or her knowledge is

knowledge of. Any attempt to test the truth of what is known must itself be

an act of knowing and hence subjective. Any knowledge of "objective truth,"

therefore, is impossible. Constructivism cuts the Gordian knot by separating

epistemology from ontology and arguing that a theory of knowledge should deal

with the fit of knowledge to experience, not the match between knowledge and

reality. The only reality we can know is the reality of our experience.
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The conatructivist view involves two principles;

1. Knowledge 13 actively constructed by the cognizing subject, not

passively received from the environment.

2. Coming to know is an adaptive process that organizes one's experiential

world; it does not discover an independent, pre-existing world outside

the mind of the knower.

As von Olasersfeld (1985, in press) and Cobb (1986) have noted, the first of

those principles is much more widely accepted than the second uy 1.;:sple who

think of themselves as constructivists. The first principle is one to which

most cognitive scientists outside the behaviorist tradition would readily

gi.e assent, and almost no mathematics educator alive and writing today

claim;: to believe otherwise. The second principle is the stumbling block for

many peol.le. It separates what von Glasersfeld calls trlytal constructivism,

what Cobb calls Imakricllt7ftrlented constructivism, and what Davis and Mason

(1986) call simile constructivism from the radical construetivism that is

based on the aoceranoe of both principles.

Radical constructi!ism is radical because it rejects the metaphysical

realism on which most empiricism rests. It requires that its ndherents forgo

all efforts to know the world as it truly is. In what von Glasersfeld (1985)

terms "an even greater effort of decentretion" (p. 82) than humanity needed

to give up the view of our planet as the center of the universe, radical

constructivists claim that we need to abandon our search for objective

truth.

Constructivism appears to have been given its first formulation by Vico
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in the 16th century (von Glasersfeld, in press), whose motto "verum eat ipsum

factum" (the true is the siSS as the made) encapsulates his claim that we can

only know what we have constructed. God can know hie creation because he

created it; we, however, can only know what we ourselves have created.

Modern construotivism dispenses with any consideration of God's creation. It

focuses instead on the clash between, on the one hand, the Kantian argument

that experience can teach us nothing about things in themselves and, on the

other hand, the evidence of our own experience, which says that we live in a

fairly stable and reliable world (von Glasersfeld, 1984, p. 27). The

developmental side of constructivisa, first developed by Baldwin and by

Piaget, attempts to give an account of how human beings, with access only to

their own sensations and to the operations of their own minds, construct such

a world (von Glasersfeld, in press).

The mechanis that construotivism postulates as driving development

cornea from the theory of evolution: just as the physical organism adapts to

its environment, so cognition develops through adaptation. Adaptation is

coping with the possible, not representing the actual. The mind constructs

knowledge that adapts to the world in much the same way as one might

construct a key for a lock. The key is not the image of the lock; it is,

rather, one of many keys that might open the lock (von Glasersfeld, 1983,

p. 95). Or, to use another metaphor, the captain sailing a ship through a

channel on a dark and stormy night with no navigational aids, never actually

comes to know the channel. If his ship wrecks, he learns something about

what his course should not have been, but if he passes through the channel

successfully, he cannot know whether his course might have been improved.
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His course fit the channel, but he
cannot know how well it matched the

channel's topography (Watzlawick, 1984).

Radical constructivism adopts a negative feedback, or blind, view toward

the "real world." We never come to know a reality outside ourselves.

Instead, all we can learn about
are the world's constraints on us, the things

not allowed by what we have experiences as reality, what does not work. Out

of the rubble of our failed hypotheaca,
we continually erect ever more

elaborate conceptual structures to organize the world of our experience.

We are, therefore, self-organizing, self-regulating, self- contained

systems (von Foerster, 1986; von Glaserafeld, 1986). Neither knowledge nor

information flows in or out of us; we are inforuationally closed. Because we

are also self-reproducing systems, we are sometimes termed autopoietic

(Maturana & Varela, 1980). This conception, or rather this set of related

conceptions, rests on a cybernetic analogy between human cognition and the

behavior of independent effectors in protozoa and metazoa, neurons in the

mammalian central nervous system, chemical reactions, insect societies,

lasers, superconductors, and other systems that are far from equilibrium and

to some extent self- organizing (Haken, 1977; Nicolis & Prigogine, 1977).

Because we are closed systems, language and other forms of communication

entail not the interchange of ideas between us but the construction of

subjective realities to fit the experiences we have had of situations we have

shared. Each of us constructs meaning for the language we use as we build

our experiential world, and the meaning in turn shapes that world. Meanings

cannot be communicated; they are necessarily subjective.
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A full account of
constructivism would consider such questions as how do

we know others, what is objectivity, and is there a constructivist ethics

(von Glasersfeld, 1985, 1986). The constructivist
view of what others see as

socially constructed knowledge
is in particular need of exigesis.

Unfortunately, however, space does not permit an
exploration of these

issues.

In summary, radical
constructivism seems to be an epistemology that

makes all knowing active and all knowledge subjective. Following modern

physical sciences in its rejection of the possibility of coming to know

ultimate reality, it treats
the cognizing subject as

the organizer of his or

her own experience and
the constructor of his or her own reality. It views

coming to know as a process in which, rather than taking in information, the

cognizing subject through trial and error constructs
a viable model of the

world.

An experiment at
Stanford University by Alex Bavelas captures well the

essence of constructivism
(see Watzlawick, 1984):

The experimenter read to

each subject a long list of number pairs
(e.g., 31 and 80, 77 and 15). The

task was to say whether or not the two numbers "fit." After each response,

the experimenter would
indicate whether or not it was correct. The subjects

invariably wanted to know in which sense the
numbers were to fit and were

told that the discovery of those rules was
precisely tht point of the task.

The subjects then assumed
that they were engaged in a typical trialanderror

experiment and proceeded to make random "fit"
and "do not fit" responses. At

first, the subjects were wrong every time, but as they formulated hypotheses

as to how the numbers were related, they gradually began to improve, and
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eventually every response they made was correct. Their hypotheses, though

not perfect, received increasing support.

What the subjects did not know was that the experimenter's responses

followed a predetermined sequence from all incorrect, through a varying

mixture of incorrect and correct, to all correct. The sequence had no

connection to the choices the subjects made. When the experiment was over,

however, and the.subjeots were told of the deception, they refused to

relinguish their assumption that there was an order in the number pairs.

Some subjects even claimed that there was a pattern in the numbers that the

experimenter had rot been aware of.

In an objective sense, there was no order in the number pairs. That did

not stop the subjects, however, from claiming that they had discovered an

order. They constructed a reality to fit their experience, and they can

serve as models of how all of us in the eyes of constructivism--organize our

experiential worlds.

What Constructivism Seems Not to Be

As a theory of knowledge acquisition, constructivism is not a theory of

teaching or instruction. There is no necessary connection between how one

views knowledge as being acquired and what instructional procedures one sees

as optimal for getting that acquisition co occur. Epistemologies are

descriptive, whereas theories of teaching or instruction must necessarily be

theories of practice (Kerr, 1981). Nonetheless, constructivists have sought

to derive implications for practice from their theory, and in some writings
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the implication seems to be drawn that certain teaching practices and views

about instruction presuppose a constructivist view of knowledge. That

implication is false.

Von Glasersfeld (1983, in press) has identified five consequences for

educational practice that follow from a radical constructivist position: (a)

teaching (using procedures that aim at generating understanding) becomes

sharply distinguished from training (using procedures that aim at repetitive

behavior); (b) processes inferred as inside the student's head become more

interesting than overt behavior; (c) linguistic communication becomes a

process for guiding a student's learning, not a process for transferring

knowledge; (d) students' deviations from the teacher's expectations become

means for understanding their efforts to understand; and (0 teaching

interviews become attempts not only to infer cognitive structures but also to

modify them. All five consequences fit the constructivist stance, but they

appear to fit other philosophical positions as well.

Teaching and Trainin&

The contrast between teaching and training is an old one in educational

philosophy. Most people would probably argue that although the two concepts

are different, training is a part of teaching when aimed at actions that

display some intelligence (Green, 1968). The eseence of the distinction

between the two seems to hinge on whether the action involves explanations,

reasons, argument, and judgmentpresumably the sources for the teacher to

conclude that the student has understood. Making the distinction into a

dichotomy ignores the contexts in which the two terms are used

interchangeably but may be useful if it can be defended. Certainly the
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understanding/behavior contrast fits with the traditional view of teaching as

giving instruction, aiming at the acquisition of knowledge and belief, as

opposed to forming habits and engendering repetitive behavior.

Inside Versus Outside

The attention to processes inferred as going on inside the learner's

head rather than to the learner's overt responses seems to be a hallmark of

the constructivist position. On the one hand, it is difficult to imagine any

teachereven Skinner, when he is teachinglooking at a student's behavior

only as uninterpreted behavior and not using it to make inferences about what

the student was thinking. Any effort aimed at detecting signs of thinking,

which teaching most assuredly is, must assume that the teacher makes such

inferences. On the other hand, the most radical constructivist, lacking

direct access to the student's mind, is forced to fall bank on overt

responses as the only constraints the world provides for making inferences

about internal processes. What else is there? The contrast, then, seems

truly one of focus. The behaviorist teacher attempts to see in the overt

behavior; the constructivist teacher attempts to see through it. The ensuing

teaching actions, however, may not be any different.

Constructed Versus Transferred

The metaphor of knowledge being constructed by the learner, like the

metaphor of knowledge being transferred
during teaching, is only a metaphor.

Both metaphors seem to have some
utility for describing what goes on when one

person is teaching others. When constructivists shift their attention from

students to teachers, they observe that many teachers quite happily use the

transport metaphor:

46
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"I got the ideas across." . . .

"Some students pick things up quickly."

"Why can't we chop this section of the content out?"

"The teacher is a medium for delivering. curriculum to

students." (Davis i Mason, 1986, pp. 8-9)

The teachers quoted evidently have constructed a model of the world in which

the transport metaphor provides a viable way of talking about instruction.

That model is apparently wrong (I am not sure how the constructivists have

come to know that it is wrong, but assume they have), so the task facing the

constructiviats is to change the teachers' model. The strategy they have

adopted is to deny the validity of the metaphor ("knowledge cannot be

transferred to the student by linguistic communication," von Glasersfeld, in

press) and to attempt to change the metaphor by changing the language used to

talk about instruction ("teachers with a constructivist leaning are likely to

see themselves not as delivery agents of an educational system, but more as

gardeners, tour guides or learning counsellors," Davis i Mason, 1986, p. 9).

Whether teachers can be moved to revise both their language and their

conception of instruction remains to be seen. Cobb (1983), conceding that

constructivists "often manage to tie ourselves in linguistic knots" (p. 1),

attributes the problem to a quest for precision. A plausible alternative

hypothesis is that it stems from an aversion to common language forms that

ordinary people find viable but that signal dangerous thoughts to

conatructiviats.

Cobb (in press) has argued for a conatructivist analysis of mathematics

instruction over a transmission analysis because (a) mathematical objects and
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structures that the teacher can "see" are unlikely to be apparent to

students, (b) students' misconceptions are better understood when seen as

arising from alternative constructions of meaning than as failures in

communication, and (o) theories of instruotion ought to be consistent with

theories of learning and conceptual development. It is not clear how the

abstract nature of mathematics fits a construotivist analysis better than a

transmission analysis. People who conceive of teaching as, at least

sometimes, transmission ought to be just as puzzled as the construotivist

over how to put mathematics into a tangible form that can be examined, talked

about, and symbolized. Contrary to Cobb's argument, one need not claim that

mathematical structures are somehow visible in the environment in order to

hold that ideas about those structures can be communicated to students. If

you doubt that, ask the next inatruotor of collegiate mathematics you

encounter. The case of misconceptions is similar; one can model

misconceptions as arising from alternative constructions or from a breakdown

in communication. Either can lead to attempts to find out what the student

is thinking. The issue of consistency is a different matter. It becomes an

argument for employing construotivism as an approach to teaching only if one

accepts constructivism as an adequate description of the acquisition of

knowledge. It to not by itself an argument for constructivism.

UnexQeoted Errors

The attention that construotivists have paid to teachers' expectations

and students' deviations from those expectations as clues to students'

thinking is one of the most attractive and promising aspects of

construotivist work. Many models of the learner treat the learner as someone
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who is attempting to make sense of the teaching encounter. Consistency

demands that they also treat the teacher as someone who is attempting to make

sense of that same encounter. Constructivists have drawn our attention to

the teacher's view of the student's knowledge as a phenomenon worthy of

investigation. But again, one need not be a construotivist to be interested

in, or to study, the errors students make that are contrary to the teacher's

expectations.

In fact, the construotivist view may turn out to be something of a

liability. Whereas the transmission view of teaching takes Successful

communication as what Cobb (in press) terms its "paradigm case," the

construotivist view takes as its paradigm case the situation in which

communication breaks down and students and teachers "talk past each other."

This argument may yield conception of communication in teaching as a

process that fails most of the time. Of course, we learn from the errors

that we and others make, but full view of cognition suggests that we also

learn from our successes. One cannot deny that the world is full of

classrooms in which much miscommunication about mathematics is taking place.

To take miscommunication as the paradigm, however, is to ignore the role of

successful communication in promoting learning. The negative feedback model

may be useful in describing self-organizing systems that do not mind having

negative feedback models of themselves, but its utility in describing

teachers and students to themselves may be limited. Few people respond well

to claims that they are failing most of the time, especially when their own

models of their communication are signalling success. It may be more

productive in the long run to show teachers and students that the glass is
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not Just half empty but also half full.

Teaching Interviews

Steffe and his colleagues (1983) have pioneered an extension of Piaget's

clinical interview in which a child is set a mathematical task, the response

is analyzed in terms of a model of the child's understanding of the task

constructed from an interpretation of that and other responses, additional

tasks are given to test the model, and instruction is provided by the

interviewer in an effort to develop the child's conceptual structures and to

model that development as it occurs. The tern teaching experiment is often

used to describe such an interview, but that term refers more appropriately

to a procedure from the Soviet Union in which a 01433 is instructed by their

regular teacher and an experimenter uses their responses, together with data

from interviews with selected students, to guide, in consultation with the

teacher, the course of subsequent instruction. Teaching interview seems a

more appropriate term for what Steffe and his colleagues do.

History, not logical necessity, links the teaching interview to

constructivism. Interviews in which instruction occurs have never been

popular in research traditions that demand a high degree of control because

the instruction would likely be quite variable and comparisons would be

difficult to make. Nonetheless, teaching interviews have for some time been

popular in Europe and the Soviet Union as a alms of studying cognition.

They have made their way to North America independently of constructivism.

The impulse to adopt the learner's point of view when one is teaching is

a worthy impulse. Successful teaching, like successful communication,
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depends on having a good model of the other. Constructivista, however, do

not have a monopoly on the view of teaching that sees students and teachers

negotiating as they develop shared meanings. They are not the only people

who believe that teachers should listen to student, and attempt to understand

what they are thinking. They are not the only ones to encourage

investigative work by studentsany more than behaviorists are the only ones

who give lectures.

What Conatructivism Needs to Be

Connected to Ontologx

A central problem with construotivism seems to be its relation to

ontologywhat is. Von Glaserafeld (1985) claims that oonstruotivism

"deliberately and oonsequontially avoids saying anything about ontology, let

alone making any ontological commitments. It intends to be no more and no

leas than one viable model for thinking about the cognitive operations and

results which, collectively, we call 'knowledge" ( p. 100). Nonetheless,

construottvists seldom behave as though they have made no ontological

commitments, let alone that their view is only one among many. To reject

"metaphysical realism" is to take an ontologioml stand. Cobb's (1983)

eschewal of "realist language" expresses an ontological view. Contrasting

redioal oonstruotiviats with realists (Davis A Mason, 1986), by saying what

conatruotivism is not, contributes to the construotion of a constructiviat

ontology. Furthermore, such arguments as those given by von Glaaerafeld

(1985, in press), Cobb (1986), and Davis and Mason to the effect that the

only good constructivist is a radical construotivist Implicitly reject the
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viability of alternative views within construotivism, let alone outside.

Construotivista need to clarify and develop their ontologice,

commitments. Cutting epistemology loon, from metaphysics as a way of solving

the epistemological dilemma does not provide a satisfactory resolution of our

problems as educators. We need an epistemology that takes ontology into

account. "We must keep metaphysics and epistemology tied together so that

(a) our explanation of Knowledge does not leave us committed to there being

things we cannot account for in our theory of Being, and (b) our theory of

Knowledge (thus restricted) can accommodate our claim to know what Being is"

(McClellan, 1981, p. 265).

Connected to Mathematics

I referred at the outset of the paper to the affinity between

constructiviam and mathematios, so it might seem inconsistent to suggest that

conatructiviam become more or better connected to mathematics. What I mean

is that construotivista need to think through and spell out more clearly than

they have done thus far the relationships between conatructivism and both

mathematios as a discipline and mathematics 83 a school subject.

Von Glaaersfeld (in prena) has noted that "construotiviam has as yet

only an implicit relation with the oonstruotivist approach to the foundations

of mathematics (Lorenzen, Brouwer, Heyting)." The foundations of mathematics

may not pose as much of a problem to conatructivism as the practice of

mathematics. As Davis and Hersh (1980) contend, "the activity of

mathematical research forces a ''ecognition of the objeotivity of mathematical

truth. The 'Platonism' of the working mathematician is not really a belief
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in Plato's myth; it is just an awareness of the refractory nature, the

stubbornness of mathematical facts. They are what they are, not what we wish

them to be" (p. 362). Or, as Gardner (1981) put it, "the existence of an

external world, mathematically ordered, is taken for granted. I have yet to

meet mathematician willing to say that if the human race ceased to exist

the moon would no longer be spherical" (p. 37). Constructivism needs to come

to terms with mathematical realism.

Moreover, eonstructivism needs to address the claims of a new approach

to the philosophy of mathematios, "quasi-empiricism" (Tymoczko, 1985), which

studies the prt:. JO of mathematics in sociohiatorioal context and which

appears to be oompatible with both realist and construotivist mathematics.

Mathematics seems to be wearing a more human face these days; one hears of

"mathematics as a humanistic discipline." If indeed it is a humanistic

discipline, then perhaps radical oonstruotivism can find a voice to speak to

all of the humanities and not just the ones seen as the most abstract and

subjective. Vioo claimed; "Mathematics is created in the self-alienation of

the human spirit. The spirit cannot discover itself in mathematics. The

human Spirit lives in human institutions" (cited in Davis & Hersh, 1986,

P. x). As Davis and Hersh (1986, P. 305) obaerve, perhaps some day the shade

of Vico will look down from Elysium and acknowledge that mathematics is a

human institution. And perhaps other construotivists will some day

acknowledge that their view of mathematics has not dealt adequately with

mathematical practice.

Nor has it dealt adequately with school mathematics. Epistemology alone

cannot answer the question of what mathematics to teach. An analysis of
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knowledge cannot yield a curriculum. The curriculum depends on our purposes,

on what we value, about which epistemology is necessarily silent. To think

otherwise is to commit what Martin (1981) terms "the epistemological

fallacy." Some construotivists (Kamli, 1984; Steffe, 1987; Thompson, 1985)

have attempted to build curriculums on a constructivist foundation. Martin

argues that we first need to determine the moral, social, and political order

we believe to be desirable, then set out our educational purposes, and in the

light of those purposes choose curriculum content and objectives. An

epistemology may be useful to us at that point in dealing with cognitive

objectives, but other theories will be needed in dealing with noncognittve

objectives. We need to be careful not to put the constructivist cart before

the values horse.

Connectedtoiteallty.

If Bauersfeld's (1987) analysis is correct, each scientific theory in

the human science, deals with its own reality from its own perspective.

Competing theories cannot judge one another, and motatheories are impossible

because there in no external fulcrum on which to hang a common perspective,

framework, and language. Therefore, a theory such as constructivism should

be seen as having a limited domain and perspective; it cannot bcoome a

metatheory that drives all of education, let alone mathematies education.

Nonetheless, there is a need for people working within one theory to

communicate with people working within other, necessarily incompatible

theories. A common technical language is not possible, but a common

less-technical language is not only possible but essential.

Conattuctivism needs to become more connected to reality. Not the
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inverted commas "reality" about which one reads so much in oonstructivist

writings, but the reality of everyday scientific activity, mathematical

investigation, and classroom practice. People live in that reality, and they

try to communicate with each other within its constraints. If constructivism

has something to say about what it means to come to know mathematics beyond

the mathematics of the elementary school, about how teachers might work with

pupils in groups, about how indirect guidance of learning can be handled

through the grades, then it needs to find a language with which to speak to

teachers on those matters. Condemning everyday language by terming it

"realist* or "reification" and then putting sanitizing quotation marks about

each usage of such words as discover, problem structure, and error may

preserve one's theoretical virtue but at the expense of reaching, and

keeping, one's audience.

The virtue some constructivista need most is that of humility. It is

unbecoming, if not ludicrous, for the adherents of a relativistic theory to

treat it as though it were absolute and final. A theory that claims to be

only one of many possible viable theories ought to be more tolerant toward

competing theories. People who claim there are many possible ways to

construct knowledge ought to be more friendly and understanding toward people

who have failed to construct their theory.

There is a moment in the film "Let Us Teach Guessing" in which George

Polya is asking a student whether, now that another case has been confirmed,

she believes the hypothesis they have been exploring. She replies, "Sort

of," and Polya seizes on that wording to convey the stance one ought to take

toward all knowledge. We "sort of" believemuch more when we think we have
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a proof, much less when all we have verified are a few specific cases. The

researcher and the teacher need to take a "sort of" stance toward what they

are doing--having enough faith in and commitment to their knowledge to keep

going forward, but keeping an open mind and being willing to reject a

position when disconfirmation is found. True believers make neither good

researchers nor good teachers. Mathematics educators who are not ready to

becalm born-again constroctivista may well find they can live viable lives as

sort of constructivists.

Author Note

Paper prepared for the 11th annual meeting of the International Group

for the Psychology of Mathematics Education,
Montreal, 19-25 July 1987.

grateful to John Mason for his comments on an earlier draft.
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CONSTRUCTIVISM AND THE PSYCHOLOGY OF MATHEMATICS

Hermine Sinclair, University of Geneva

I am neither a mathematician nor an educator of children,
and accordingly not well versed in the literature on epis-
temological questions and teaching, even in the field
of elementary mathematics. My references to this volumin-
ous literature will be to authors with whom I happen to
have had personal contact, knowing full well that there
are others who have had equally important things to say.
My ownarics on constructivism will be almost uniquely
based on Piaget's writings, and my examples of children's
mathematical reasonings mainly fram authors who have some
link with Piagetian constructivists thinking. My talk
concerns the beginnings of mathematical reasoning, i.e.
until the age of seven or so : not because I think this
is the most crucial period, but because I have some experi-
ence of working with children in the pre-school age.
The latter part of my talk will be devoted to what are
called "story-problems", first because such problems are
often treated as presenting a link between "real-life"
situations and mathematical reasoning, and, secondly,
because I am particularly interested in language. Finally
I feel that the main purpose of my paper is to raise some
questions which grew out of my study of constructivism
and my, admittedly limited, knowledge of present day teach-
ing of mathematics in kindergarten and first and second
grade.

CONSTRUCTIVISM

Constructivism, as a theory of knowledge, is not easy to define

or even to describe. Piaget himself gave several descriptions at

different times, no doubt because certain aspects of the theory were

important within particular contexts. Thus I will not try to give

a full account of what Piaget meant by "interactive" or "dialectical"

constructivism, but shall only touch on some points that seem to have

particular relevance to mathematical thinking.

According to Piaget, the essential way of knowing the real world

is not directly through our senses, but first and foremost through

our actions. In this context, action has to be understood in the

following way : all behavior by which we bring about a change in the

world around us or by which we change our own situation in relation to

the world. In other words, it is behavior that changes the knower-known

relationship. From the baby who laboriously pushes two objects together
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or who attracts his mother's attention by crying, to the scientist

who invents new ways of making elementary particles react and the

child or adult who tries to convince his friends of his opinions,

new knowledge is constructed from the changes or transformations the

subject introduces in the knower-known relationship.

The quality of the knowledge gathered in this way is partly deter-

mined by the ways in which reality reacts to our interventions and

by its correspondence to the knowledge other people have constructed.

As von Glasersfeld (1983, pp. 50-51), who may be an even more radical

constructivist than Piaget, puts it : "From an explorer who is condemned

to seek 'structural properties' of an inaccessible reality, the experi-

encing organism now turns into a builder of cognitive structures intend-

ed to solve such problems as the organism perceives or conceives...

What determines the value of the conceptual structures is their experi-

mental adequacy, their goodness of fit with experience, their via-

bility as a means for the solving of problems...".

In other words, at all levels the subject constructs "theories"

(ir action or thought) to make sense of his experience; as long as

these theories work the subject will abide by them. Since human beings

tend to push their ideas as far as they will go and actively seek

novel experiences, they will partly conserve and partly transform

their ideas when this experience widens, and new questions arise for

which the theory is not adequate.

As Piaget, who saw himself as a realist of a rather special kind,

expresses it (1980, pp. 221-222) : "With every step forward in know-

ledge that brings the subject nearer to his object, the latter retreats

... so that the successive models elaborated by the subject are no

more than approximations that despite improvements can never reach

... the object itself, which continues to possess unknown properties..."

This does not mean that the knowing subjects are forever living in

a world of their own making; but it does mean that they can never

get absolute knowledge of reality as it is. According to Piaget,

this is applicable to children as well as to adult scientists and

to science as a social enterprise.

Not only is science a social enterprise, but all humans are

social beings; and it is the sharing of approximate models of theories

that assures the objectivity of the knowledge gained (vs. "subjective"

belief).
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The fundamental constructivist view thus postulates changes in

the relation between subject and object; and the movement towards

better - though never perfect. - knowledge of the object has as its

concomitant another movement whereby the subject obtains better know-

ledge of his own actions or thought processes. There may not be perfect

synchronicity, but sooner or later every new conquest of the world

of objects will lead the subject to restructure his action- or thought

operations system, just as new deductions and inferences derived from

the internal system will lead to new interrogations of reality.

These movements towards ever more viable knowledge lead to differ-

ent kinds of knowledge : on the one hand, the subjects' reflection

on their own action-coordinations leads to logico-mathematical know-

ledge, ana on the other hand reflection on the properties of objects

and the changes actions produce leads to the natural sciences, such

as physics and chemistry. However, these different types of knowledge

are not symtricaL Knowledge of the world of objects cannot be

constructed in the absence of some kind of logico-mathematical frame-

work, whereas logic and mathematics can become pure, in the sense

of being free from particular contents. Clearly, this confers a special

status on logic and mathematics inside the edifice of human knowledge

in general. All activities imply general coordinations from the lowest

to the highest level; they can all be seen as leading to mathematiza-

tion. However, on this particular point I have encountered a difficulty

which I have not been able to solve, and which I think important for

psychologists and educators.

In certain passages (cf. Beth and Piaget, 1961, p. 251), Piaget

refers to "actions that are destined to become interiorized as opera-

tions'. Actions such as combining and ordering can he performed on

many different objects, but more importantly, they are, so to say,

realization of the most general coordinations of schemes. In any

activity, from the simple reflex pattern to lornod actions such as

picking flowers or solving an equation or lighting a firE, actions

have to be combined and carried out in a certain order. A one-year

old who collects avcral objects and puts them into a container one

by one materializes in actions on objects coordinations that are needed

for almost any action - picking up a spoon, plunging it into a carton

of yoghurt and stirring, or pushing a block with a stick along the

edge of the carpet, etc. etc.

The complexity of even the simplest intentional actions is enor-
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=US . As Minsky (1985, p. 21) puts it : for all of us "it once seemed

strange and wonderful to be able to build a tower or a house of blocks.

Yet, though all grown-up persons know how to do such things, no

one understands how we learn to do than!" Minsky's analysis of the

act of building a tower shows the intricate organization of ordered

actions necessary for this purpose. The builder has to choose an

adequate spot to start the tower, add new blocks, decide whether it

is high enough. But to add a block, a new block has to be found,

the hand must get it and put it on the tower top. To find a new block,

it has to be seen, to get it, the hand has to move and grasp; to put

it on top the hand has to move and release.

But what kinds of actions are particularly "destined to become

interiorized" as mathematical operations? What are pre-mathematical

activities, i.e. activities that prepare what Bergeron and Herscovics

call intuitive mathematics? There is, of course, one activity that

has a "mathematizing" role, and that is counting, in itself a highly

complex activity (cf. Steffe 6. al, 1983). Greco (1962) showed the

Importance of counting for numerical invariance : counting, and the

one-to-one correspondences it implies transform the spatio-physical

reality of a collection of objects into a numerical mathematical reali-

ty. But surely there must be other activites as well, that lead to

mathematical concepts and operations?

I have yet another problem concerning constructivism and the

psychology of mathematics, and that is the difference between mathe-

matics and logic. Piaget always joins the two, and discusses logico-

mathematical operations as one entity. I have found several passages

(Beth and Piaget, 1961, p. 233-236) where intuitive geometrical, and

more generally, spatial concepts are contrasted with classes and num-

bers, and more generally logico-arithmetical entities ( "titres "), but

none where logic and nathnatics are disting:dshd- Somehow or other

this question also seems to be important for psychologists; maybe

I will find some answers in this meeting.

A last question which has often been raised about constructivism

is worth mentioning, though in contrast with my other questions it

has been extensively studied : i.e. the place of social interaction

in this theory. It is true that Piaget only rarely studied social

interaction and that he did not carry out any 5tulits on social int'z-x-

tion as a factor of cognitive progress. But since "successive models
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or reality constructed by the subject remain approximations" ( Piaget,

1980), one needs some way of distinguishing between subjective beliefs

and objective knowledge. This is where Piaget adds : "Objective know-

ledge is only attained when it has been d' -Issed and checked by others"

(Piaget, 1965). Thus it is only when our a..els or systems correspond

to those of others that they become an objectively valid base for

further progress. Sharing ideas, discussion and argumentation, or

more simply collaboration in constructive or pretend play, are essenti-

al ingredients for the growth of knowledge, at all developmental levels.

Moreover, the mastery of all conventional symbolization systems, from

spoken language to spoken numerals, arithmetic and algebraic notation,

depends to a great extent on interaction of young children with other

people : educators, parents and older children.

After this brief sketch of constructivism and the questions this

theory raises for me as a psychologist, I shall discuss some more

specifically psychological concepts that belong to the theory and

that, in my opinion, are fairly directly applicable to education.

1/ Normative facts

The elaboration of gradually more "viable" models leads to the

construction of at first very limited systems of reasoning which in

turn lead to what Piaget calls "normative facts" or "norms". Normative

facts are ideas, concepts or modes of reasoning that are immediately

available for the construction of new inferences or hypotheses. The

subject feels such ideas to be both evident and necessary, and often

can no longer imagine that at some earlier time they were not present

in his mind. For example, the commutativity of addition is a normative

fact from the age of about seven : 3 added to 5 gives the same result

as 5 added to 3, and the sere goes for 15 and 3 and 1,000,005 ad 3,

though if one has 3 dollars and gets 5 more that certainly rakes a

difference, whereas if one already has a million dollars the increase

is imperceptible. Though seven-year Olds may not be able to reason

as far as millions, comnitativity of addition is a normative fact

for them, it is felt as something that is "necessary" and it can immedi-

ately serve as a base for further reasoning.

In another field, the Chic between volume and the amount of water

displaced by an object that does not float is a normative fact from

about the age of ten. According to Piaget it is the task of the psycho-

logist to study the gradual construction of such norms by the subject,
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i.e. what is necessary and evideht in the subject's eyes, but not

whether the subject's "norms" are true in the scientific sense. Neith-

er of the above facts is normative for four- or five-year olds, but

what is more surprising is that a concept such as the cammutativity

of addition may first be limited in scope; e.g. that the child may

use it as an immediate base for problem solving as long as the num-

bers do not go beyond 10, or as long as one of the numbers is either

1 or 2. It is also important to note that in the constructivist view

the commutativity of addition and the relation between volume and

water-displacement have a common source, i.e. in the organization

of the interactions between the subject and the world of objects.

To many adults, scientist as well as laymen, mathematical "truths"

appear to be a priori, Plitalic ideas, Ural emerge at some point in

development, whereas physical "truths" a..e rooted in learning through

experience, and thus fit into empiricist theories of knowledge. This

is contrary to the constructivist view.

2/ Instruments of knowledge

In "Psychogenese et histoire des sciences" (1983), Piaget discusses

another task for psychologists : to find out "which kinds of instruments

the subject uses for problem-solving, what their origin is, and how

they are elaborated" (p.22). These instruments or processes constitute

the link between the knowing subject and the objects of his knowledge,

logico-mathematical objects as well as physical objects, and their

study belongs to epistemology and to psychology. Piaget proposes

that these instruments fall into two categories : correspondences

which imply comparison on the one hand, and transformations on the

other. These processes are totally general and operate at all levels

of development. Every action scheme is a source of "correspondences",

since it can be applied to new ()Oats or situations that are thus

compared without further transformation, and every coordination between

schemes is a source of transformations, since the coordination can

result in a new type of action with its particular result. There

is thus right from the beginning a duality but also a linkage between

the two types of processes. But since children (and adults, and scien-

tists) first become aware of their transforming actions and their

results and only later of their comparisons between the objects as

such, in a static state, corespondences and comparisons retrain indepen-

dent of transformations, often for a long time. At different levels
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of development, the cycle repeats itself : subjects compare, choose

objects to transform, transform, take note of the results of their

transformations, and only later become aware of links between the

transformations and the correspe)dences they establish when making

comparisons.

Interestingly enough, Unmediately after having discussed camparison

and transformation (Piaget et Garcia, 1983, p. 23-34), Piaget speaks

about mathematical "beings" ("etres") - what are they and where do

they come from? (p.25). This is, of course, the 64-dollar question.

Though Piaget's answer has not changed since his earlier works on

number, (i.e. they derive from the subject's actions and his reflections

on these actions), the two points I have just discussed seem to clarify

the problem to a certain extent. Comparing and transforming in some

kind of quantitative sense, as much in measuring as in counting, appear

to be activities that lead to reasoning systeme (even if of small

scope) which imply normative facts. Measuring certainly deserves

to be mentioned as much as counting (cf. Vergnaud, 1979, p. 263-274,

and the discussion in Steffe & al., p. 19-20). Studies on very young

children (Sinclair & al., 1982) certainly seem to show that the roots

of actions that will lead to measuring and counting go back to a very

early age.

Around the age of twelve months, we observed many spontaneous

activities as in the two following examples (Sinclair & al., 1982,

p. 63-80). The children pull little bits of cottonwool from a big

ball, until it is reduced to many tiny flecks. They carefully observe

the way the oottonwool stretches and then breaks. Then they make

them stick together again; and then they start all over. At a alightly

Later age (around one-and-a-half), we observed long sequences of activi-

ties with a string : they take the ends into their hands, stretch

them apart as wide as possible, touch the string with their nose in

the middle, let it go slack and start again. They also put the string

around their neck, pull on one side, the other hand goes up, they

pull the other side down again, observe, etc. etc. It does not seem

too audacious to see in these activities the very beginnings of count-

ing and measuring, i.e. the very beginnings of what Piaget calls the

slow construction of mathematical objects. Certainly such behaviors

are a good example of the processes of comparison and transformation

with a different focus of attention : either on separate bits (which

will become countable) or on continuous lengths (which will become

6
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measurable).

In short, I tnink that indeed oonstructivist psycholoT, and its

related hypotheses lead us to see the construction of ma, erotical

objects and operations as a slow construction, deeply rootel in all

human endeavors to make sense of their world. As I have alt :,.(t! said,

however, psychologists do not yet seem to have taken ad, 3tice of

constructivist theory to show how this construction proce is o: tie

specific domain of mathematics between the ages of two to si or seven,

with the sole exception of counting behaviors. But much research

and many observations of classroom behavior show that sours ump)rt,:mt

mathematical constructions have already taken place.

Apart from numerical conservation, Geneven research brought to

light many mathematical solutions in specific tasks that do lot involve

counting (Greco & Morf, 1962; Greco, Inhelder, Matalon & Piaget, 19C3)

and that may precede, accompany or follow success on the numerical

conservation task. Five-year olds already know that if one pers)n

always takes one object when another takes two, the former will It

any stage of the proceeding have half as many objects as the Lattee;

somewhat later children begin to understand the connexivity of number,

etc. etc.

In educational settings one can also observe typical examples

of mathematical reasoning, already in first grade. Kmnii and DeClark

(1985, p. 233) report behaviors such as the following. Ann, asked

about 9 plus 9 inquires: "What is the 8 plus 8 one?" When told it

was 16, she says "18. if you know that 8 and 8 is 16, you know how

to skip another one and it has to be 18".

During a discussion about what should be brought to a party for

the 26 children in the class, Mary announces : "If five people bring

five apples and someone else brings one, there will be enough for

everyone". These first-graders had the benefit of a special program

devised by Kauai and DeClark, but they were otherwise an ordinary

class - not a selected group. They certainly were reasoning mathanati-

cally; their remarks show moreover the depth and spontaneity of their

reasoning, and Mary demonstrates an excellent formulation of what

could be a story problem.

Evidently, during the years that precede formal instruction in

arithmetic, ordinary, everyday experiences lead to hmportant mathemati-
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cal achievements by the age of six or seven, though the children may

not be able to apply them to classical pen-and-paper school arithmetic.

What are these experiences, and how could their stimulation help child-

ren that do not seem to have mathematized them?

Krutetskii (1976, p. 217) reports parents' and caretakers' remarks

about children that turned out to be brilliant in mathematics : they

were observed to be fascinated by counting from the age of three onwards.

Somehow or other I suppose that this was the behavior that struck

the adult observers, but that there must have been others. Kamii

and DeClark, and many other researchers in mathematics education think

so, too, and they often consider the early introduction of story-

problems as a way of capitalizing on the children's comprehension

of daily events that occur without any explicit mathematical context.

However, the examples given always concern counting, addition or

subtraction. It seems as if it is tacitly assumed that the only spon-

taneously occuring activities during the pre school years that are

"mathematizable" are those that imply counting. In other school pro-

grams the introduction to mathematics is, by contrast, limited to

logic (set - theory, class-inclusion, etc.), but the problems in this

framework do not seem to have any link at all with the ordinary activi-

ties of four- or five-year olds. For the moment, and as far as I

know, the only way education tries to build onto such activities is

the presentation of addition and subtraction story-problems.

In the last part of my paper I will make a number of critical

remarks about story-problems as a psycholinguist, knowing full well

that many researchers in mathematics education have made similar re-

marks and that my knowledge of the literature is limited.

First, in a trivial sense, story - problems are not stories, because

stories tell you something, they don't ask you something : the solution

to a problem is more like a story than the problem itself. But in

a less trivial sense, I feel that one has to find a solution (apart

from some calculations) before one can construct the problem, or maybe

at the same tine, but certainly not after. Formulating a problem

clearly and mathematically is not a step towards its solution but

part of the solution itself. The already mentioned example of Mary

(p. 11) can maybe illustrate this point, which I am afraid remains

rather intuitive. When Mary announces : If 5 people bring 5 apples

and someone else brings one, there will be enough for everyone", she

is asked how she figured that out so quickly. And she answers : "I

6
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counted by fives. S+', 5 10 15- 3) 25, and then one more is 26".

Though I cannot explain how she cane to this computation, T do think

that it was the computation that allowed her to formulate a stre.y-

soiution. Moreover, by saying "5 people... and someone else..." in-

stead of "5 persons (as an adult might do)... and one..." she made

perfectly clear what is in fact a problem of quantifying in natural

language :
someone else, not one of the five already mentioned. Pre-

cisely because story-problems only pretend to be stories, most of

them continually transgress the rules of natural language usage.

Natural language quantification, for example, does not directly corres-

pond to quantification in logic.

In an interesting article Freeman and Stedmon (1986) start from

the observation that English, a natural language, has at least three

words that can be seen as universal quantifiers : each, every and

all, and can be used in

to an eXterior reality of

tences such as "All the dogs are aggressive", "Each dog is aggressive"

and "Every dog is aggressive" when talking about a particular collec-

tion of dogs. If one adds universal statements such as "All dogs

are mammals", "Dogs are mammas" or "The dog is men's best friend",

and quantifiers such as some, as in "Some dogs are aggressive", "Some

of the dogs are agressive", "There are sane egressive dogs in your

garden", etc. etc., the variety of natural language quantifiers may

easily bewilder the subject who has to e'.aluate the truth of any such

expression, and, we may add, any subject who has to take such an ce

pression as the basis for a calculation.

affirmative quantification with reference

multd)le objects. This gives rise to sen-

The authors of the article I have quoted examine the case of

all the, each and every, and argue that these words have both a deter-

minative and a quantifying function Before one can decide whether

"All the dogs are aggressive" is a true statement or not one has to

know which dogs are being talked about. Moreover, though as far as

quantification goes all and each are equivalent, as far as meaning

in ordinary language goes they are not : all is collective, each is

distributive, and every is somewhere in between. After discussing

several studies carried out with young children, Freeman and Stedman

conclude that children clearly have trouble coordinating the determina-

tive and eantifying functions
of expressions such as all, all the.

every etc., and that it is unjustified to consider tests using these

expressions as tests of logical reasoning. A similar conclusion should,

70



-38-

in my opinion, be drawn about story-problems
: when such rwoassicro

(as well as some) are used in story-problems, the problems are not

necessarily tests of mathematical reasoning. Not only quantifiers,

but also verb-tenses and pronominalization are used in story-problems.

In ordinary narrative discourse, a succession of the same tenses

(he thought... he said... he went... he bought...) indicates a success-

ion of reported events identical to the order of utterance; whenever

the speaker intends a different oeder he indicates this by other mark-

ers : conjunctions such as before or after, or adverbial expressions

such as already, or contrasting tenses, or combinations thereof.

Simultaneity is expressed by special markers such as meanwhile, while,

etc. Often, however, the addressee's knowledge of normally occurring

events allows him to interpret temporal order or simultaneity as intend-

ed by the speaker, without precise indications
: Mary and Anne came

to visit us (i.e. together at the same time); Mary put on her socks

and shoes (i.e. socks first, shoes afterwards). The linguistic and

pragmatic rules for the use of tenses, pronouns and other coherence-

providing devices in story-telling and understanding are not easy,

and as neny researchers have shown, they are still being worked out

by children between the ages of 6 and 9 or 10, but many of the rules

they have already constructed are to a greater or lesser degree trans-

gressed in story-problems. In other words, there is not only a logico-

mathematical graduation of story-problems according to whether they

concern change of state, reunion, comparison, part-whole relationships

etc. which make some problems harder than others even though they

demand the same operation with the sane ninters, but also a graduation

in the degree these problems violate in their wording discourse rules

that children have already mastered.

De Corte and WrEeteffel ( ) in a detailed analysis of the

strategies children use in solving elementary addition and subtraction

story-problems clearly deloWuate "that for large number of children

the main difficulty does not lie in selecting the proper arithmetic

operation but in a prior stage, namely the construction of an appropri-

ate problem representation". IwtoiAratikay agree, and would simply

add that the trouble with certain story-problems is not so much that

they are "very condensed and, in a sense, even ambiguous" (p. 13)

as that they treat quantifiers as logicians treat them, neglecting

their natural language functions and that they transgress ordinary
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discourse rules especially story-telling rules. De Corte and Verschaff-

el give several examples of "v-ong", but as they say, quite coherent

representations of a problem; let me just quote one as an illustration.

The problem is :

Pete has 3 apples; Anne also has some apples;

Pete and Anne have 9 apples altogether;

how many apples does Anne have?

The children were given two puppets and a stock of "apples" (blocks).

They were asked to act the problems and their answers. One child pro-

ceeds : He gives Pete 3 apples; then he gives Anne 3 apples ("also

some") and he places nine blocks in the space between Pete and Anne.

His answer to the question "How many apples does Anne have?" is to

count the apples he had put in front of Anne and to say : "Three".

This child clearly follows the rules of ordinary discourse : in the

second sentence, following the first description, the quantifier some

is interpreted in its usual meaning of two, three or four; and because

of the word "also" three is the obvious choice; the third sentence

then describes the next event : somebody gives the two children 9

apples which are intended for both of them.

Clearly, as De Corte and Vzs.baffel argue, the child in the

example had not constructed a correct representation of the problem,

and the acting-out modality demonstrates where the problem-representa-

tion went awry. Additonally, it seems to me that the acting-out

method reinforced the idea of the problem being a story, which it is

not; in fact, most story-problems, except those that concern a change of

state problem such as

Peter had 3 apples; his uncle gave him 2 more apples.

How many has Peter now?

violate discursive story-telling rules (cf. also Escarabajal and Verg-

naud, Congres de Rome, juin 1986). To be able to solve arithmetical

"story-problems" children have to Learn a new set of rules Ilfon-

they can even think about what nunvrical operation to perform. It

seems highlyrnprobahle that such problems are "less abstract", "chore

to real-life experience" than simple mental arithmetic without

apples, marbles, children, cars and what-not. Of course, solving simi-

lar problems when they are presented in horizontal notation with

+, = and missing addends etc. may be even more difficult, since

it *plies another set of syliolmisq rules to be learned, but once

again, this would not show that story-problems are closer to Leal-
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CONCLUDING REMARKS

Mathematics and logic occupy a special place in the edifice

of human knowledge, and, in my opinion, constructivism theory clari-

fies their particularity. Concepts related to the theory, such as

abstraction, comparison, transformation, and the gradual elaboration

of normative facts give us at least some idea of what is implied

by the capacity to conceptualize mathematical aspects of actions

and events - a capacity which provides the very foundation tar mathe-

matics learrurg.

It is certainly possible to assume that this capacity develops

spontaneously, without direct intervention of parents or teachers.

At all times, some children have drwkred mathematical thinking

in essentially similar and creative ways despite inadequate education

programs. Unfortunately, not all children - not even the majority

- do so. Constructivism, as a psychological theory of knowledge,

has already contributed to the elaboration of methods that can guide

the majority of children through the complex landscape of mathematics.

It has led psychologists and educators to question some of their

own "norms" and refocused their thinking about mathematics teaching.

I hope that the constructivist point of view can still do far more,

and that this conference will be a step in that direction.
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Hermine Sinclair's paper and Jeremy Kilpatrick's paper are quite

different both in the tune they adopt and in the questions they address.

(ermine Sinclair gives a summary of the piagetian views on construe-

tivism and shifts to an analysis and a critique of story-problems.

Jeremy Kilpatrick's paper is rather organised as a reaction to contem-

pary american researchers like Von Glasersftld, Steffe, Cobb, Confrey

and others ; I have to react to a reaction.

I find both'papers most interesting ; although they might be more

specific of mathematics education and research on mathematics education.

As a matter of fact, our job, as researchers, is to understand better

the processes by which students learn, construct or discover mathematics

so as to help teachers, curriculum and test devisers, and other actors

in mathematics education, to make better decisions. This is our practical

burden. Theory is essential, as it is also our burden to organize our

knowledge on mathematics education in coherent systems of description

and in powerful concepts.

It is essential to understand how individuals develop or fail to deve-

lop mathematical knowledge, therefore to discuss alternative interpreta-

tions of constructivism and other theoretical frameworks.

The reference to Piaget is unavoidable as he was, in his days, the most

systematic theorist of constructivism. To understand his views, one

needs to relate them to the questions he was addressing, in a fashion

that parallels the idea that we have to relate the acquisition of mathe-

matical ideas by children to the problems they are faced with.The term

"epistemology" covers a large range of meanings ; one of these meanings

concerns the relationship of knowledge to the practical and theoretical

problems to which is tries to provide an answer.

This aspect of epistemology enlightens the way we may approach the

development of new mathematical concepts, procedures and representations

in the child's mind. It may also enlighten Piaget's views about construe-
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tivism, as Piaget developed his framework as an answer to the general

question "How does knowledge develop" : he tried to make this philoso-

phical question a scientific one by studying the development of children's

intelligence and knowledge. For him, constructivism contradicts both

empiricism and a priori rationalism. His critique of empiricism is pro-

bably better known than his critique of rationalism, but one must never

forget that his work on the representation of space and time (and speed)

is a direct response to Kant's theory that space and time would be a-priori

categories of the pure raison.

Piaget was most .influenced by the neo-kantian french philosopher Leon

Ilrunschwig : his concept of scheme was originally borrowed from Kant,

but his framework is aimed to be different from Kant's views as much as

from Hume's views. The reason for this must probably be traced in his

background as a biologist and an evolutionist.

In the field of psychology, this framework led him both to the empirical

study of development, and to the critique of both associationism and

gestalt theory.

As Hermine Sinclair reports, Pieaget's "Interactive constructivism" or

"dialectical constructivism", stresses the fact that, on the one hand,

children do not simply "read" experience but have schemes and categories

to interpret experience, and that these schemes and categories are not a

priori schemes and categories but derive from inborn schemes and experience.

Action is essential as children accommodate their schemes through action

upon the physical (and social) world, in order to assimilate new situa-

tions : nearly in the same way as scientists develop new procedures and

concepts from former knowledge to understand and master new phenomena. The

relationship between Piaget's "genetic epistemology" and the historical

epistemology of science is obvious, although Piaget rejected the theory

of parallelism between ontogenesis and phylogenesia.

Hermitic Sinclair shows very clearly that, for Piaget, "new knowledge is

constructed from the changes or transformations the subject introduces

in the knower-known relationship", but that "the quality of knowledge is

partly determined by its correspondence to the knowledge other people
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have constructed, and partly by the ways in which reality reacts to

our interventions". If the subject's knowledge of reality develops by

successive approximations, this does not mean that reality does not

exist : Piaget was not interested in this metaphysical question and

was not a "radical" constructivist in Von Glasersfeld'a meaning of the

word "radical". He did apt either pretend that the undividual could

develop hla knowledge through his lonely experience ; on the contrary.

confrontation and decentration are important processes that take place

in social situationsand help children develop new and better schemes

and ideas. Sinclair's quotation "Objective knowledge is only attained

when it has been discussed and checked by others" (Piaget, 1965) shows

clearly that Piaget did not deny objectivity and social interaction.

flermine Sinclair also shows that, for Piaget, action is not only a way

to transform the outside world but also a way to question it. I agree

with her.

I amnotsohappy when she takes for granted Piaget's distinction between

logico-mathematicalknowledge, abstracted from action (reflective abstrac-

tion), and physical knowledge, abstracted from the proportion of objects

(empirical abstraction). As physical properties of objects are also

abstracted though action and experience, it is not so easy to follow

Piaget's views on this point. And they may have wrong consequences upon

the theoretical frameworks of research on mathematics education , for

instance on the concrete-formal debate. Thls debate does not concern only

early school mathematics, but all levels of mathematics learning and

teaching, including University. But before I go into a deeper analysis

of this question, I would like to mention that, in Kilpatrick's paper,

some comments refer to the very same problem, although with different

words.

One of the arguments used for Kilpatrick against radical constructivism

is that one may adopt such language as "Eddie has constructed rational

number" but not "Eddie has constructed osmosis".
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"The claim that there is an independently existing world 'out there'

that can be known by the cognizing subject is explicitly avoided by

constructivism ", Kilpatrick says,mnd he purposedly uses examples outside

mathematics, developing this idea with historical examples : one might

say that the four-colour theorem has been "constructed", whereas one

would not may that "Priestley constructed oxygen" or " Cartier cons-

tructed the Saint Lawrence River". The language of discovery is opposed

to the language of construction. "The mutual attraction between cons-

tructivism and mathematics is an intriguing theme" says Kilpatrick ;

it parallel, the piagetian distinction between two kinds of abstraction.

leading one.to mathematics and the other to physics.

Kilpatrick mentions two principles as the basis of constructivism.

1 - knowledge is actively constructed by the cognizing subject, not

passively received.

2 - coming to know is an adaptation process that organizes one's expe-

riential world. It does not discover an lidependant, pre-existing world.

As far as I can see, there are two independent ideas in the second one,

as the adaptative process is one thing,and the radical constructivIst's

denial of an independent pre-existing world another thing. This last

idea might just as well be considered as trivial solipsism, rather than

radical constructivism. One may accept the first principle and the first

part of the second one, and not the last part of the second one ; and

this is just as radical as radical constructivism, which fails to provide

a theory of objective knowledge. Adaptation does cope with the actual

world, and not with purely imaginary fantasy. There is no random rein-

forcement that can give us the confidence and the feeling of necessity

that we have in using our knowledge of spatial relationships and trans-

formations, or our knowledge of numbers : within the social and scien-

tific knowledge that we call mathematics. Students are invited to share

that knowledge, and eventually contribute to produce it if they become

mathematicians. What is their problem as students ?
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Kilpatrick reports on five different questions, that have been raised

by Ven Clasersfeld himself.

- teaching versus training

- inside processes versus overt behavior

- linguistic communication and transfer of knowledge versus construction

- interpretation of errors

- teaching interviews as a powerful method.

I will not cepeat here what is very well reported in Kilpatrick's paper.

I agree with him that some consequences of radical constructivism are not

specific of radical constructivism. But I also would like to say, in

defence of constructivism, that some of them do contradict empiricism

and other widely accepted information-processing models of cognition,

especially those which see knowledge as an additive combination of rules,

or as a purely symbolic calculus, or as a net of static structures.

At this point I feel the need to change my way of discussing Sinclair's

and Kilpntrick's papers. I need to start from examples and from my own

point of view.

Let us start from the analysis of the competence to count a set of

objects. This requires a one-to-one correspondance between objects,

finger movements, eye movements and number words ; it also requires

the cardinalization of the whole set, using the lest word twice or

with two meanings, one for the last object (ordinal), the other for

the cardinal of the whole set.

Counting a set is a scheme, a functional and organized sequence of rule-

governed actions, a dynamic totality whose efficiency requires both

sensori-motor skills and cognitive competencea : cardinal, exhnustion,

no repetition... There are important "normative facts" implicit in it,

(to follow Sinclnir's vocabulary), or "invariants", or "theorems-in-

action" as I usually call them.

u 0
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Many different schemes are involved in the solving of the different

subclasses of additive and subtractive problems : they consist either
of finding the adequate operation and the adequate data, or using a

counting procedure that simulates the structure of the problem,or trans-

forming adequately the structure of a problem into another one...

Children also develop important and complex schemes to coordinate dif-

ferent motor-skills and different rotations and translations in space,

and still recognize the invariance of the objects and relationships under

control. Some of these skills appear quite early in the child's develop-

ment, others appear later and only through s mathematical or quasi-

mathematical analysis : think of technical design for instance.

Some of these schemes are rather spontaneously shaped by children, in

the sense that they are not really taught by adults,and depend heavily

on the recognition by children of their function and organization. Yet

we must never forget that these activities are not purely invented by

children as most of them exist in their social and physical environment,

and require practice children spontaneously train themselves and repeat

the same scheme under the same circumstances or under diverse circums-

tances, to master it and delineate its scope of validity.

Whatever the influence of the social and physical environment may be,

I consider that the development of such schemes relies essentially on

the construction, by the child, of adequate cognitive invariants and

skills.

Neo-behaviorists might say that the concept of scheme is not necessary

and that the concept of skill (as overt behavior produced by rules) is

sufficient. For me the recognition and representation of cognitive inva-

riants such as objects, properties and relationships are essential com-

ponents of schemes, as the hierarchical development of schemes is tightly

associated with the recognition of more and more complex liivariants.
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This is true for sensors -motor schemes and for intellectual schemes like

those involved in mathematics.

The true cognitive task of the child is to "conceptualize" the world, so

as to act upon it efficiently. This process is not easy, and it usually

goes with all sorts of fancy "conceptions ". But the feed back of the phy-

sical and social world truely helps the child to shape his schemes : for

instance, the conceptions of addition and subtraction are shaped by the

first situations mastered by children (addition as increase and subtraction

as decrease), but these conceptions have to change when children deal with

other cases of addition and subtraction, although there are always sequels

of their primitive conceptions.

1.11 this process of recognizing invariants in the world and developing

schemes, there is no difference, at the beginning, between mathematics and

physics. The differentiation comes later. Mathematics deals essentially

with number and apace. There would be no meaning for the concept of number

if there were no physical quantities, discrete or continuous. There would

not even he any primitive conception of addition and subtraction if trans-

formations, that occur in time, did not take place. Time is not usually

viewed as a mathematical concept but rather as a physical one. Sot all

we know about children's mathematical schemes shows that we must make

room for the representation of time in children's mathematics. Space is

nlso both mathematical and physical, as there would be no representation

of space if it was not full of physical objects. The concept of number Is

tightly associated with the concept of measure (cardinals are measures)

and it is only when the concept of number is already well developed that

children are able to think about properties of pure numbers.

It is not the distinction between abstraction from action and abstraction

from objects that enables us to understand the distinction between mathe-

matics and physics, but rnther the level and the kind of objects we are

dealing with. The concept of whole nnmber is a good example : for young
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children it is tightly associated with the measure of discrete quantities

and the ranking of physical objects ; but as it is used for many diffe-

rent kinds of quantities (even continuous magnitudes), and for different

rankings, it can be abstracted from the specific physical properties and

give birth to the concept of pure number, many properties being invariant

upon all different kinds of physical properties
: the truth of 3 + 3 - 6

does not depend on marbles, sweets or steps.

Fractions and ratios are tightly connected with physical objects and

could be viewed'as ways of conceptualizing the physical lard social world

(think of sharing) just as well as mathematical concepts. It is through

high-level abstraction that the concept of rational number develops, also

through the synthesis of different properties of fractions and ratios

(Vergnnud, 1983,Kieren, 1987), namely operators, quantities or magnitudes,

scalar relationships, mappings and rates.

At nearly all levels, there are specific mathematical activities,as many

activities concerning number are independant of the physical context,

but mathematics le rooted in physics. This is true even for high-level

mathematical concepts, who would have never come to birth if physics had

not raised new problems : think of vector-spaces, of differential equa-

tions and calculus. There is some research work in France, at the Univer-

sity level, examplifying the collaboration of physicists and mathema-

ticians, that show the profit students can draw from a better connection

between ma6lematics and physics.

Of course there are also some strong specificities of mathematics. Their-

rational character of the measure of the diagonal of squares of side 1

or n, is a purely mathematical discovery, although its meaning is rooted

in the study of space and measure. Also the fact thnt the sum of twc

successive uneven numbers is a multiple of 4 :

(711 + 1) + (2n + 1 + 2) -4n +4 4 (n + 1)
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Abstraction from action is as assential in physics as in mathematics :

think of movement, speed, mass, density.

But I would like to point at three different aspects of abstraction :

- invariance of schemes

- tool-object dialectics

- role of symbols.

Invariance of schemes : The fact that the same scheme, or sub-scheme,

operates on different situations, is an essential way of recognizing

invariant propeities and relationships, and relies upon this recognition.

Tool-object dialectics : (see Douady, 1985) a new concept is at first

a tool to identify invariants and work out operational schemes. Working

with objects of any level children discover (or construct) some of their

properties and relationships :
these are tools. But such properties and

relationships can in their turn be considered as objects, having their

own properties and own relationships with other objects. Our represen-

tation of the world is made of
different-level objects. This is true for

all sciences, but especially in
mathematics : number is first a tool to

compare, add and substract, it becomes an object quite rapidly, although

not with all its properties. Operations are first tools, they become

objects. The some is true for functions and variables, for geometrical

transformations. Transforming tools into objects is an essential way

of conceptualizing the world.

Role of symbols :
natural language, schemes and other mathematical symbols

play a crucial part in this process of transforming cognitive tools into

objects, as symbolizing is a way of cutting invariants out of their con-

texts. It is also a way to point at them and discuss about them with

other persons.

0
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Actually a concept is not a concept until it has a name and one or

several symbolic representations : lingistic symbols are a necessary

means for communicating and debating about a concept with other people :

about what it is (definition) and what its properties are (theorems).

Communication and debate with others are crucial in the development of

concepts. This is why it is important that students work together, also

why teaching interviews are a powerful method.

But one must never forget that concepts are rooted in the experience of

students with different kinds of situations, and in the schemes they

use to deal with these situations. Before being objects, concepts are

cognitive toole ; and many theorems had better be theorems-en-action

before being explicit theorems, especially at the primary and early

secondary level : if not before, at least immediately after.

The social character of learning, discovering and constructing does not

concern the symbolic aspects of communication only, it also concerns the

cooperation of different students on the same task, problem or situation.

A natural language problem is not a story and does not have to be ana-

lysed as a story, it is a way of refering to a situation : natural lan-

guage is a way to convey referents : objects, properties, numbers. The

analysis of natural language problems is, first of all, a mathematical

one. The cognitive task for students facing natural language problems,

includes understanding words (relationships, quantifiers...), but their

understanding depends heavily on the mathematical tools by which they

can make sense of this sequence of words and represent it to themselves

as a situation and a problem to be solved.

Teachers must explain a lot, and show a lot. But it is also their burden

to choose good situations, a large variety of them, and to understand

clearly which properties of the concepts involved are necessary for

students to make sense of each of these situations.
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Didactic situations play many different parts in teaching : help students

develop new invariants and schemes, train and confort their existing

skills, contradict wrong or narrow conceptions. Concrete and abstract

are all relative concepts, as what is abstract at one age, may he

very concrete and as real as a wood table a few years later. "Concrete"

conveys mainly the idea that teaching situations should make meaningful

a new concept. This is true at all levels, and in many different ways.

As the choice of these situations cannot be made without reference to

mathematics as a science, and to the developmental process of ma-

thematical schemes and concepts in students' minds, I see constructivism

as the best way to consider the process of appropriation by which a

student makes mathematics his own knowledge. Rather than a pure and

lonely construction, the learning of mathematics is for me the difficult

appropriation of a social knowledge.

An individual's knowledge is necessarily his own business and his own

pact is crucial. But there arc so many social and physical incentives

and feed-backs in the learning process that individuals never think,

except: when they are radical constructivists, that their knowledge Is

totally different from ether individuals' knowledge.

This is not pure illusion, or science does not exist.

8 E
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THE WORLD OF MATHEMATICS: DREAM, MYTH OR REALITY?

David Wheeler, Concordia University, Montreal

At the PME-NA meeting at Michigan State University last October, Gaea

Leinhardt remarked that it seemed to her that people who began state-

ments with the phrase, "Speaking as a constructivist", felt able to

complete their sentences in arbitrary ways. The suspicion that

constructivism is too opaque to serve as a framework for enquiry was

strongly voiced by Jill Larkin at the meeting of the NCTM Research

Agenda Project at the University of Georgia in March. Plenty of

mathematics educators have similar reservations. Yet constructivism is

in fashion in mathematics education research circles. It is so fashion-

able, indeed, that it has laid claim to several precious plenary hours

at this crowded conference. I hope the outcome of this extensive

attention will not be seen as an endorsement of fashion but as a

recommendation to subject all reference to constructivism to critical

scrutiny and to refrain from adding to the loose talk. Our efforts may

be useful to the extent that they help (in Yeats' phrase) to purify the

language of the tribe.

Before looking very specifically at the papers by Sinclair and Kilpatrid*,

I want first to set up some divisions in the reference field, in the

contexts within which constructivism appears. They occurred to me

during my first conscious attempts to think about my views on construct-

ivism when I wondered what, if any, was the connection between construct-

ivism in mathematics and constructivism in mathematics education. This

also leads into a subsidiary question about whether mathematics and

mathematics education have some special feature that favours consider-

ation of the constructivism option. A second clutch of questions came

to me because I found myself agreeing with some of the propositions some

constructivists were making while disagreeing strongly with other

propositions from the same people. Arrogant enough to suppose that I

already knew what I know about mathematical activity and learning, I

thought there was a possibility that some constructivists had managed

to mix some independent systems of propositions together.

*Which I have read in first draft only.
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The divisions I will make are between constructivism as a philosophy of

- mathematics

- psychology, particularly the psychology of learning

- philosophy, particularly ontological questions

- education

Constructivism in mathematics education is likely to feed on some or all

of the above.

Although I include philosophy as one of the contexts, constructivism in

any of the contexts is itself a philosophy. It is not a theory because

it is not formulated in terms that could lead to refutation. At the

heart of discussions about constructivism is the difficulty that its

espousal and its rejection are more products of taste than of evidence.

Having laid out this challenging conspectus, I find myself incompetent

here and now to make sensible observations about each part of the whole

picture. I make some brief remarks under each heading: at least this

will indicate how much still remains to be understood.

Constructivism and mathematics

There are two strands he e, one fairly general and the other special and

technical. The general strand is characterized by the classic question:

is mathematics invented or discovered? This is often interpreted as a

straight choice between the platonist and constructivist positions, but

there are other options available that may answer the question: how

does mathematics come into being? The empiricist position that treats

mathematics as much like any other science, argued by Locke and recently

reviewed by Kitcher, probably does not have many adherents, but there

seems to be growing acknowledgement of the influence of social forces,

as in the anthropological views of L.A. White and their elaboration by

R.L. Wilder. There are other positions, and in any case enough

alternatives to make it possible to answer "Neither" to our classic

question.

A better answer may be "Both". The platonist-constructivist dichotomy

puts us in the position either of denying that we 'lave any choice in the

directions in which mathematics develops or of denying that the inner

coherence of mathematics ever takes us in directions different from
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those we intended to follow. Both denials are contrary to well - documented

aspects of the mathematical experience.

Constructivism in its more specialized sense begins at the end of the

19th century with Kronecker's objections to the analytic methods of

Weierstrass and Cantor. In the 1920's Brouwer tried to recreate

analysis on non-set theoretic foundations, and more recently Bishop has

begun the hard task of "constructing" constructive proofs of the

important theorems of the calculus.

The intuitionist programme, as Brouwer called it, is based on attractive

assumptions, but it makes doing mathematics extremely difficult since

it denies mathematicians some of their most powerful tools. The

programme is strong on internal coherence but very weak on external

referents. Goodman remarks that Brouwer's mathematics is dream-like.

"In a dream ... there are no errors. Everything is arbitrary, and so

everything is correct. (Goodman, 1983)

Constructivism and psychology

The psychology of perception has always been dominated by constructivist

philosophy. Most psychologists would agree that our seemingly unified

view of the world around us is really only a plausible hypothesis on

the basis of fragmentary evidence." (Blakemore, 1973) The recent

adoption by psychology of computational metaphors, in information

processing and cognitive science, which might be expected to favour

mechanistic explanations of other kinds of psychological phenomena in

fact do riot. "These psychologists agree that thought and behaviour

must be conceptualized as meaningful action on the part of a subjective

agent rather than a causal process in a natural world." (Boden, 1979)

In psychology, it seems, we are all constructivists now. And hence the

exalted place that theories of representation are beginning to occupy.

Theories of representation often seem unable to tell whether the thing

represented is present to the senses or not, yet most of the time we

have no difficulty in knowing whether what is in our mind corresponds

to something that is present or is an image evoked in the thing's

absence. Theories of representation also postulate certain a priori

powers of the mind or the brain that enable us to select invariants from

the flux of sensory data - as the baby, for example, recognizes his

SO
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mother although the constellation of energy impacts on his sensory

receptors from the photons rJlected by her face and body is different

at each moment. (There are, of course, other means for him to know her,

but similar observations apply to these as well.) The latter assumption

seems potentially much better adapted to dealing with our movement

through an ever-changing world.

Constructivism and philosophy

Rather than outline here the standard philosophical positions on

constructivism versus the other isms, I want to say that philosophers of

mathematics should take more note of Piaget's work. This also puts

Piaget in the right place. "Genetic epistemology is essentially an

experimental philosophy which seeks to answer epistemological questions

through the developmental study of the child." (Elkind, 1968)

Piaget's contribution to the philosophy of mathematics lies in his

explanation of the phenomenon of mathematical evidence, i.e. the

,vIdence on which mathematical theories and knowledge can be based

(the "fundamental criterion of demonstrative force", in Beth's phrase).

"Piaget takes a decisive step ... by observing (not positing) that

evidence develops in parallel with the emergence of mathematical

"structures", that is, with the recognition of abstract relations

independently of the particular "objects" between wnich the relations

hold. Evidence matures with the progressive acquisition of structures,

with the increasing objectification of the components of these structures,

with the growing awareness of the automony of the operations performed

on these components relative to the particular "objects" which at first

are considered to constitute them, these "objects" themselves being

structures already previously elaborated at a lower level of conceptual

organization. Definite acquisition of evidence ... is associated with

completion, or "closure", of the corresponding structure." (Castonguay,

1972)

It is particularly interesting to notice how Piaget avoids the naive

platonism of Thom ("mathematical structures exist independently of the

human mind that thinks them" (Thom, 1971)) and yet can agree with Thom

that "the important mathematical structures (algebraic, topological)

appear as data fundamentally imposed by the external world." (Piaget,1970)
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In Piaget's constructivism, meaning is cumulative and the evolution of

mathematical structures is towards increasing comprehensiveness and

rigor. Logico-mathematical structures build on those that came before,

.ntegratina them while overcoming their inadequacies. Mathematics

therefore moves towards increasing objectivity - which Piaget understands

as a process and not as a state.

Constructivism and education

The institutionalization of education leads to a necessary abstraction

and formalization of knowledge. Whereas in an apprenticeship the

knowledge that is dealt with is normally immediately useable and closely

related to the specific intentions of the learner, knowledge in the

context of schooling has to be organized and generalized so that it can

serve the needs of students with widely different origins and widely

different goals. This objective knowledge, while powerful and so

potentially liberating, is also regrettably depersonalised and deperson-

alising. The individual student is offered the chance to appropriate

this knowledge but is not given the chance to shape it.

In this situation it is particularly important to recognize that the

students also need to see themselves as originators and modifiers of

knowledge. Only this awareness can save them from alienation and only

this experience can give them a basis for shifting their attention in

all their school subjects from what is correct to what is true.

Independently, then, of the above arguments, one can argue on educational

and moral grounds that schooling should include some component designed

to involve the students in the generation - the construction - of their

personal knowledge.

Comments on Hermine Sinclair's paper

The most stimulating section of the paper for me is the centre portion

where the writer presents Piaget's concept of normative facts and his

hypothesis concerning the instruments of knowledge. I'm stimulated

because the two ideas are new to me, both are expressed briefly so that

I am not sure I have grasped their meaning, and both make my intuition

sit up and say, "Something is wrong here!" Without reading the original

sources and reflecting at length on them I cannot have anything very

cogent to say, so I will just ask a question concerning the --cond of

these ideas. How is it possible to make a comparison of two objects or
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two situations without employing an action scheme (turning the head

from one to the other, moving one thing next to the other, placing one

on top of the other, crouching so as to view them in line, or whatever)

which brings about a transformation the instant it is applied? Are not

the comparison and transformation processes necessarily coordinated and

simultaneous since neither can (logically) happen without the other?

In the special case of objects or situations judged to be equivalent the

coordination of the happenings seems clear. Since no two distinct

objects or situations are identical (i.e. have completely identical

properties), a judgement of equivalence must involve the awareness that

there is some transformation which will carry one into the other. The

judgement of difference, while a little more difficult to analyze, must,

I think, work in essentially the same way. Perhaps the Oelay to which

Piaget refers is not a delay in the events but a lag time between the

subject's knowing what to do and knowing what it was that he did.

I am glad that Mme Sinclair, following Piaget, takes care not to fall

into the solipsist position of supposing that because the world cannot

be completely and absolutely known it cannot be kr-wn at all (and so

may not even be there). Indeed, as I have indicated earlier, Piaget has

given us one of the most convincing accounts to date of how the

subjective intelligence comes to know the objective world. It is true

that one "can never reach the object itself", that we are in a state of

ignorance that can be modified but not essentially reduced (for the

more we come to know, the more we find there is to know ...). Knowledge

and ignorance are complementary not incompatible. Human beings strive

to know, they thrive on knowing, yet remain in a condition of

irreducible ignorance.

To say, as some radical constructivists seem to, that we cannot know

anything that goes on outside our own heads is solipsism - a position

that may be fair enough in church, great fun in academia, but intoler-

ably irresponsible in connection with, let us say, medicine, politics,

or education.

A few words about the three questions.

I) What are the actions "destined to become interiorized as operations"?

Counting, of course, is anything but a primitive action scheme in spite

of its being mastered at the beginning of formal schooling. It already
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contains in coordinated form several action schemes that will later

become independent operations that will have nothing to do with

counting. The linear permutation of a set of objects will become a

mathematical operation long after its emergence within the counting

process where one of the most important discoveries that children make

is that the cardinal of a set is invariant for different orderings of

the set.

When permutations become the subject of attention, the mathematical

operation of interchanging becomes important (since certain permutations

can be composed of a succession of interchanges). The origin of this

quite imple operation may be found in the earliest years of childhood,

in action schemes in which two objects are picked up, one to each hand,

put down, picked up again, but each now in the other hand, and so on.

The temporal gap here between the action scheme and the operation - or

at least the operation in conscious use is very great: a slow

construction indeed!

It may be worth considering the possibility that in this case, as in a

number of others, the time lag is not only a function of the difficulties

that have to be overcome before the operation can become operational.

Counting and adding are brought to children's attention very early

mainly because certain social criteria say that this knowledge is

important and fundamental enough to be mastered as soon as possible.

Society cares a great deal less about the mastery of permutation, so

some mathematical operations which are at least as easy to master as

those involved in learning to count and to add are not detached from

their originating action schemes and objectified into autonomous

operations until much later. It is my suggestion, which I admit is not

very Piagetian in spirit, that children do not interiorize operations

until they need to, for whatever reason, and that sometimes this reason

will be that the operations are required for the mathematical curriculum

and for nothing more.

2) Piaget's compounding of logic and mathematics reflects, I think, the

relatively narrow range of his mathematical interest. He is really not

at all interested in what people use mathematics for, or why they have

developed this extensive repertoire of skills and concepts and theorems.

He doesn't show much awareness of mathematics as an activity, as
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something to do as well as something to know. He has decided to try to

identify in the actions of children the steps they take in getting to

the point where they know, say, number cr area as well as a mathematician

does. So he focuses on the epistemological foundations of these

sophisticated ideas, and in order to know what mathematicians say about

them he talks to the only mathematicians who have given the matters

any thought, and these turn out to be philosophers or logicians, and

sometimes both, e.g. Beth.

There may be another reason why "mathematics" carries the "logico"

prefix. Taking the example of simple whole number addition and

subtraction, for instance, we see that the mathematician will be more

interested in the properties that distinguish the operations from each

other - that addition is associative, say, while subtraction is not -

while the logician will be more interested in their interdependence.

For the logician, addition and subtraction entail each other and are

therefore logically equivalent. An addition which cannot be "undone"

- e.g. the addition of two raindrops - is not a mathematical addition.

It is an essential ingredient of the meaning of mathematical addition

that subtraction should be possible. And vice-versa. In such ways the

logician's insights contribute to the epistemology Of mathematical

concepts.

3) The educational importance of discussion, argumentation and

collaboration is undeniable but does not, I think, have more than a

marginal influence on the development of objectivity. The definition

that Piaget gives here seems to me to give only a weak meaning to

objectivity, viz. approval by others. I cannot help thinking of

Copernicus battling it out with a roomful of priests. There is, I am

sure, a stronger sense of objective that doesn't depend on anyone's

good fortune in finding someone else who agrees.

The final section of Hermine Sinclair's paper takes me out of my depth,

although I like what she says. Story problems really are such extra-

ordinary things! They are pedagogical devices, that is clear (since

they are not a part of mathematics nor a part of experience outside

school), but devices for doing what? If their goal is to link

mathematics to everyday experience, then they go about it in the

clumsiest way imaginable. They interpose between the two things they
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are intended to link, something else, the "story", which rather than

facilitating the application of some simple mathematics to some simple

problems, introduces considerable additional interpretative difficulty.

The problem of a story problem is not the mathematical problem but the

problem of deciding what the mathematical problem actually is - a

difficulty that never arises in a genuine problem situation. What is

more, these stories bear superficial resemblances to event,. in everyone's

experience, yet the solution of the problem is not a matter of moment

to anyone involved, not even the characters in the story. It seem

worth considering what children learn from exposu,c: to things callcd

problems which no one needs to solve, from stories which (as Mme Sinclair

remarks) don't tell anything, and from tasks which seem designed to

conceal rather than reveal what ona is supposed to do. Over the school-

room door we might as well write, "Alienation begins here!"

Comments on Jeremy Kilpatrick's paper

There are some c,bservations that I hardly need to make. The most

obvious is thc.t. I share Jeremy Kilpatrick's wary and cautious approach

to constructivism, especially the radical variety. What will become

obvious is that I have not studied all the sources to which he refers

and I will be responding to his use of the sources, not to the sources

themselves (some of them not yet in the public domain).

lne opening of the paper makes me ask what it is about constructivism

that has made some mathematics educators into such passionate converts

and many more into fellow-travellers. There is an undoubted appeal

about the approach in spite of what seems (to me) to be basic incoher-

ences in its belief system and in spite of the fact that there is no

evidence (to my eyes) that the theory has necessary consequences for

educational practice. 1 hazard that the attraction resides in such

features as:

i) the tneory is generous in its estimate of students' powers,

making it seem humane and potentially humanizing; students are

seen as in active control of their own learning, not picturad

as greedy pigeons nor as attentive but passive listeners;

ii) the theory is realistic about the (generally) out -of -synch

process of lecturing and of schoolroom "presentations"; it

makes it clear that teaching in the "telling mode" is not only

undesirable because it is authoritarian but also ineffective
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because it cannot possibly produce any consensus in the students'

responses to it;

iii) the theory seems to hold out the possibility of realizing the

classic instructional maxims: "start from where the student is",

and "do not try to do the student's learning for him";

iv) the theory resonates with personal experiences that frequently

show us to ourselves as engaged in the activity of making sense of

the things we encounter, making "an effort after meaning" in

Bartlett's words, demystifying some of the random and arbitrary-

seeming significations that surround us.

Readers will be able to note other factors that contribute to the

appeal of constructivism. If it is this and more, how can it possibly

be resisted?

Constructivism, however, as Jeremy Kilpatrick says, needs to improve its

connection to educational reality. Formal education includes elements

of prescription if society is to have a say in what is learned in

schools. It was a weakness of the progressive movement of the 1930's

that it was never quite courageous enough to face down the dilemma

posed by a curriculum, any curriculum. Being an educator or being a

teacher may be, in part, to have accepted the responsibility of seeing

that students learn what society wants them to learn. Some of the

progressives hoped that students would eventually realize for themselves

that it would be in their own interest to learn to read, to qualify for

a certificate, to graduate - i.e. to do what society wanted: to

volunteer, as it were, to follow the curriculum that f9r ideological

reasons could not be imposed. Some progressives were not above trying

to achieve these ends by manipulation, consciously or unconsciously.

Straightforward instruction stripped of rewards and punishments is at

least not manipulative, and I would rather give students direct

instruction than to try to "guide their learning" or "attempt to modify

their cognitive structures" (to quote from von Glaserfeld's "five

consequences"), both of which smack to me of manipulation. How difficult

it is to discuss this matter without a very much clearer idea of exactly

what pedagogical techniques are used to pursue these ends!

Finally, a remark about the Bavelas experiment. This kind of phenomenon,
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which might be called the exclusion of the random or the rejection of

the arbitrary, is quite well known (some experiments in the early

1960's brought it to my attention). I suggest the example bears to a

theory of constructivism about the same relation as examples of visual

illusions bear to a theory of visual perception - that is, there is a

connection, but only "at the edges". I don't think the fact that, say,

some punters make their living at the track is clinching evidence for

the radical constructivist case.

Conclusion

Mathematics invites the attention of constructivists because it has no

external referents. There is nothing we can point to, even in a

figurative sense, and say that mathematics is about "that", or is the

study of "those". People at all times, from the Pythagoreans onwards

if not before, have spun stories to establish what mathematics is

about. Whereas it is possible to revise and improve, say, the stories

that comprise Aristotelean physics by undertaking some critical

experiments to refute one or more of its tenets, no one can subject the

stories that make up mathematical Platonism or mathematical empiricism

or mathematical constructivism to the test of critical experiments.

The propositions within each framework are testable but not the frame-

works themselves. Perhaps, then, we should choose whichever stories,

which of the available myths, happen to suit us best.

I dislike leaving my story at that point, though I am unable to see

what else I can usefully say. Perhaps just this. Myths are OK when

we know that is what they are, but myths that get taken for reality,

not as stories about reality, are potentially dangerous. The perverse

and impoverished platonism which is the traditional school-based myth

about mathematics has poisoned minds and destroyed confidence on a

large scale. Are we quite sure that our more sophisticated myths are

really less harmful? In the last resort I dislike and distrust radical

constructivism applied to mathematics education because it denies

students access to any independent path to knowledge and to truth and

so gives teachers power over what students learn that I know some will

abuse.

BEST COPY AVAILABLE



-66-

REFERENCES

Beth, E.W. and Piaget, J. (1961) Epistemologie mathtmatigue et

psycho!ogie. Paris: Presses Universitaires de France. Tr. by W. Mays

as Mathematical psychology and epistemology. New York: Gordon and

Breach, 1966

Blakemore, C. (1973) Environmental constraints on development in the

visual system. In: R.A.Hinde and J. Stevenson-Hinde (eds.)

Constraints on learning. New York: Academic Press

Boden, M.A. (1979) The computational metaphor in psychology. In: N.

Bolton (ed.) Philosophical problems in psychology. New York: Methuen

Castonguay, C. (1972) Meaning and existence in mathematics. New York:

Springer-Verlag

Dummett, M. (1959) Wittgenstein's philosophy of mathematics.

Philosophical Review, LXVIII, pp. 324-48

Elkind, D. (1967) Editor's introduction. In: J. Piaget, Six

psychological studies. New York: Random House

Goodman, N. (1983) Reflections on Bishop's philosophy of mathematics.

Mathematical Intelligencer, 5, 3, pp. 61-68

Kitcher, P. (1983) The nature of mathematical knowledge. New York:

Oxford University Press

Piaget, J. (1970) Genetic epistemology. New York: Columbia

University Press

Still, A. (1979) Perception and representation. In: N. Bolton (ed.)

Philosophical problems in psychology. New York: Methuen

Tahta, D.G. (1986) In Calypso's arms. For the Learning of Mathematics,

6, 1, pp. 17-23

Thom, R. (1971) Modern mathematics: an educational and philosophical

error? American Scientist, 59, pp. 695-699

White, L.A. (1949) The locus of matheM'atical reality. Chapter 10 of

The science of culture: a study of man and civilization. New York:

Farrar, Strauss

Wilder, R.L. Mathematics as a cultural system. New York: Pergamon

Press

99



COMMENTED
PAPERS

100



Affective factors
in

mathematics learning

101



-71

CHILDREN'S IDEAS ABOUT WHAT IS REALLY TRUE IN FOUR CURRICULUM

SUBJECTS, MATHEMATICS, SCIENCE, HISTORY AND RELIGION

Joan Bliss, H. N. Sakonidis

Centre for Educational Studies,
King's College London MU), University of London

ABSTRACT
Pupils Ideas about whether what they learn in

mathematics, science, history and religion is really true

were investigated in two urban secondary schools Pupils

were given a questionnaire and asked to make a judgment

about the truth of a subject and to justify it. Analysis

showed that mathematics and science have a similar

profile in the two schools, both subjects being

considered by the majority as 'true" in all years.

Judgments about history changed in one school with age

and remained stable in the other, whereas religion does

not give an easily recognisable pattern. Qualitative

analysis provided categories: nature of subject, relation

between theory/practice, evidence through proof,

constuctivism, pragmatism and authority of teacher.

Evidence through empirical proof was the most popular

category of explanation in both schools.

INTRODUCTION

In the last few years great interest has been shows in the

relationship between the teaching of a subject and the philosophical

ideas which are held by teachers about that subject. This arose from

the recognition that teachers' beliefs about their discipline and how

pupils perceive it are somehow !tilled.

teachers develop strategies to cope with a wide ramie of classroom

situations and these strategies are a result of conscious or

unconscious notions, preferences, attitudes, beliefs, and what remains

of their "education". Brown and Cooney (1902) suggest that these

strategies shape a teacher's behaviour and constitute a sort of

"theoretical state" which more or less defines the way in which they

teach. Thus it is reasonable to expect that teachers' views of the

1 0 2
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Subject and their instructional practice could be significant in

influencing pupils' attitudes towards the subject.

There is not the space to develop the various philosophical views of

mathematics, science or history. Suffice to say that many

mathematicians will have heard of ideas such as Platonism and

"pre-existing structures", Logicism and the reduction of mathematics

to a number of logical concepts, to Empiricism where knowledge comes

from experience, or Constructivism where mathematics is seen as a

construction of man. Similar analyses can be made for Science and

History but this is for a longer paper. So, the goal of this study

was to see how pupils perceived the various school subjects, and

whether or not they actually believed them to be true.

METHOD

A questionnaire was given out in two schools. School A was an inner

city single sex independent school, School B was an Inner city mixed

:omprehensive school. Pupils in the sample were taken in School A

from the first, second, third and four year (covering ages II -15) and

in School B, from the first, third and fifth year ( 11-10. The

questionnaire read as follows: WHAT DO YOU THINK?

de would all like to know what is really true (well, most of us) What

do you think about whether these subjects tell you things that are

-eally true' -what you learn about science, what your learn about

religion, what you learn about history, what you learn about

sathetmatics. Say what you think here* (choose one for each of the

following subjects) SCIENCE TRUE because

NOT REALLY TRUE because ....

CAN'T DECIDE because.... Similarly

for Mathematics, Religion and History.

RESULTS

the least rumple:: model worth testing is that of independence of age

ind Judgment in GLIM or (equivalently) In alpha =8 uniformly across the

table (Ogoorn 1983). This model was fitted, in turn to the data for
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each subject areas, and for the schools A and 8 as shown in tables 1

and 2 :given below). When the model of no interaction was rejected,

best titting values for uniform In alpha were found and fitted. The

results were as follows:

MATHEMATICS& School A GI . 6.2 d.f. 6 p. tt 0.40

School 8 Gs . 0.5 d.f. 4 p.m 0.96

For school A it is a good fit, and for school B it is a more than

excellent fit so in both cases the model cannot be rejected, thus there

is no association between age and Judgment.

SCIENCE! School A GI = 6.2 d.f. 6 p.ts 8.40

School B GI . 2.7 d.f. 4 p. z 8.60

the fit in both cases is good so the model cannot be rejected thus

again there is no association between age and judgment.

HISTORY School A G2 = 18 d.f.6 pA8.18

School B G2 = 5.5 d.f.4 px0.25

The fit for school B is a fairly good fit and so the model

cannot be rejected, thus no association between Judgment and age. In

the case of school A while the fit is far from good, it is close to

being acceptable. In this case the best fitting uniform in alpha,

value 0.6, His fitted and this gave a da= 5.4 d.f 5, pr,0.4 which is a

good fit, although the strength of association is not very strong, thus

in school A there would seem to be some development of children's

Judgments.

RELIGION School A = 16.6 d.f. 6 p.74.0.01

School . 38.1 d.f. 4 p. (0.001

In the case of school A the fit was not good, for school B it was

extremely poor, so in both cases the model of no interaction can be

rejected. The best fitting uniform In alpha, value 0.4 was fitted

to data for school A, giving Ga = 13.7 d.f.5 p.i0.02, this is still

not a good fit. There is a negative development for school B.

Summarising, oathematics and science show similar trends with the

majority of children judging them both to be "true" throughout all the

ears of school. For history in school A, there is a change in

judgments over the years but with school B the judgments stay the same.

Religion for school A would have a similar picture to mathematics and

science if there were no an unexpected increase in frequency of truth

judgments for third years. In school D. "not really true" judgments
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Increase and "true' Judgments decrease with age.

TABLE 1. SCHOOL A, JUDGEMENTS ABOUT TRUTH OF SUBJECT

MATHEMATICS SCIENCE

NRT CD T NRT CD

1st N =49 27. (11 14% (71 84% 141) 6% (3) 237. (11) /1% (35)

2nd N =44 7% (3) 9% (4) 84% (37) 7% (3) 18% 1 8) 75% (33)

3rd N 33 3% (1) 9% (3) 88% (29) 0 9% ( 3) 91% (30)

4th N *25 0 28% 171 72% 118) 0 247. 1 6) 76% 119)

Total 3% (5) 14:4 (21) 83 %(125) 4% 16) 19% (28) 77%1117)

HISTORY RELIGION

NRT CD T NRT CD

1st N =49 28% (14) 33% (16) 39% (19) 57% (281 41% (201 2% ( 1)

2nd N =44 18% ( B) 48% 121) 34% 115) 41% (181 50% (22) 9% 1 4)

3rd N 33 12% ( 4) 42% (14) 46% 115) 30% 110) 43% (14) 27% ( 9)

4th N =25 16% ( 41 28% ( 51 64% (16) 52% (131 44% (11) 4% ( 11

Total 20% (301 37% (56) 43% (65) 46k (69) 447. (67) 10% 115)

TABLE 2. SCHOOL B, JUDGMENTS ABOUT TRUTH OF SUBJECT

MATHEMATICS SCIENCE

NFU CD T NRT CD

1st N =26 4% ( 1) 23% 1 6) 73% (191 0 12% 1 3) 80% (231

3rd N =23 4% 1 I) 17% 1 4) 79% 1181 0 22% ( 5) 70% (181

5th N =20 5% ( 1) 257. ( 5) 70% 1141 5 (1) 25% ( 5) 70% (141

Total: 4% ( 3) 22% 115) 74% 151) 1% (11 19% (131 80% 155)

HISTORY RELIGION

NRT CD T NRT CD

1st N =26 0 27% 1 7) 73% (19) 15% 1 4) 27% ( 7) 58% (15i

3rd N =23 17% 1 4) 22% ( 5) 61% 114) 567. (13) 40% 1 9) 4% ( 1)

5th N =20 5% ( 1) 15% ( 3) 807. (161 70% (141 30% ( 6) 0

Total: 7% ( 5) 22% (15) 71% (491 45% (31) 32% (22) 23% (161

COMPARISONS BETWEEN SUBJECTS

In order to understand better the relationships between subjects

six comparisons; were made between: mathematics and science;

mathematics and history; mathematics and religion; science and

history; science and religion; history and religion.The scoring was

as follows% )1 truer than Y (or equal) gives three possible scares:
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X truer than Y: score of 1 for X

Both subjects equally trues score of 1 fur equality

X less true than Yi score of 1 for Y

Tables of comparisons were constituted arid a model of no

interaction fitted to each but the commentary will be restricted

to comparisons involving mathematics (totals and statistics are

given below) As might be expected, apart from the first year, the

profiles of the comparisons between judgments about mathematics

and science do not change over the years of secondary school, The

same is true for mathematics and history but for all four years of

secondary schooling. The fit is less good but still adequate for

comparisons of judgments about mathematics and religion, because of

an increased number of "true" judgments for religion in the third

year.

TABLE 3; COMPARISONS OF JUDOMENTS OF SUBJECTS

d.f.6 Maths-equal-Science
Maths-equal-Hist. Maths- equal- relic).

wins wins wins wins wins wins

Totals 26 104 21 76 62 13 127 20 4

t
G .7.0 p20.30 GI . 4.805.60 GI.9.6 p.ss 0.15

Science- equal-Hist. Science-equal-Relig.Hist.-equal-relig.

wins wins wins wins wins wins

Totals 76 53 22 124 18 9 GI 48 22

L

t

G m 16.1 pe40.111 G .4.0 p.:0.60 G . 12.8 ()A 0,05

Mathematics is now compared with the other subjects in terms

of its overall chances of winning. First, when mathematics and

science are compared, a large majority of children (69%) tend

to see these subjects as "equally true". Mathematics wins very

substantially over religion (84X of the comparisons), for

mathematics and history the picture is not quite so clear.

Mathematics wins 50% and history wins 9% of the cases but for 41%

of the comparisons children perceive mathematics and history to be

equally true.

QUALITATIVE ANALYSIS OF
EXPLANATIONS AND CONCLUSIONS
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The majority or children attempted some explanation for any
given judgment and quite a number gave two. This section will

describe the categories for children's responses, indicate

frequencies of responses per category. The categories described

below refer solely to the explanations for mathematics and science,

an analysis of history and religion is in the process of being

carried out.

1. Nature of the subject Children perceive the subject to be

logical or coherent, and by definition true. (Some children argued

that because the subject was logical it was not necessarily true)

2. Ralation between theory and proof. Children perceive the

subject to be "true" because it is constantly trying to find, or

work on proof for its theories.

3. kvldence through proof. There :Ire three sub-categories in

this categoryi a. Children argue that "it can be proved', that is,

there is some very general way of prooving the truth of the

subject. b.Children specify that there are formulae% or special

methods of proving the subject true. c. Children argue that

experiments can be done, or that when using the subject it can be

shown that "it works", an "empirical' type of proof.

4, Constructtvtss. Children perceive the subject to be true

because it is constructed, made-up, invented by man, they often add

"intelligent' men, this reason is sometimes used for lack of

veracity.

5. Pragmatism. Children perceive the subject to true either

because it is commonsense and can be found out from one's own

experience or it used in the real world.

6. Authority of the teacher The explanations in this category

simply state the subject is true because 'the teacher told us/se".

As shown in table 4 evidence through empirical proof, that is by

expertments or 'because it works' is the most popular category of

explanation in both schools. Also the outside category of authority

of the teacher is not all frequent in either school. For school A,

the nature of the subject, that is, its logical nature, and evidence

through general proof, are the two next most popular categories.

The remaining four categories are all in a similar range of
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frequency of resoonse between 7% and 107.. In school 0 the second

most popular category is that of pragmatism, none of the

remaining categories., exceed a frequency of 121 of the response and

Constructiyis is the lowest with only 5X of the reponses,

TABLE 41 FREQUENCY OF CATEGORIES OF EXPLANATIONS

School A

1. Nature of subject
16 %

2. Relation between theory and proof 4 %

3. Evidence through proof

a. general
le % 6 X

b. through formulae, etc.
17 X

c. empirical
29 % 34 %

4. Constructlytem
9 % 5 X

5. Pragmatism
8 7.

29 %

b. Authority of teacher
3 X 47.

School 4

8 X

12 %

Concluding, children on the whole tend to see mathematics as

"true" and similarly for science, their judgments not changing from

first to fifth year of secondary school. Their reasons for their

beliefs are mainly to do with empirical proof! for mathematics, 'It

works" and for science, "experiments work". The second most

popular net of explanations wan either the nature of the subject,

its "logicality", or, its pragmatic nature. Constructivist reasons

appear but very infrequently.
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VARIABLES INFLUENCING BEHAVIORAL SUCCESS AVOIDANCE
IN MATHEMATICS

Joanne Coutts and Lorraine Jackson
The University of Windsor

This study permitted measurement of high and low
success avoidant 9th grade females based on post
tested observed mathematics performance data.
Analysis of Variance was conducted using trained
observer ratings and personality scale scores.
Based on observed and measured scores, this
investigation identified significant personality
trait differences on Defendence and Autonomy
between high and low success avoidant females.
High success avoidant females scored low on
Defendonce and Autonomy.In contrast to the high
success avoidant females. low success avoidant
fesales are self-protective, self-reliant and
independent.

Intr coon

Horgan and Hausner (1973) and Mausner and Cubit

(1979) have developed a paradigs for studying the

degree to which fesales (and sales) sight hold back

their erformance in dyadic settings even under condi-

tions when the subject was clearly superior in ability.

Related to this paradigm is the question of what back-

ground factors and personality variables influence

females' behavioral success avoidance in mathematics.

personality factors

Horner (1968, 1969) and similar studies by Alper

(1971). Lavach and Lanier (1975). and Romer (1975)
have hypothesized a process involving motivation to

avoid or to be fearful of success. Although Horner re-

ports a variety of her own studies in support of female
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behavioral success avoidance, a number of questions

remain in terms of differential socialization and in

terms of personality characteristics of females who

manifest avoidance

This research attempts to identify significant

underlying processes influencing success avoidance in

mathematics. When we began this research, we did

what many researchers do in the beginning steps of

exploring a research problem. We observed behavior

and asked questions. This study reflects our interest

in the basic psychology underlying the observations.

Method
,Sample

One hundred and twenty students, 60 males and 60

females. were drawn from district secondary schools.

These secondary school students were in grade 9 math-

ematics classes.

Data Collection Instruments

The Personality Research E2 Ft This personality invent-

ory is designed to provide a set of scores for personality

traits widely relevant to the functioning of individuals

in a large number of situations. Form E consisted of

twenty-two 16-item scales (Jackson, 1984). These scales

may be defined as personality variables. They are

listed here alphabetically: Abasement, Achievement. Affil-

iation, Aggression, Autonomy, Change, Cognitive Structure,

Defendence,Desirability.Dominance, Endurance. Exhibition.

0
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Harsavoldance, Infrequency.Impulsivity, Wurturance,Order,

Play, Sentience. Social Recognition, Succorance, and

Understanding.

Canadian Achievement intl This achievement

test (mathematics section.1981) consisted of 45 questions

which tested the subject's ability in problem-solving.

In addition, a revised form of this test also was

developed for use in the present study.

Procedure,

Subjects were tested in groups of 30 during

regularly scheduled classes. Subjects completed the

Canadian Achievement ;est (CAT) and the Personality

Research Form E.

Prior to the second session. the Canadian Achieve-

ment Test (1981) was scored. Mixed sex dyads of unequal

ability were formed on the basis of the group's median

score. When the subjects arrived at the second session,

they were given their score as well as their

partner's score on the CAT.

In the second session, which took almost one hour.

students were asked to work cooperatively with

their partner on the revised form of the Canadian Math-

ematics Achievement Test.

While the subjects were working, a trained

observer was present and evaluated each individual and

the dyad on a number of dimensions. Due to space

limitations. all dimensions will not be reported in

this paper.
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When the subjects' work was finished, they were

thanked for their participation and then debriefed.

Results

This study uses data from females who were

paired with males according to mathematical ability from

two experimental groups. The first group consisted of 28

dyads each containing a high ability female and a low

ability male. The second group consisted of 32 dyads

each containing a high ability male and a low ability

female. The median score based on these subjects'

mathematical performAnce data from the Canadian

Achievement Test, taken during the first part of the

study, determined each sbject's group membership.

Observer Ratings

Analysis of Variance was conducted using observers'

ratings as the independent variable and selected Person-

ality Research Form scale scores as the. dependent vari-

able. In particular, scores from observers' ratings,

taken during the second part of the study were analyzed.

Data from females were used for this analysis. Obser-

vers' ratings of females' behavioral success avoidance

were split at the median. Two groups were formed: Group

1 was defined as high success avoidant females and

Group 2 was defined as low success avoidant females.

Personality Scales

Analysis of the personality data revealed

I1 2
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on two of the Personality Research Form scales

(Defendence and Autonomy) there were significant differ-

ences between females who were rated low success

avoidant and those who were rated high success

avoidant by the trained observers.

Defendence ;cal.. The description of a high scorer

on the Defendence Scale is as follows: Ready to defend

self against real or imagined harm from other people.

Does not accept criticism readily. Females who were

rated as low success avoidant scored high on Defendence.

Low success avoidant females are self-protective.

Females rated high success avoidant scored low on

Defendence. High success avoidant females are not self-

protective. F (1, 26) 4.10, p).05. Thus, significant

differences at the .05 level were found between high

and low success avoidant females on Defendence.

Autonomy Scale. The description of a high scorer

on the Autonomy Scale is as follows: Tries to break away

from restrictions: self-reliant.independent, autonomous.

Females who were rated as low success avoidant scored

high on Autonomy. Low success avoidant females are self-

reliant. Females who were rated as high success

avoidant scored low on Autonomy. They are not self-

reliant, F (1. 26) n 4.37, p).04. Thus, significant

differences at the .04 level were found between high and

low success avoidant females on Autonomy.
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Conclusion

This study permitted initial evaluation of

personality variables in high and low success avoidant

females. There were significant differences in the per-

sonality traits of high and low success avoidant females.

Differences are also anticipated for certain background

variables reflecting differential socialization in con-

formity with the above findings regarding personality.

Further analyses will be conducted and presented. Dis-

cussion of additional analyses in relation to the

results given here will follow the PHE -XI presentation.
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MEASURING BEHAVIORAL SUCCESS AVOIDANCE IN MATHEMATICS
IN DYADIC SETTINGS

Lorraine Jackson and Joanne Coutts
The University of Windsor

This study pairs one hundred and twenty 9th grade
males and females in combinations of high and low
pretested mathematics performance. Analysis of
Variance was conducted using mathematics and
other performance data. This investigation per-
mitted an evaluation of whether previous
results of behavioral success avoidance in high
ability females would occur. Reduced scores of
high ability females working with a lower mathe-
matics ability partner suggested deference to the
male and behavioral sw:cess avoidance in the high
ability female.

Introduction

Women's achievement behavior has become a topic of

interest to many researchers. In the last decade,

there has been particular interest in women's math

erratical achievement and in women's avoidance of

mathematical achievement. Reference can be made to

excellent research in such areas as sex differences in

mathematics and ability and in the mediating effect of

sex role orientation on mathematical performance.

Mathematics and Achievement Motivation

It has been generally assumed, according to Maccoby

and Jacklin (1984), that male students are more achieve-

ment oriented than female students. However, girls

generally achieve better grades than boys throughout

their school years. Girls are also reported at an

earlier age as being more interested in school related
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skills. According to deWolf (1981). male students have

been found to do better on mathematical aptitude and

achievement tests because males have chosen to take more

mathematics related courses than female students. When

differential course taking has been taken into account

the sex differences disappeared (deWolf. 1981; Becker,

1982; Fennema. 1980; Pallas and Alexander. 1983).

According to Maccoby and Jacklin (1974), although

males may be more achievement motivated under directly

competitive conditions than females, they do not appear

to have generally greater achievement motivation than

females.

Interestingly. Spender (1982) reported that young

girls in elementary school indicated that they liked and

enjoyed mathematics. The boys. on the other hand. indica-

ted that they did not believe that girls could do math-

ematics competently. Somewhere in adolescence the

attitudes of many females change and girls begin to

state that they are not capable of doing mathematics.

This occurs when girls reach an age at which boys'

opinions are important to them. No doubt many socio-

cultural variables impact on females lowered self-regard

for the study of mathematics. Variables such as lack of

cultural reinforcements and few female mathematically

oriented role models appear to be highly influential

factors.

The negative attitudes that females have toward
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mathematics is further revealed by high attrition rates

of females in senior level mathematics courses. Accord-

ing to Leder (1982). more females in grades 10 and 11

than males in the same grades intended to discontinue

taking mathematics altogether. It was further revealed

that girls high in mathematics performance who continued

taking mathematics seemed to experience an increase in

amount of anxiety as they went through school. According

to Becker (1982), sex typing of mathematics as a male

domain may inhibit female achievement and interest in

mathematics. It has been found by Swanson and Tjosvold

(1979) and Horgan and Hauser (1973) that high ability

females cooperating with low ability males on a task.

when influenced by self presentation and compliance

concerns. subsequently lowered their performance level.

It was with many of these research studies in mind

that we began a research project which could examine

the mathematics performance or decrements in performance

in high ability females working cooperatively with low

ability males. In addition, incorporated into this

investigation was mathematics performance or decrements

in performance in high ability males working coop-

eratively with low ability females.

Method

alnkit

One hundred and twenty students, 60 males and 60

females, were drawn from district secondary schools.
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These secondary school students wer,1 in grade 9 math-

emetics classes.

Data Collection Instruments

The Canadian Achievement Test. This achievement

test (mathematics section.1981) consisted of 45 questions

which tested the subject's ability in problem-solving.

In addition, a revised form of this test also was

developed for use in the present study. Attitudinal,

attributional and developmental instruments were also

administered in this study but these instruments will

not be reported in this paper.

Procedure

Subjects were tested in groups of 30 during

regularly scheduled classes. Subjects completed the

Canadian Achievement Test(CAT) and the other instruments.

Prior to the second session, the Canadian Achieve-

ment Test (1981) was scored. Mixed sex dyads of unequal

ability were formed on the basis of the group's median

score. When the subjects arrived at the second session

they were given their score as well as their

partner's score on the CAT.

In the second session, which took almost one hour,

students were asked to work cooperatively with

their partner on the revised form of the Canadian Math-

ematics Achievement Test.

While the subjects were working. they also were

responsible for determining the following: (a) who had
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started the problems (b) who had contributed what

percentage to the problem - solving; and (c) who had

actually completed the problem. The procedure followed

by subjects was that of writing their names next to each

of the appropriate categories for each of the problems.

When the work was finished. subjects completed an

attributional questionnaire.

At the conclusion of the study. subjects were

thanked for their participation and then debriefed as

to the nature of the investigation.

Results

This study pairs males and females in two

dyadic experimental groups: Group 1. This group

consisted of 28 dyads each containing a high ability

female and a low ability male. Grou2 Z. This

group consisted of 32 dyads each containing a high

ability male and a low ability female. The groupings

were determined on the use of the median score as a

cutting score based on these subjects' performance data

from the Canadian Achievement Test (mathematics section)

taken during the first part of the study. The Canadian

Achievement Test is also considered as an ability test.

Mathematical Performance

Analysis of Variance was carried out on the mathe-

matical performance data from the second part of the

study. There was no overall difference between the two

experimental groups in terms of the actual number of
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gueztions answered correctly. Both groups (Group 1

and 2.) were equally effective in their mathematical

performance.

Closer inspection of the data within each group

revealed differences associated within each of the

three categories related to problem-solving behavior.

Groul. I. In terms of the number of times a subject

initiated problem-solving in Group 1, it was found

that high ability females appeared to indicate that

they had initiated more problem solving than their low

ability male partners, F (2, 54) = 3.34, p>.07. The

result was not significant at the .05 level.

High ability females also indicated that they had offer-

ed a higher precentage of help towards problem-solving

than their low ability male partners, F (I, 54) = 11.07,

p>.001. This result was highly signficant at the .001

level.

High ability females also appeared to indicate that they

had more frequently solved the problems than their low

ability male partners, F (1, 54) = 3.38. p>.07.

The result was not significant at the .05 level.

Croup In terms of the number of times a subject

initiated problem-solving in Group 2, it was found that

high ability males appeared tc indicate that they had

initiated more problem solving than their low ability

female partners, F (I, 62) = .36, p>.35. The result
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.4A not significant at the .05 level.

In regard to who had offered a higher percentage of help

toward the problem-solving, the high ability males

indicated that they had offered a greater percentage of

help than their low ability female partners. F (1.

m 10.96, 0.001. This result was highly significant at

the .0C1 level.

Higher ability males also indicated that they had solved

the problems more frequently than their low ability

female partners, F (I. 62) 11.90, pi .0001. This

result was highly significant at the .0001 level.

Conclusion

This study pairel a high ability female with a low

ability male on the basis of pre-tested mathematics

performance. This study permitted an evaluation of

whether previous results of behavioral success

avoidance in high ability females paired with low,

ability males is a function of deference to the per-

ceived "dominant role" of the male. The reduced scores

obtained by high ability females working with a lower

mathematics ability partner suggests deference to the

"dominant role" of the male and also suggests

behavioral success avoidance in high ability females.

(Discussion of this paper will follow after the PME-X1

presentation:.
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ANXIETY AND PERFORMANCE IN PRACTICAL MATHS AT TERTIARY LEVEL
: A REPORT OF RESEARCH IN PROGRESS

Jeffrey T. Evans
Middlesex Polytechnic, Enfield, U.K.

This is the chronicle of a study which aims to
study adults' use of maths in various contexts,
and such barriers to this as 'maths anxiety'. One
particular interest was how maths anxiety is used
to explain women's allegedly poorer performance.
Beginning with the standard literature and
self-report questionnaires, I produced some
results, e.g. some 'truths' about gender
differences in maths anxiety. Not entirely
convinced, however, I also produced interview
data, thus aiming to specify more fully the
contexts of using numbers. This raised questions
about the usual concepts and methods for studying
maths anxiety.

OBJECTIVES OF THE STUDY

(i) to discuss the usefulness of various notions of 'maths
anxiety', as a block to numerate activities, among adults;
(ii) to study axamaagd maths anxiety(MA), both from
questionnaires and interview situations, to contrast this
with MA exhibited in interviews, and to consider the
relationship of these with performance;

(iii) to produce accounts of the origins and nature of MA
experienced by a group of 1st year college students;

(iv) to consider gender differences in (ii) and (iii).
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THEORETICAL FRAMEWORK(1)

A contemporary psychological definition of anxiety is a

palpable but transitory emotional state or condition

characterised by feelings of tension and apprehension and

heightened autonomic nervous system activity-

(Spielberger,1972,p.24). Since the 1950s, types of anxiety

have been distinguished, according to:

(i) the context of the anxiety:general vs. specific ; test

anxiety and maths anxiety are examples of the latter.

(ii) how measured: by physiological /overt behavioural means,

or by self-reports;

(iii) when measured: a transitory 'state' immediately

after being experienced vs. a chronic 'trait'.

Occasionally, some interesting relationships between levels

of anxiety and performance were found such as the -inverted

U", but, for the most part, reviews of results are

contradictory (e.g. Biggs,1982).

The notion of "mathematics anxiety" has been highlighted,

since 1970's researchers were seeking to explain women's

apparently lower performance, and 'participation', levels in

maths courses, other than by innate differences. Prominent

among the measures of MA proposed were the Maths Anxiety

Rating Scale (MARS)(Rounds and Hende1,1980), and the Maths

Anxiety Scale (Fennema and Sherman).

METHODOLOGY(1)

A suitable setting was a Polytechnic with a relatively high

proportion of 'mature' students (over 21 years of age,

returning to study after some years of work or child-care),

some of whom are admitted without 'standard' H.E.
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qualifications (2 A-levels).

Over 1983-85, entrants to two degree courses were asked to

complete a questionnaire. This included items about their

previous maths experiences, and a maths 'performance scale',

followed immediately by a version of the MARS .

Our adaptation selected 28 items, brief descript ons of

situations such as "adding two three digit numbers while

someone looks over your shoulder", seeking responses on a

7-point scale from "very relaxed" to 'very anxious". Half of

these items were related to each of two factors proposed by

Rounds and Hendel (1980); namely, withu test anxiety(TA),
about maths courses or tests, and numerical anxiety(NA),

relating to everyday concrete contexts.

RESULTS(1)

(The following relate only to the 1984 Social Science

entrants; n=84 Females + 52 Males.)

1. In the questionnaire , the level of anxiety expressed

by women was substantially higher than men's.

NUMERICAL ANXIETY MATHS TEST ANXIETY

MEANS 3.07 2.76 4.43 3.80

S. D. 0.89 1.01 1.22 1.14

2. Correlations between results on the maths performance
scale and scores on the two MA subscales were negative and

low (approx. -.2), with a hint of an inverted-U scatterplot
(or at least the right-hand half of one). The pattern was

essentially the same for males and females.

PROVISIONAL CONCLUSIONS(1)
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1. Women express a higher level of MA than men, on this

self-report measure, in the particular conditions cat the

end of the first Psychology lecture of the year).

2. A simple linear correlation between MA and performance is

not very informative.( Non-linear modelling is underway.)

3. So far, MA is still seen as a personal characteristic, on

which one can be assigned a quantitative score. But are

there any qualitiative differences in experiences of maths

anxiety across social groups,e.g. between women and men ?

4. Does not the context in which a person experiences and

reports maths anxiety need fuller description: is it the

mathematical features, the social interaction, and/or past

experiences which are meaningful?

THEORETICAL CONSIDERATIONS(2)

To address these points, I drew on studies that emphasise

'context' by seeing the use of numerate "skills" as an

integral part of some "activity" or "practice", as follows

(e.g.Lave at al.,1984; Walkerdine, forthcoming):

1.Context and activity mutually influence; for example, the

consumption of food etc, and the regulation of children in

so doing produces meanings (e.g. of 'more'); these meanings

will also be conditioned by the family's material situation.

2. Most, if not all, activities/contexts support

quantification; thus, "sharing" as a child gives meaning to

size and distance relations.

3. Practices and their meanings are emotionally charged

Thus, buying things may be related either to pleasure or to

anxiety, or sometimes to both.

4. Practices are often specific to particular social groups

or cultures. Thus, "going out for dinner" may have a

different meaning for men and for women.

5. A particular task may call up one or several

practices as relevant at one time. Thus looking at a

126



96

pie-chart may remind someone both of a school maths topic,

or of sharing food "fairly- with siblings or both.

METHODS(2)

Towards the end of their 1st year a small subsample of the
Social Science students were interviewed (1984:n=9, chosen
by a mix of random and -volunteer- methods; 1985:n=16,

chosen randomly), and asked to describe:

(a)the way they were thinking about solving a set of

'practical' problems; e.g. reading graphs, deciding how much

(if at all) they would tip after a meal, deciding which

bottle of tomato sauce they would buy; plus

(b) the sorts of practices "called up- by the interview; and

(c) past situations in which they had experienced MA.

RESULTS(2)

(These results refer only to the 1984 cohort, and are

currently being tested and developed with the 1885 sample.)

1. As expected, more women (3 of 4) than men (2 of 5)

expressed anxiety clearly during the interview, often about

the interview itself, sometimes about outside situations;

e.g.85/8 (Working Class M), thinking about having to do
mental sums, if he were to take a pub job: "I think 'panic'

because of people in front of me waiting to be served".

2. As for exhibiting anxiety, I began by using rough

indicators for anxiety, such as: (a) speaking unusually
fast, or slowly, or quietly, (b) "mind going blank" or

nervous laughter, (c) wanting to discuss the answers (to the

problems posed). Initial analysis shows all (5 of 5) men

exhibited anxiety, including 3 of 3 who had riot expressed
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it. For example, apparently confident about using numbers,

85/4 (Middle Class M) feels his mind go blank for a moment

while calculating a 9% pay rise exactly, explained as "a

sudden block, I guess through not doing tables...through not

using it".

3. Interview problems called up a wide variety of practices,

sometimes requiring numeracy, sometimes related to maths in

a surprising way. An illustration: for 85/5 (MC F), a graph

showing changes in gold prices over a day's trading,

recalled for her growing up in a stockbroker's family:

"...as a stockbroker, your home and your material valuables

are on the line all the time... most of the time, it was

like living under a time bomb ... especially if you don't

quite know how the time bomb's made up or when it's going to

explode...." When I asked how she saw his work, to pick

words, adjectives to describe his work, she replied:

"capitalist, corrupt, business-like,..um, mathematical,

calculating, devious, unemotional..."

PROVISIONAL CONCLUSIONS(2)

1. In the questionnaire , the level of anxiety expressed by

women was substantially higher than that expressed by men.

This difference is observed in interviews, too, but there

men seem to exhibit more unacknowledged anxiety.

2. Interviewees' accounts indicate that experiences

formative of maths anxiety include those with teaching at

school, but also those to do with relationships with parents

and siblings. This suggests new ways to produce a fuller

account of maths anxiety.

IMPORTANCE OF THIS STUDY
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1.This study explores the concept of 'maths anxiety', and
also particular 'truths' about it, e.g., 'females have more

of it than males' - by drawing on two theoretical

frameworks, and by using questionnaire And interview data.

2. This work is possibly the first(?) to use the Mathematics

Anxiety Rating Scale outside North America. Because of the

high proportion of 'mature students', this sample is closer

than most to being representative of the population of

adults at large.

3. This study uses the idea of a 'practice' to describe the

contexts of doing maths. It attempts this by interviewing

(rather than by more time-consuming observation), and

thereby elicits indications of a relatively large number of

such practices (though not described in detail).

4. This study aims to understand the fluency and ease with

which adults use numbers within particular contexts, not

only in terms of cognitive familiarity(as is largely so, say

in Lave et al., 1984) but also in terms of the emotional

association of the practices concerned.
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A COMPARISON OF TWO PALLIATIVE METHODS OF
INTERVENTION FOR THE TREATMENT OF

MATHEMATICS ANXIETY AMONG FEMALE COLLEGE STUDENTS

by

W. MICHAEL GENTRY and ROBERT UNDERHILL

Mary Baldwin College/Virginia Tech

Self-efficacy theory (Bandura, 1978)
provided the theoretical underpinnings for
two mathematics anxiety interventions,
cognitive restructuring (CR) and modified
progressive relaxation (MPR). When
mathematics anxiety was measured with a
paper-and-pencil inventory, the difference
between the mean levels of self-reported
anxiety for CR and MPR subjects was not
statistically discernible. When anxiety
was operationally defined as skeletal
muscle tension and measured with an
electromyograph, CR subjects as a group
experienced significantly lower levels of
anxiety than MPR subjects as a group
(F = 2.81, p = .036). Physiological and
paper-and-pencil measures of anxiety were
minimally correlated.

Since mathematics anxiety is one of the. factors

contributing to the problem of underrepresentation of

females in scientific and technical fields (Betz, 1978),

there is a need to pursue at least three levels of

investigation: (1) to understand the etiology of

mathematics anxiety, (2) to develop intervention

strategies which help individuals who exhibit th%.;

affective problem, and (3) to .ompare the relative

effectiveness of these interventions. This

investigation focuses on the latter need, and is

important for at least two reasons: (1) the problem of
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mathematics anxiety among female college students is of

national concern, but appears to be endemic among

students enrolled in southern liberal arts colleges

(Thompson and Levin, 1977), and (2) the majority of

previous math-anxiety research relied only on paper-and-

pencil assessment data (Tobias and Weissbrod, 1980).

This study was conducted at Mary Baldwin College, a

private liberal arts school for women, and it utilized a

two-dimensional response, i.e., a paper-and-pencil

instrument and a physiological measure of anxiety.

The math-anxious individual must struggle with a

combination of at least three negative elements:

(1) undesirable physiological responses, (2) certain

pernicious features of the math-environment, and

(3) maladaptive thoughts (Heller and Kogelman, 1982).

Bandura's (1978) social learning theory seeks to

incorporate these three components into an integrated
framework. Expectations of personal efficacy play an

important role in Bandura's theory. Efficacy

expectations are perceptions of personal mastery, i.e.,

subjective estimates regarding one's ability to cope
successfully. The relationship between self-efficacy

and attitudes toward mathematics was studied by Collins

(1982) who reported that they are positively correlated,

i.e., those who regard themselves as highly efficacious

approach potentially threatening tasks nonanxiously.

Further, Hackett (1981) reported a significant

relationship between perceived self-inefficacy in

dealing with numbers and mathematics anxiety, i.e.,

those who regard themselves as inefficacious experience

varying degrees of anxiety and stress. Since Bandura

(1978) argues that anxiety is the product of perceived

inefficacy, social learning theory provides a useful

framework for the study of mathematics anxiety.

Operating from different theoretical viewpoints,

131



behavioral therapists have developed a variety of

interventions for the treatment of anxiety disorders.

Corresponding to the environmental component of

Bandura's model are direct action methods of

intervention designed to alter anxiety-eliciting

environments. Corresponding to the cognitive and

behavioral components of Bandura's model are

intrapsychic and symptom-directed modes of intervention,

respectively, which are aimed at reducing the level of

anxiety once it has been aroused. Palliative methods

such as these are used to soften or moderate anxiety,

thus helping individuals function adequately within

anxiety-eliciting environments.

Interventions aimed at modifying the mathematics

learning environment are plentiful and achieve positive

results. However the impact of direct action

interventions is limited, i.e., treatment-produced

improvement is not sustained, because the math-anxious

individual is not provided with a aet of coping skills.

Intrapsychic and symptom-directed modes of intervention

equip math-anxious individuals with coping skills, and

unlike direct action techniques, focus primarily on

efficacy-based anxiety. To the extent that math-anxious

individuals continue to use these coping skills, long-

term or durable improvements are achieved. Modified

progressive relaxation (MPR) is a symptom-

directed mode of reducing anxiety, whereas cognitive

restructuring (CR) is an intrapsychic mode of

alleviating anxiety. These two palliative techniques

were chosen for comparison since considerable evidence

exists which indicates that both MPR and CR are

effective as therapeutic interventions for a wide range

of stress-related problems.

Subjects for this investigation were sixty-two Mary

Baldwin College students enrolled in three mathematics

courses of differing levels of mathematical rigor during
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Fall semester, 1985. Participation was a course

requirement. A review or twenty-three mathematics

anxiety intervention studies revealed that only seven

dealt exclusively with female subjects. Consideration

of this statistic, together with the issue of

differential treatment of female and male students by

mathematics teachers (Becker, 1980), and the belief that

mathematics anxiety is more common and severe among

females (Betz, 1978), contributed to the decision to

limit this study to female subjects.

Subjects assigned to CR were taught to replace

maladaptive thoughts with more positive rational

thoughts. During these sixty-minute sessions the

underlying assumptions of CR were explained. Subjects

learned to identify distorted cognitive styles (e.g.,

emotional reasoning, overgeneralization,

personalization, and all-or-nothing thinking). During

these sessions the counselor played the role of devil's

advocate. The subjects were to assume that the

counselor actually held certain maladaptive beliefs and

then generate as many reasons as possible why it may be

irrational or unreasonable to hold onto such beliefs.

During the last few minutes of each session, while

working a series of math-related problems, participants

were instructed to use this list of positive coping

self-statements to practice changing their own

maladaptive cognitions.

Subjects assigned to MPR met individually with a

counselor once each week for six weeks. Subjects were

informed that the purpose of each thirty-minute session

was to help them learn to inhibit dysponetic activity,

thereby increasing their performance in mathematics.

MPR was presented as a coping skill for dealing with

unwanted physiological arousal. At the beginning of

each session, the counselor assisted each subject in

identifying and locating twelve major muscle groups
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(e.g., frontalis, trapezius, rectus abdominis, and

gastrocnemius). When a subject was comfortably seated,

she was instructed to breathe easily and smoothly,

tightening only the muscles that she is directed to

tighten, letting the rest of her body remain relaxed.

The counselor then guided the subject through a fifteen-

minute tape recorded script. During the last few

minutes of each session, the subject was given a series

of math-related problems to work and instructed to use

progressive relaxation to cope with unwanted

physiological arousal.

In addition to the treatment variable, there were

two other independent variables: level of achievement in

mathematics (SAT), and level of participation in

mathematics (remedial, intermediate, or advanced). Four

research questions were investigated: (1) When

administered over a six-week treatment period, are CR

and MPR equally effective in reducing mathematics

anxiety among female college students? (2) Are any

combinations of treatment and level of achievement in

mathematics characterized by lower levels of anxiety

than other combinations? (3) Are any combinations of

treatment and level of participation in mathematics

characterized by lower levels of anxiety than other

combinations? (4) To what extent do physiological

indicators of mathematics anxiety and paper-and-pencil

assessments measure the same construct?

Data were collected in two stages. The first stage

occurred at the end of a six-week treatment period, at

which time Sandman's (1973) Mathematics Attitude

Inventory (MAI) and an electromyograph (EMG) were used

to obtain self-report and physiological measures of

mathematics anxiety. The second stage occurred eight

weeks later, at which time the MAI was readministered.

Initial descriptive statistics suggested that: (1)

subjects at remedial levels of participation in

3'



104

mathematics tend to experience higher levels of self-

reported mathematics anxiQt Y, (2) subjects at more

advanced levels of participation experience a greater

degree of skeletal muscle tension than subjects at

intermediate and remedial levels of participation, (3)

paper-and-pencil and physiological measures of

mathematics anxiety arc minimally correlated, (4) CR

subjects as a group experience lower levels of self-

reported mathematics anxiety than MPR subjects as a

group, (5) MPR is least effective with students at

advanced levels of participation in mathematics.

Inferential methods revealed that: (1) when mathematics

anxiety was measured with Sandman's MAI, for both the

immediate and delayed posttests, the difference between

the mean levels of self-reported anxiety for CR and MPR

subjects was not statistically discernible, (2) when

anxiety was operationally defined as skeletal muscle

tension and measured with an electromyograph, CR led to

significantly greater reductions in anxiety than MPR

(F=2.81, p=.036) , (3) there was no interaction between

type of intervention and level of achievement in

mathematics, (4) when anxiety was operationally defined

as skeletal muscle tension and measured with an

electromyograph, a statistically discernible (F=3.925,

p=.027) synergistic effect was detected between type of

intervention and level of participation in mathematics,

indicating that CR is superior to MPR for subjects at

intermediate and advanced levels of participation in

mathematics, whereas MPR is superior to CR for subjects

at remedial levels of participation, and (5) there was

insufficient evidence to indicate that a linear

relationship exists between paper-and-pencil (MAI) and

physiological (EMG) measures of mathematics anxiety,

implying that the two instruments may be tapping

different dimensions of the mathematics anxiety

construct.
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STUDENTS' PERCEPTICNS Uf MATHEhATICS AS A DOMAIN

Vicky L. Kouba and Janet L. McDonald

The University at Albany,

State University of New York

ABSTRACT

This research iaentifieo junior high students' (N = 451)
perceptions of what is and isn't mathematics: Per-
ceptions were documented by five 11-item questionnaires
reflecting six major strands of K-6 content. Students
were askea to indicate whether mathematics was used or
involved and supply their rationale for each choice. The
results were compared to K-6 children's answers from a
previous study (N = 1202). The results showed that
junior high school students' percentages of YES /NC
responses paralleled the K-6 sample in both order and
magnitude. Differences in rationales between samples
occurred in use of counting, emphasis on the format of
problems, and need for an identifiable operation and
explicit number pairs. Common elements from both samples
included that mathematics is a fluid domain, isolated
from other subject areas, active and school related.

This is the second in a series of studies investigating

students' perceptions of the domain of mathematics. The underlying

assumption of this line of research is that the perceptions that

students and teachers have of what mathematics is (and isn't) may

affect their concepts of specific topics within mathematics, their

attitudes toward mathematics, their performance in mathematics and

other related aspects such as confidence, choice of courses/careers

and perceived usefulness. However, before looking at how perceptions

of mathematics affect other aspects of learning and teaching

mathematics, we need to aevelop a reliable system for identifying,

describing, classifying and, ultimately, "measuring" these

perceptions. This is the intent of the current series of studies.

The data from these studies will provide the necessary foundation for

further research investigating the effects of perceptions of the
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amain of mathematics on those other possible aspects. Of equal

importance are the data this research may provide toward the

identification and documentation of misconceptions that students have

about certain specific aspects of mathematics such as subtraction,

division, and the materials or actions that are involved in aoing

mathematics.

The data from the previous study of 126? children in grades K-6

showed that children's perceptions of mathematics, are not quite what

might be expected. While adults may consider mathematics to be a

well-defined subject matter ',Ginsburg, 19b3), kindergarten through

sixth grace children do not see it as so (McDonald & Kcuba, 1586a,

1980). For them, the domain of mathematics, while being narrow, is

also not constant. Rather, it is upwardly shiftins. To many children

when something becomes easy, it is no longer mathematics.

Kindergarten through sixth grade children also see mathematics as

being isolated frim other subject areas, active, and school-related.

For these children, whether a situation involves mathematics is

influenced by developmental factors, the presense of explicit numbers

and operations in the situation, and idiosyncratic i!tects of the

particular situation.

The major purpose of the current study in this line of research

was to iaentify whether seventh and eighth grade students' perceptions

of the domain of mathematics were parallel to those of kindergarten

through sixth grade children. Do developmental trends identified with

elementary school children continue through junior high? Du explicit

cues to numbers and operations continue to affect students'

identification of the kind and the extent of mathematics involved in a

situation? Does counting continue to play, a major role in students'

justification for the presence or absence of mathematics in a

situation? Will mathematical operations and concepts continue to

"drop out" of the students' perceived domains as a result of their

becoming more automatic and "easy?" Are there gender differences in

students' perceptions which were not identified in the previous

research?
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ME Th(iD

Subjects. The subjects were 219 7th graders and 232 6th graders

from five public or private schools, representing small, medium and

large districts in rural, suburban or urban settings.

Procedure. During their mathematics class, the students were given a

questionnaire consisting of eleven situations. They were instructed
by their classroom teachers to quietly read each situation and

inclicateby circling YES or NO whether mathematics was being done or

was involved in the situation. They then were to indicate in writing

why they chose YES or NO. Five different questionnaires were

constructed in a stratified ranaom manner from a pool of 55 items (see

Figure 1 for sample items). The forms were distributed randomly

within each class. The questionnaire items included the majority of

D10. Melanie had to tell the teacher which was greater, 5

or 3.

C3. Melanie had to tell the teacher which number was

greater.

C4. Dave played soccer yesterday afternoon.

b4. Billy looked at the clock to see how long a nap he

could take before the soccer game.

A3. betsy made Valentine cards by cutting out hearts

using folded paper.

Lb. Betsy made paper dolls by using symmetry.

Ab. Julie kept track each day of how many miles she rode

on her bike.

bl. Alan took out his ruler and measured his desk.

El. Julie arranged three different colored chips in a

line in as many ways as possible.

b3 George cleaned up room number 7 which was really

messy.

Figure 1. Sample questionnaire items
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the items used in the k-6 study, as well as some new and some revised

items. The items were designed to reflect the six major content

strands of the New York State K-6 syllabus: number and numeration,

operations with whole numbers and fractions, probability, statistics,

geometry and measurement. Several items included paired explicit and

implicit use of cardinal and ordinal numbers as both facilitating and

distracting elements (e.g. D10, C3 and 831. The situations varied

from ones where the operational process was clear to those where it

was necessary to infer the mathematical process involved (e.g. 010 and

64). Situations in which the protagonist was not using or doing

mathematics were also included (C4 and 83).

RESULTS AND DISCUSSION

For each item, students' YES or NO choices were tabulated and

matched with the syllabus-specified designation of whether the item

involved mathematics. The percent of students agreeing with that

designation was recorded by grade level and sex. Significant gender

differences appeared on only eight of the 55 items. On five of the

items boys were in greater agreement with the syllabus than the

girls. On the remaining three items, girls were in greater

agreement. The items were then ranked by percentage of agreement.

The percent agreeing from grades 7 and 8 combined was correlated with

the percent agreeing from grades K-6 for 43 of the items which were

identical across samples. A Spearman's rank-order correlation was

determined comparing the relative ranks of the items based on the

percentages of students' agreement with the syllabus. The resulting

rho of .8390 (41, N = 451), p 4 .001, indicated that in general,

items which were easily identified by K-6 children as mathematical

were equally easy for junior high students to identify. The same was

true for difficult items. A Pearson correlation was also calculated

on the two sets of percents of agreement with the syllabus. An r of

.b87 (41, N = 451), p d= .001, indicated that in addition to a

relatively stable order of items, that the individual percents of

agreement on each item were also very similar. Agreement with the
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syllabus was calculated for the entire set of questions for each grade
level. In comparing these weans with the means of each of the grade

levels of K-6, it was determined that the generally increasing trend

of agreement in the K-6 data, did not continue through the 7-8 data

(see Table 1).

Table 1

Percent of Agreement with Syllabus Designation of Whether

Mathematics was Involved

Grade Level K 1 2 3 4 5 6 7 8

Percent 54 61 61 71 76 60 80 73 77

The comments explaining the students' YES/K0 choices were sorted

into rationales for responding YES, and rationales for responding NO.

These two types were classified and tallied in order to identify

relative frequency of response categories. An examination of Table 1

might suggest that students are reasonably adept at classifying

mathematical items. however, this table shows only the students'

ability to see math in a given item, not identify the appropriate area

of skill involved. The analysis of student rationales revealed that,

in many cases, the students either designated a skill or concept at a

much lower level than the syllabus, or identified an inappropriate or

tangential skill or concept. For example, for item El, students who

identified it as being math included those who gave reasons such as,

"it has to do with colinear stuff, etc.," "you can count the colors,"

"to arrange them in as many orders you would divide," or "you have to

use numbers... 3 chips X 1 row." As with the K-6 sample, students

often misapplied the operations of division and subtraction.

As might be expected, junior high students gave "-,ounting" as a

reason for a situation being mathematical nwch less often than K-6

children. For the K-6 children, counting appeared in the top three

reasons for a YES response on 15 of the items. For the junior high
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students counting appeared in the top reasons on only eight of those

same items.

Junior high students seemed to view mathematics as a broader

domain than did K-6 children, for they included probability, geometry,

and measurement in their rationales. However, they did so mostly for

obvious situations where an explicit term, symbol or format was used.

When the format was not easily recognizable as one which they might

have seen in mathematics class, students often indicated that

mathematics was not involved and gave reasons such a "There's no

problem part" and "there's no way to make it into a problem," or

"there's no question." The basic operations were still the major

component of mathematics for the junior high students. This appeared

in YES and 140 rationales alike. Students often identified situations

as being mathematical because they "saw" one of the four basic

operations present, although not always correctly. Students also made

statements like "It's not math because there's no addition,

subtraction, multiplication or divsion." At a more subtle level,

several students made the comment "It isn't math because there's no

other number," when only one explicit number appeared in a problem,

thereby seemingly making an operation impossible.

Junior high students were similar to K-6 children in that they

appeared to identify mathematics by what they had seen in mathematics

class rather than by recognizing the underlying structure of situation

as mathematical. For example, while junior high students were able to

identify the mathematics in an item where the word "symmetry" was

used, they could not identify the mathematics in similar situations

where the concept of synaetry was described but the actual term was

not used.

The following additional conclusions were drawn based on the

analysis of the junior high students' rationales. mathematics

continues to be an upwardly shifting domain. For example, some of the

students gave reasons such as, "That's not math because it's just

cunmon sense" or "just logical" or "you just know." Other students

echoed what the K-6 children indicated in that mathematics is "work,"

and also that mathematics requires activity, through statements such

as "there's nothing to do" for situations describing a protagonist who

was "looking" or "thinking" rather than calculating.
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Some junior high students see mathematics as school related in

that they identify situaticas as mathematics because they are what

they have done in class. Other perceptions denanstrated by other

junior high students included that mathematics is exact and therefore

does not involve approximating or estimating, that mathematics is

correct, requires calculation, and that it is riot done in art, social

stuaies, English or science class.
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LES NATNOPHOBES: UNE EXPERIENCE DE REINSERTION

AU NIVEAU COLLEGIAL

Reynold Lamed', Universit6 d'Ottave
Linda Gattuso, Capp du Vim: -Uontreal

Le problem de In aathophobie fait partie du

quotidian des prates:ours de sathisatiques et, de

Capon plus gamuts, de Is vie de cattail's etudiants.

En nous basant sur divines expOriennes tentnes

particullaresent aux Etats -Unis it sur notre propre
Mu, nous aeons xis sur pied un enviroansunt ayant

pour but de Mondlier un certain sabre d'itudiants
'rant un vecu negatif face aux matheaatiques. Dans

=tra rachercho, nous mitres voir s'il y matt
cbangment d'attitude chez les etudiants qui

participaient aux ateliers at nous voulions

identifier les raison, qui provoquaient co

changesent. Sous espdrions trouver une approche de
reassignment des aathiaatiques qui ainialserait les

situations propices l'iclosion de la sathophobis.

Notre pratique come =poignant* en satbdmatiquos, a laquells

s'ajoutent les timignages, comentAires it marques formulism per

d'autres intermants now parsattent de constater quo de tree

nog roux fitudiants ref went de s'inscrire a certain* programes

d'etude place qua neux-ci comportent quelques coura de

satbdeatiques.

A deux -la, 11 taut ajouter tons los sutras qui s'inscrivant I

cbacune des sessions sais qui, systleatiquommt, abandonnent; ou

encore, caul qui retardant, d'une session I l'autrc, le 'meat

fatidique oQ ils devront tinaleamt as riot:mar I suivre lours

femur coure As sathbatiques. Come 11 s'agit souvent d'itudiabfs

qui, per ailleure, riussiment bum dens d'autres Artier's, 11 est

difficilo d'attribuer cat insuncks I un problem d'ordre
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intellectual.

Le problem nest pas nouveau it plusieurs etudes en ont Wit

to Mites: Ximler (1976),Tbath Oinb(1981), Aiken (1970), etc. Il

reason de cm etudes que is cote affectif de l'etre a un Wet

soft stimulant soft perturbateur dans l'apprentissage des

matbematiques.

La amtbophoble, salon Tobias (1980) est l'itat de panique, do

paralysis, de desorganisation *entitle qu'iprouvent corteines

personas* devant un problems do matbematiquas. Notre recherche

s'articule it se diveloppe cur is postulat voulant quo is

composants affective do l'apprentimage explique in grand* partie

les damns multiples it ftrationnels vim= par les sujets

Identifies comae matnopbobes.

Nous arms ais cur plea, au Cdgep du Vieux liontreal, an

collaboratian avec is service d'aide i l'apprentimage, des

ateliers 'pbobie des maths. Cos ateliers fonctionnent depuis is

session d'biver 1984. A l'eutosne 1986, sous 'vim* un nouvel

objectif : colui d'y fairs des observations at in de formler des

bypotbAses cur les facteurs affectifs pouvant intervenir dans

l'apprentissage des mathematiques.

L'amonce dos ateliers as felt in debut de session par le

service d'aide l'apprentimage. Au soma de l'inscription, les

etudiants prement render -vous avec um psydbologue. Lea ateliers

as deroulent cur uns periods de clog semines A raison d'un soar

par semaina.

Les itudiants susceptible* de perticiper aux ateliers sant

ceux qui ont identifid lour insOcuritil face aux matbdmatiques it

qui as recommitment a is lecture du profit propose par is

publicita Ce protil decrit sommirement les caracteristiques d'un
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matbopbobe tel qu' ml pout is rencontrer an Cegsp. Pour cette

recherche, nous avows travaille avec un groups de quatorte

6tudiants dont l'ige varialt entre 17 it 24 ens, pour la plupart.

Soulignons quo lour participation 6 cos ateliers est entarement

volontairs.

Les ateliers sent anises par trois personnel : les deux

tharchsurs qui sant professeurs do mathematiques, it un psychologue

engage 6 l'occasion de tette recherche. Ls premier contact as fait

lots une rencontre individual).* entre l'etudiant at is psychologue

dans le but de diagnostiquer st de precissr is problems.

La preparation du contenu des ateliers as fait par lea deux

protessours de mathematiques. Los ateliers sent anises salon les

modalites suivantes: 6 tout moment, l'etudiant dolt se sentir libre

de partner see sentiments avec is groups, de prendre une pause. do

demander is l'aide individuelle, de as joindre 6 d'autres pour

travailler our un problem'. Les animateure dal:vent dtablir un

climat do non-competition dans un environnemont soutement st as

soarer particullbreaemt disponibles pendant lee ateliers. Les

&amateurs ecoutent l'etudiant quad 11 rbussit 6 verbaliser see

problemes it sea difficultes; ifs l'observent it 1111 font remarquer

see progres, see chemdomments.

Le premier atelier a um forme un psu particulars car son

principal objectif eat is prise de contact. Le schema des autres

rencontres eat is su.vant :

- Retour sur les activites do la amine precedente.
-Probleass suggdres sur un these precis : activites

mathematiques.
-Pause.
-Rotour our is processua aux deux niveaur mathematique it
affectif (attitudes it comportements face 6 un problems).

-Fin de l'ateller.
-Tout de suite apres la rencontre, les animateurs font un
"change d'observations it use breve evaluation do l'atelier.
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A partir de la deuxibas rencontre, les theme press:ads sont

les suivants :jam logiques, activites gloaetriques, algabre,

formulas, probibilites.

En plus d'Ocbanger avec les autres participants it les

animateurs, l'itudiant a i la disposition un "journal de bord" dans

lequel il est invite i icrirs, sous un pseudonyms, toutes see

inpressions it ass idles personnellss. Les animateurs tisnnsnt

paralleleasnt un carrier o0 its natant lours impressions.

Nous avant structure les ateliers avec, I l'esprit, un

certain noabrs de postulats de bass qu'il nous *amble important

d'expliciter. Maus supposons quo le mathophobe ne s'igaore pas it

qu'il est capable d'articuler son problem in autant qu'il as sent

dispose A is fairs. it taut dons litre particullaresant attentif A

ce quo l'itudiant dit. De plus, nous somas coneeincus quo is

problem de la matbsphable se reale an coeur de l'activite

mathematique. Les problems*, les activites it is materiel sont

cboisis I cause de lour riches.e it de lour varietd. Ile doivent

peraettre aussi bloc l'imergence des reactions mathophobiques quo

l'occasion de vivre des susses an mathematiques. bus prosuaons quo

le mathophobe revels les difficultde d travers son activite.

Ls matbspbobe peat arriver sffectivsasnt I maitriser it

situation, du meat qu'on arrive I clarifier avec lui lee

dimensions qui sent an jeu. Pour cola, lee questions ou lee

affirmations lances. par lee animateurs se regroupent en cinq

volets principaux: rltiexion sur lee activites, confrontation des

sythes vlbiculls par les sathopbobes, portage du vdcu mathematique

entre les animateurs et les itudiants, partage de l'histoire de la

genes, des idles an mathiaatiques, point ds vue du professear dans

sob role habitual ou stereotype.
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Les domes* sent pulse's & partir des sources suivantes:

Ls resume des entrevues; les reponse' aux questionnaires (pre

at post); Is journal de bord de Cheque participant; les notes des

animateurs; les enregistrements des ateliers; les entrevues,

rencontres at lectures faites dans is padre des ateliers at portant

sur is Mae sujet. Ces donna's ont 6t6 analysfoss en detail.

Lea matbophobes en evalent long & nous apprendre. Lour

experience de l'apprentissage mettait en evidence des condition,

fondamentales de is demarcbs mathematique it s'appliquait en fait &

quelque chose de beaucoup plus large qua le problams de la

mathophobie. Mous aeons pu observer de trail pros ce qua l'etudiant

ressent en faisant des matbematiques, it watts comnatssance nous

apparalt aussi valable dans is contexts requiter (rune class, qua

dans le contexts specifique des ateliers pour mathophobee.

Mon resultats it lour analyse nous ant penis d'explorer

differents factsurs sur lesquels les professeurs pourraient

intervenir dans une demarche pedagogique rpullore.Voici donc les

treige hypotheses genlirdes par hare recherche.

Hi: Il est *dais qua l'epprentissage des methemetiques

suppose at met en jou de fortes dimensions affective.. De ce fait,

l'apprentlesage est convent fcilite par is presence de canaux de

communication efficaces. Les etudiants preferent as sentir & l'aise

des is dibut des cours; ile ont besoin qu'on etablisse ces maul

de communication au plus tat.

H2: Il taut, de is part du professeur, s'adresser d is

dimension affective de l'apprentisswe des mathematiques qui, qua

is professeur le veuilie ou non, eat toujoure en action; ninon,

l'apprentiseage eat, & le lialts, voue a l'echec.
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H3: Il taut a'assurer qua los Otudiants puissant s'expriaer

stir lours perceptions de is metiers, du professeur, do lour propre

ecu en natbenatiquos. Ds it sorts, on pout evitsr do pervetuer do

tousles impressions, de fausses implications st do faussos

dichotomies qui ambient actuelleasnt circular on grand nombre, au

ditrisent de l'apprentissage des concepts st des nethodes propres

aux notheaatiques.

H4: Las relations itudfant-etudiant sont US$ iaportantes it

influancent tree positivenant l'apprantissage des nathenatiques; lo

protesseur dolt privilegier les 'Wangs, & co Div:eau.

H6: L'exploration librs, en groups, suable tin facteur

important dans l'appraltissage : les Otudiants doivent acoir is

possibilite de chore:her, d'enettre des hypotheses at de tenter de

les verifier ou d'en tirer dos conclusions.

Hb: La verbalisation de is &march* poursuirie lore d'uns

activite sathematiqua est trap foment negligee. face & tin pair,

l'etudiant force de verbeliser ea dinarche lui donno tins resift&

pout e'en Machu, l'evaluar it is poursuivre.

H7: Le profoossur doit transnettre son vecu an 'atheist/quest,

c'est-a -dire fairs in sorts quo l'etudiant puisse s'identifior L la

denarche d' interrogation, de recherche it de reflation quo

reuse/quint ettectus lorsqu'il abords tins problematique

mathinatique.

HS: Il taut quo le professeur sit d6s occasions de supervisor

l'apprentissago individual. De nonbrouses sequences ont nontre qua

les aninateurs peuvont effectivenont guider l'6tudiant t assure

qu'il progress en lui posant des questions judicieusea, en lui

faisant renarquer lea resultats acquis, en tornulant expliciteaent

les hypotheses isplicitos de l'etudiant, etc...
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H9: P relation avec is supervision de l'apprentissaue, it

semble important de multiplier les moments de prise de conscience

des resultate ("Eureka"). On reaarque dans quelquaa sequences qua

cos momente peuvent saner 6 is comprehension male quo l'itudiant a

aussi tendance S 66chapperi sea nouvelles consuls's:um. Il les

conserve du moment qu'on is relines our is piste.

1110: Le profeneur dolt !avariser les apporte blatoriques at

situer it demerche de l'humanite dans la construction des

mathemniques. Cool permettra 6 l'etudient de constater condom de

temps at de travail it pout y avoir entre is question et is

Moue.

Hil: L'etudiant dolt pauvoir roller cortaines dimarches de

resolution de problems, de recherche, de verifloation l sou vim

quotidian.

HI2 La valour des metbeeatiques dolt etre tummies eels

sans mystification et is !non A co qua l'Otudiant plane les

reconmaltre corms Stant accessibles.

Hi3: L'environnement amthematique dolt etre sonnet, reel.

bumain, afin d'interesser l'etudiant. hutant is !ores des activitn

quo les =tortes Cboisis dolvent Strip couples, attrayants it

tulles d'accis pour piquet is curionte of stimuli's is recherche.

Les resultats de nos observations nous permsttent do pence:

qu'il est possible de remedier 6 is matbophoblo it co par des

moms quo nous pouvons qualifier de pedwogiques : l'enseignant

an seralt done le principal facteur. Dines, pour teralner, qua

cette exploration nous permet d'entrevoir is creation d'un amine

d'ihterrantion en clans it d'en envIsagor l'experimentation.

sera ensuite possible d'en valusr les effete.
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INVESTIGATION DES FACTEURS COGNITIFS ET AFFECTIFS

DANS LES BLOCAGES EN MATHEMATIQUES

Lise Legault

Departement des Sciences de l'education

Universite du Quebec A Trois-Rivieres

La revue de la litterature fait apparaltre de multiples pis-
tes dans l'explication des difficultes en mathematiques.
Nous avons tente d'y voir plus clair en effectuant une de-
marche exploratoire aupres de deux groupes de filles de 6e
armee primaire Ogees d'environ 12 ans), les unes fortes,
les autres faibles en mathematiques. Les instruments uti-
lises ont ete des epreuves piagetiennes, des entretiens et
deux tests projectifs (Rorschach et T.A.T.). On a trouve,
sur le plan cognitif, une correlation tres elevde entre
l'acquisition de l'"operativite- et le succes en mathema-
tiques. Sur le plan affectif, on a observe une tendance
a ce que les mathematiques soient investies d'une valeur
phallique et ce, en relation avec le pare, ainsi qu'une
legere tendance A ce que l'echec en mathematiques soit
l'expression d'un refus de plaire A la mere ou de se sou-
mettre A ses exigences. Mais l'analyse individuelle du
vecu conscient et inconscient de chacun des sujets a per-
mis de constater que le succes ou l'echec en mathematiques
s'inscrivent dans une dynamique propre a chaque eleve et
qu'on ne saurait en consequence relier de facon generale
le rendement en mathematiques A tel ou tel facteur affec-
tif, de maniere privilegiee.

En cherchant dans la litterature, nous avons decouvert de multiples

pistes concernant l'etiologie des difficultes en mathematiques, allant

des troubles neurologiques (Henschen, 1919; Gertsmann, 1964; Hasaerts

Van Geertruyden E., 1970; etc.) jusqu'aux fantasmes inconscients et

aux problemes d'ordre psycho-sexuel (Klein, 1923; Baudouin, 1951; Salzi,

1959; Male, 1964; Mauco, 1968; Diatkine, 1973; Nimier, 1976; etc.), en

passant par les facteurs psycho-pedagogiques (Mialaret, 1957,1959;

Dienes, 1964; Baruk, 1973, 1977, 1985; Tobias, 1980; Weyl-Kailey, 1985,

etc.). Certains auteurs privilegient la composante affective (,Wlein,

1923; Baudouir, 1951; Salzi, 1959; Nimier, 1976; etc.), d'autres la di-

mension cognitive (Dodwell, 1961; Hood, 1962; Freyberg, 1967; etc.),

d'autres les methodes pedagogiques (Hug Colette, 1968; etc.), etc.

Quelques-uns font reference A une variete de facteurs (Male, 1964;
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Jaulin-Mannoni, 1965; Beauvais, 1970; etc.). Plusieurs ne formulent

que des hypotheses,
certains se sont aventures dans des recherches

assez mal definies,
superficielles ou botteuses sur le plan methodolo-

gigue, si bien que les
experimentations A caractere scientifique sont

peu nombreuses dans ce domaine. Et dans cette diversite, on trouve des

contradictions et des juxtapositions qu'on ne sait comment concilier.

Nous avons alors voulu voir un peu plus clair dans tout ce dedale de

variables et de facteurs evoques et, en l'occurrence, nous avons tente

d'effectuer nous-meme une recherche.

Notre cheminement personnel
ayant oriente davantage notre interet vers

les facteurs psychologiques
lies aux difficultes en mathematiques, nous

avons envisage de ne considerer que les dimensions
cognitive et affec-

tive qui, d'ailleurs,
regroupent a elles seules une multitude de facet-

tes et ont ete trop souvent etudiees Apartment. Ne voulant privile-

gier aucune d'entre elles a priori dans notre recherche, nous avons

decide de ne pas nous
fixer d'hypothese de base en particulier. Notre de-

marche a voulu etre
essentiellement exploratoire et permettre, a tra-

vers l'ampleur de
l'investigation, l'emergence par

elles-memes des com-

posantes majeures, peut-etre
insoupconnees, qui peuvent jouer un role

dans la reussite ou l'echec en mathematiques.
Nous avons voulu, plus

precisement, recueillir, dans une optique la plus objective possible,

un tres grand nombre de donnees sur le vecu conscient et inconscient de

chacun des sujets, afin de voir, a travers tout ce materiel, s'il se

degage une dynamique qui a un lien specifique avec le rendement en ma-

thematiques. Cette etude a donc ete realisee dans une perspective psy-

chanalytique.

Nous avons cependant ete
contrainte, devant l'ampleur de la tache, de

nous fixer certaines
limites quant au nombre

d'instruments S utiliser.

Des epreuves piagetiennes nous
ont semble etre un excellent outil pour

deceler le niveau de developpement des structures logiques de nos su-

jets, et, par ailleurs, les entretiens et tout particulierement deux

tests projectifs (le Rorschach et le Thematic Apperception
Test) nous

ont paru etre les meilleurs moyens pour acceder aux niveaux conscient

et insconscient, apportant
ainsi une vue globale de la dimension affec-

tive. En outre, ii est apparu
fondamental d'augmenter la validite des

donndes en procedant a des comparaisons
systematiques entre des eleves

fortes et des eleves faibles en mathematiques.
Mais, afin d'eviter la
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proliferation des variables susceptibles d'influer sur les comparaisons,

nous avons choisi des sujets de meme sexe, de meme niveau scolaire et

approximativement de mime age et de meme niveau socio-culturel. Ici en-

core, pour des raisons d'ordre pratique, it a fallu nous en tenir S un

nombre assez restreint de sujets. Nous avons donc constitud deux grou-

pes de dix sujets chacun: it s'agit plus precisement de filles, ages
de douze ans envion, de classes regulieres de 6e armee primaire, de la
region de Montreal. Les Cleves du premier groupe devaient etre, depuis

au moms trois ans, les meilleures des classes en mathematiques et reus-

sir mieux en mathdmatiques qu'en francais. Celles du second groupe de-

vaient avoir, depuis au moins trois ans, des difficultes specifiques im-

portantes en mathematiques et avoir nettement plus de facilite en fran-
cais. Le clivage a ete effectue A partir de l'opinion des enseignants

et des rdsultats scolaires des trois dernitres annees.

Cette approche differe, semble -t -i1, de toutes les recherches effec-

tuees jusqu'ici dans le domaine des echecs en mathematiques du fait

qu'elle s'est donne a la fois non seulement un groupe-tembin (on note

en effet l'absence frdquente d'un tel groupe dans maintes etudes con-

cernant les Cleves ayant des difficultes en mathematiques), mais aussi

deux mesures, l'aspect cognitif et l'aspect affectif, en privilegiant

l'emploi de techniques projectives tres rarement utilisees pour ce

genre d'etudes.

En ce qui concerne les rdsultats obtenus, it se degage de cette inves-

tigation une dichotomie trts nette entre les deux groupes de sujets,

sur le plan cognitif. On observe en effet que, chez les Cleves fortes

en mathematiques, neuf sur dix sent de niveau nettement operatoire,

alors qu'une Cleve paralt osciller entre les niveaux preopdratoire et
operatoire. Chez les Cleves faibles en mathematiques par ailleurs, au-

cune d'entre elles n'est franchement operatoire: huit semblent nette-

ment preoperatoires, alors que le niveau des deux autres Cleves est

encore fluctuant entre le preoperatoire et l'operatoire. On a constate,

chez toutes les Cleves faibles en mathematiques, les nombreuses hesita-

tions et la faible mobilite de la pensee, caracteristiques des sujets

qui ne sent pas franchement operatoires. Bref, on trouve une correla-

tion tres elevee entre l'acquisition de la reversibilite ou -operati-

vite- et le succes en mathematiques.
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Sur le plan situationnel, on note, dans les deux groupes de sujets, une

sensibilite a l'aspect assimilation des connaissances (rtgles a rete-

nir). De plus, les mathematiques sont percues come un ensemble de lois

ayant d'irreductibles exigences, ce qui suscite de la peur, alors que

le francais est vu commie laissant plus de place a l'imagination et A la

creativite. Les eltves faibles en mathematiques reclament un enseigne-

ment plus indiviaualise, coins complique, et plus de continuite dans

les methodes d'enseignement. Elles se trouvent beaucoup plus laissees

A elles-mtmes.

Sur le plan affectif, nous avons observe une tendance A ce que les ma-

thematiques soient investies d'une valeur phallique et ce,en relation

avec le Ore: plusieurs eleves fortes en mathematiques semblent re-

chercher dans cette mature une compensation S leur sentiment de cas-

tration ou de manque face a leur ptre, tandis que quelques eltves fai-

bles en mathematiques expriment par leur echec leur depression sur le

plan phallique et leur demission dans leur quete d'un soutien valable

de la part de leur Ore. En d'autres termes, it semble exister un rap-

port entre recherche active du ptre et succts en mathematiques, de mEme

qu'entre relation decevante au ptre et echec en mathematiques. Chez

les eleves faibles dans cette matiPre, nous avons remarque en outre une

tendance A ce que l'echec soit l'expression d'un refus de plaire A la

mere ou de se soumettre a ses exigences. Notons cependant que, chez

la majorite des sujets concernes, ces facteurs affectifs ne sont pas

uniques et primordiaux. L'analyse individuelle du vecu conscient et

inconscient de chacun des sujets a permis de constater que le succes

ou l'echec en mathematiques s'inscrivent dans toute une dynamique pro-

pre a chaque eleve et qu'on ne saurait en consequence relier de facon

generale la reussite ou l'echec en mathematiques a tel ou tel facteur

affectif, de manitre privilegiee. Seul le facteur "niveau de develop-

pement des structures logiques" a opere une difference tres marquee en-

tre les deux groupes de sujets.

En conclusion, cette recherche pose le probltme des rapports entre le

cognitif et l'affectif. Au point de vue diagnostique, elle montre

l'importance d'evalue- le developpement cognitif et le cote affectif de

l'enfant. Elle souligne que le travail reeducatif doit etre axe a la

fois sur la dimension cognitive et sur la dimension affective: liberer
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l'enfant des emotions liees A l'echec, reconcilier l'enfant avec l'ac-

tivite mathematique par un minimum de reussites pour renverser l'en-

grenage de l'echec et du desinteret, susciter chez lui une participa-

tion active en l'amenant a decouvrir par lui-mEme. Elle invite l'en-

seignant de classe reguliere A dedramatiser l'enseignement et l'appren-

tissage des mathematiques, tout particulierement en donnant a l'enfant

beaucoup de possibilites de manipulations et cela durant tout le tours

primaire. Sur le plan de la prevention, elle incite les enseignants A

reperer tres tot les eleves "pre-operatoires" pour leur offrir une pe-

dagogie correspondant a leur "Age cognitif-, c'est-A-dire un enseigne-

ment qui stimule de plus pros l'activite des structures logiques et des

methodes qui les rejoignent plus personnellement.
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Abstract

Much of the work on how children learn mathematics has been
based on theories of mental development, particularly
Piaget's. While mental development is unquestionably one
factor which influences the way in which children learn
mathematics, another, it may be hypothesised, consists of
the attitudes which they bring to their task. This
hypothesis has been investigated on the basis of Kelly's
theory of personal constructs. Preliminary results of the
study indicate that there are indeed relationships between
certain mental constructs and mathematics performance, but
that the concept of 'doing mathematics' itself needs refining,
in that the relationships appear to be different for routine
mathematics and for problem solving. Possible explanations
for this finding are discussed.

A group of pupils from an English comprehensive school is taking part

in the study. The school was chosen because its catchment area includes

a wide range of social backgrounds and because it is the policy of the

school to attempt to bring together, in tutor groups, pupils of a wide

range of ability. The pupils taking part in the study are members of

one such tutor group. They were in their first year, ie aged eleven

when the study began, They are now in their third year. They have

worked in six ability sets (or tracks in North American English) since

the second term of the first year.

The adoption of a personal construct approach reflects the belief that

pupilsdiffer from each other in the ways in which they make sense of

mathematics lessons, the roles which they, and others, play in those

lessons, and even what it means to be 'doing mathematics'. However,

a personal construct perspective also embraces the demonstrably obvious

view that two or more persons frequently employ similar constructions

of events and my study as a whole is concerned with both similar and

different constructs to the extent that they affect mathematical

performance. For this paper I shall concentrate on the similarities.
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The work was in three stages.
In the first, each pupil was interviewed

for approximately one
hour to prc..ide a background picture of their

attitudes to, and ideas about school and learning. To avoid the

discussion of factors which I, rather than the pupils, might find

Important, personal constructs were elicited using, as elements, nine

of the fourteen school
subjects which the pupils were studying at the

time. Each pupil selected a
combination of elements which would refiect

their own likes and dislikes.
The constructs, as they were produced,

were used as a basis for wider ranging discussion.
The interviews were

audio-taped, transcribed and analysed. The constructs were analysed

using the Focus grid analysis computer program.

The most interesting
finding from this very general enquiry was that

those in the higher mathematics sets tended to generate constructs which

related more to external factors (E), while those in the lower sets

tended to generate constructs
which related more to personal factors

(P).

SETS E> P E P E< P TOTAL

1-2 9 1 2 12

3-6 2 3 7 12

For the second stage, I dealt solely with mathematics. I chose a

somewhat different approach,
because a trial study with another group

of pupils pointed up the
difficulties of eliciting constructs when

mathematical topics were the chosen elements. 1, consequently, myself

provided three constructs on which pupils then rated eighteen

mathematical topics on a scale of 0 to 7.

The constructs were easy/difficult; like/dislike
and useful or not

in everyday life and work. Pupils were not expected to have objective

knowledge about use. It was their ideas that were of interest because,

in general, pupils so frequently, and justifiably,
complain that they

can see no end use in the topic being studied.

Pot each topic there was a card with one or more examples of Lhe topic,

including the answers, drawn or
written on it and this was shown to

the pupils. This method was used partly
because it is well known that

people are far better at recognition than at reconstruction and partly

15E
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because years of experience in teaching mathematics has taught me that
pupils tend not to remember the

labels given to many of the topics.
As a further precaution each

topic was discussed before the first rating
to ensure that the pupil had some idea of what was being discussed.

Once the topics had been rated the reasons for the placing of each
one were discussed and this provided a means for a deeper insight into

the pupil's ideas about mathematics.

The aim of the study was to discover pupil's attitudes and beliefs
about learning mathematics. Since most formal mathematical learning
takes place in school, it seemed expedient to use the topics taught
in school as elements. However this meant that the school's or,
arguably. the examination board's concept of 'doing mathematics' rather
than that of the pupil's was being used as a basis for the enquiry.

Overall, the pupil's ratings correlated quite well with the setting
of the pupils. The higher the set, the more likely was the pupil to
find the topic easy, enjoy doing it and think it useful and vice versa.
This is hardly a surprising finding

given the previous argument and
it does no more than give confidence in the validity of the method.

As before, the audio-tapes were transcribed and analysed. The method
was the same for each set of interviews.

First the tapes were
transcribed verbatim. Next they were reduced to notes referring to
relevant comments. At present these are being used to create a vignette
of each individual pupil and they have also been used to find shared
attitudes or beliefs in an effort to locate factors which may be of
general rather than individual concern. Progress is being made but
this in not the subject matter of this paper.

With the aim of obtaining a view of the pupils which was both deeper
and more personal the third stage of the study involved the pupils
in problem solving sessions in groups of three. The groups were self

selected because this seemed to be the most satisfactory way of ensuring
that pupils trusted and felt at ease with those with whom they were
working. An unlooked for bonus was that the groups were all composed

of people from different sets although the two extremes did not come
together. Unfortunately, self selection meant that in only one group
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was there a mixture of boys and gills.

I made clear to the pupils that it was not their success that war, of

interest but the ways in which they tackled the problems and how they

worked together. The sessions were clearly different from the classroom

situation but I felt that once the pupils had relaxed, become involved

and learned to ignore the camera there would be useful information

to be gained from the approach. The fact that the sessions were

videorecordad meant that not only could everything the pupils said

be carefully analysed but also that silent signs of interest,

involvement or enjoyment or alternatively boredom, frustration,

disinterest or even anger would be on record.

There were nine problems in all. The pupils were asked to try to

consider as many of them as possible, to reach a conclusion through

discussion and to move on the the next question only when all were

agreed that they either had a solution or wanted to give up trying.

A notepad and pen were provided to facilitate the work but only one

of each. The intention was to steer the group away from individual

work. The problems covered several types, as follows:

Number of problem Type

1,2
Fairly easy, to overcome nervousness

4,9 Likely to lead to frustration or boredom

6
Open ended, misleading without careful analysis

3 Requiring generalisation

7,8
Related to probability (not taught as yet)

5
Requiring physical manipulation of material

The problems on probability were
included because it is a topic about

which people learn in everyday life and that on physical manipulation

because it could lead to either very close cooperation or totally

individual work.

At the end of each session, before the camera was turned off, I had

a discussion with the group about what they had felt about taking part

in the activity and whether or not it had felt like doing mathematics.

Most remarked on how quickly they had forgotten about the camera, how
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much they enjoyed working in groups and that they did think that the

exercise was mathematical. Also, the majority asked to go through

the questions to see it they had been successful or to have them

explained if they had not understr,,d. This invariably meant them giving

up their free time to do so.

As mentioned earlier the aim of these sessions was to gain deeper and

more personal insights into the pupils ideas and attitudes. There

was no intention of measuring success at either an individual or a

comparative level. However. I soon realised that although I was testing

affective factors I was in fact in possession of data that tested

problem solving abilities. An analysis of the videotapes indicated

discrepancies between problem solving performance and setting.

To test this, marks were allotted to each problem and each group as

a whole was rated according to their results. Next the protocols of

ach group were analysed for indications of each pupil's contribution

to the success of the solution and the individual results weighted

accordingly. Inevitably there is an element of subjectivity involved

here but having videotapes to view makes it possible to gain a fairly

clear idea of oho is contributing what.

The pupils are divided between six ability sets; the members of the

lowest three sets are unlikely to gain any mathematical qualifications
before leaving school. And yet, in this group. several performed as

well as their so-called betters.

SET NO IN SET HIGH MEDIUM LOW

1 9 6 3 0

2 5 2 1 2

3 6 3 1 2

4-6 9 2 3 4

As a result of the second and third stages of my enquiry, I now had

two types of data about attitudes to mathematics. ie one explicit end

one implicit. It was not, however, possible to bring them together

because they were clearly based on different concepts of mathematics.
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The first used an arithmetic and reproductive approach which inevitably

involves a large amount of algorithmic learning. The second used the

concept of mathematics as problem solving. The first, predictably,

correlated quite well, at a general level, with the overall setting

of the pupils. The second did not.

These results suggest that the term 'Attitudes towards mathematics'

is too general. It may be necessary to separate attitudes towards

routine work and attitudes towards problem solving. These attitudes

might affect pupils' work and there may be lessons to be learned from

this. At this stage it is possible only to offer two hypotheses.

The first is that those with a favourable attitude to problem solving

who are forced into doing routine work, particularly where this involves

learning without understanding, become disillusioned with mathematics

and give up trying. The second hypothesis is that abilities at problem

solving and abilities at routine work are not highly correlated. It

is quite possible that both are valid simultaneously, but for different

pupils.

Both hypotheses are relevant to the ongoing debate about how pupils

learn and, given either hypothesis, the present attempts in Britain

et curriculum reform which are seekiwg to give a more Important place

to problem solving may lead to a different ranking of pupils.

To sum up. In the three stages of this work I have shown firstly that

the children who, according to the school, are more able at mathematics

tend to view school as a whole more on the basis of external than

personal constructs, while the opposite is true for the less able.

Secondly, the mathematically more able children also tended to find

mathematics easier and more useful, and they liked it better. But

it was the third stage which cast doubts on these simple

interpretations, for it showed that the concept of 'doing mathematics'

used in the first two stages related essentially to routine. If the

concept referred to problem solving, then no simple correlation with

the school's perception of the mathematical ability of the children

could be established and I suggested two hypotheses to account for

this fact.
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One final comment. In the problem solving sessions those in the higher

sets tended to show greater confidence than those in the lower sets

and boys tended to show more confidence than girls. It was particularly

interesting to watch hoi top set boys failed confidently whilst lower

set girls succeeded with great diffidence.
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A CONSTRUCTIVIST APPROACH TO RESEARC

ON AT-"FlIDE TOWARD MATHEMATICS

Douglas B. McLeod

Washington State University

Abstract

Current research on attitude generally follows a behaviorist

or empirical tradition. Recently, however, some psyc'iolo-

gists have suggested new approaches that refl.ect a cnastruct-

ivist position on attitude. The purpose of this paper is to

discuss lica, a constructivist approach could trovid a
stronger theoretical foundation for research on attitude

toward mathematics. The theories of Handler and Skema form

the basis of the discussion.

In a recent review Leder (in press) presents a state-of-rhe-art

report on research related to attitude toward mathematics. ler review

presents the complexities of research on attitude, including the

attempts that have been made to provide an adequate theoretical base for

this research. Most of the theoretical bane has come from behaviorist

psychology or social psychology (Ajten 6 Fishbein, 1980). Very little

of the research reflects the constructivist approach that has become

prominent in research on mathematics learning. The purpose of this

paper is to suggest how a constructivist approach to attitude could he

of substantial help in analyzing how attitudes develop and in making

connections between research on attitude and contemporary theories .

learning.

RESEARCH ON ATTITUDE TOWARD MATHEMATICS: CURRENT APPROACHES

Research on attitude generally has a foundation in behaviorism, but

it often seems to proceed in rather an atheoretical, empirical fashion.

A typical approach would be to specify certain factors (e.g., liking,

utility, confidence) that are hypothesized to be important in the

affective domain, and then devise a questionnaire that measures those

factors. The researcher then gathers some data, examines the character-

istics of the instrument, and applies the appropriate statistical anal-

ysis package. The results are then interpreted and implications drawn
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for practice, but little thought is ever given to the development of a

sound theoretical framework. The driving force in much of this research

seems to be the statistical methodology rather than the theory. In

following this statistical model, the researcher seems to assume that

the domain of interest (attitudes, in this case) can be modeled by a

vector ;pace, and that the items on the attitude questionnaire will span

the space and produce factors that describe the space adequately.

Although the theoretical foundation for research on attitude has not

been strong, a great deal of useful data has been gathered using these

empirical methods. Research on attitudes related to the area of gender

differences has been particularly successful. For example, a substan-

tial amount of data indicates that females tend to be less confident

than males in mathematics (Reyes, 1984). Since confidence is an impor-

tant predictor of continuing enrollment in secondary mathematics

courses, this finding has implications for the underrepresentation of

females in more advanced mathematics courses and in mathematical

careers. The data on confidence and course selection is quite consist-

ent across different countries and across different measurement tech-

niques (Leder, 1986).

Research on attitude has made progress not only in the consistency of

the results, but also in the development of more sophisticated models to

guide the research. This line of research has expanded to include

Investigations of gender differences in attributions of success and

failure in mathematics (Reyes, 1984). The connection between research

on attitude and on attributions (Weiner, 1979) has been particularly

useful in mathematics education, and promises to make further contri-

butions to our understanding of the relationships among attitudes,

achievement, and gender (Fennema 5 Peterson, 1985).

RESEARCH ON ATTITUDE: THE NEED FOR NEW APPROACHES

Although research on attitude has produced useful data in at least

some ,-.ituationn, a new approach to the affective domain could yield

substantially more progress, especially in developing better theories

about attitude and in making connections between research on attitude

and contemporary theories of learning. This new approach needs to take

into account the view that learners are actively engaged in construct-
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ing their knowledge of mathematics, rather than just absorbing it. This

new view of the learner is alr.ady having a substantial impact on para-

digms for research on cognitive issues in mathematics learning and

teaching (Romberg 61 Carpenter, 1986). Now it is time for this new view

to influence how we approach research on attitude toward mathematics.

The need for a new view of research on attitude is widely acknowl-

edged among both cognitive psychologists and researchers in mathematics

education. Abelson (1976) notes that research on attitude is confusing

and contradictory, and suggests that "the present state of attitude

theory is frankly a mesa" (p. 40). handler (1984) observes that re-

search in this area is generally not cumulative, and that researchers

have been preoccupied with measurement issues, and neglected the devel-

opment of theory. In mathematics education, Kulm (1980) has asked for

more emphasis on theory development to guide research on attitude

toward mathematics, and numerous authors have noted the relatively weak

relationship between attitudes and achievement in mathematics (Begle,

1979).

THE DEVELOPMENT OF ATTITUDE: A CONSTRUCTIVIST POSITION

Constructiviat views of learning often pay little attention to the

affective domain. Recently, however, two leading theorists (handler,

1984; Skemp, 1979) have made affect a major part of their constructi-

vist positions.

handler (1984), in his analysis of mind and emotion, extends

theory and methods of cognitive psychology to the affective domain. His

view is that affective responses result mainly from interruptions of

plans or planned actions. In the terminology of cognitive psychology,

the plans come from the activation of schemes, and the schemes induce

actions. If these actions are interrupted, the individual's autonomic

nervous system responds with some sign of arousal, such as an increase

in heartbeat or a tensing of the muscles. The individual then inter-

prets this reaction of the autonomic nervous system as frustration,

surprise, or some other emotion.

Handler's emphasis on interruptions seems particularly appropriate

to student performance in mathematical problem solving. When a student

is working on a non-routine problem, interruptions and blockages are

inevitable. The student's interpretation of that interruption will
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depend on the student's knowledge, beliefs, and previous experiences.

Skemp (1979), in his presentation of a theory of learning, pays

special attention to the development of emotion. Skemp's framework dis-

cusses the importance of goal states (and anti-goal states), and identi-

fies eight major categories of emotion. These include pleasure, which

comes from movement toward a goal state, as well as fear (or movement

toward an anti-goal state). Skemp also describes emotions that result

from the ability (or inability) to control one's movement toward a goal

state (or an anti-goal state). For example, he describes confidence as

being able to controlmovement toward a goal state, and anxiety as the

inability to direct movement away from an anti-goal state.

Buxton (1981) has carried out a major study that investigates the

usefulness of Skemp's ideas on affect. In this study Buxton presents a

careful analysis of adults' affective responses to mathematics, and uses

the term panic to describe what occurs in the minds of many. This panic

is manifested both in chaotic reactions to mathematical tasks, and in

the tendency of some people to freeze--to be immobilized when asked to

solve a mathematical problem. In Skemp's terms, the affective reaction

results from the inability to move away from the anti-goal state of

failure on a mathematical task (Skemp, 1979).

Both Handler and Skemp provide useful frameworks for analyzing

affective responses of mathematics learners. Researchers who conduct

detailed studies of individual learners should find these frameworks
,

useful. For example, Cobb (1985) discusses the role that affect can

play In the development of early number concepts. He compares the

learning of two students who differ in their level of confidence and

their expressions of anxiety. Confrey (1984) comments on the confusion

and frustration that is reported by young women in a special summer

program on problem solving. Ginsburg and Allardice (1984) document the

intense feelings of sadness and futility that low achievers express in

relation to mathematics learning, and call for a renewed emphasis on

affective issues in research. Wagner, Rachlin, and Jensen (1984) re-

port how algebra students can get upset and lose control of their solu-

tion processes when they are stymied in their attempts to solve

problems. Each of these studies provides useful information on how

interruptions and blockages can produce negative feelings about

mathematics.
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It is important to remember that students have positive as well as

negative experiences with mathematics, and the theories of both Handler

and Skemp account for the development of these positive feelings about

mathematics. Although research has tended to concentrate more on the

negative emotions (such as frustration and anxiety) rather than the

positive, a number of people have noted the role of positive affective

factors in learning. For example, von Glasersfeld -.1987) notes the

powerful sense of satisfaction that children report when they reach a

satisfactory reorganization of their ideas. Lawler (1981) documents the

surprise and positive emotions that accompany the moment of insight

when a child sees the connection between two previously unconnected

schemes. Similarly, Mason, Burton, and Stacey (1982) discuss the

importance of savoring the "Aha1" experience when solving problems, and

Brown and Walter (1983) discuss the joy of making conjectures.

A FRAMEWORK FOR STUDYING THE DEVELOPMENT OF ATTITUDE

The first task for researchers is to analyze the barriers that

children face as they learn mathematics, for it is these barriers that

prevent a schema from reaching completion (Handler, 1984) or that keep

a student from reaching a goal (Skemp, 1979). The affective component

of the children's reactions to these barriers constitutes the raw

material from which attitudes are formed.

The next task for researchers is to describe the affective reactions

of students to these barriers. These reactions can be characterized in

terms of their direction (positive or negative), intensity, duration,

rise time, and consistency (Kagan, 1978; McLeod, in press). When

students respond positively (or negatively) on repeated occasions to a

series of mathematical tasks, their responses become more and more auto-

matic. The role of automaticity is the same in the affective domain as

in the cognitive; human information processing allows certain responses

to become more and more automatic, thus freeing the individual's limit-

ed processing capacity for action on unfamiliar problems or situations

(Resnick g Ford, 1981). As these responses become more automatic, the

theory predicts that the affective reactions will be characterized by

reduced intensity, increased duration, shorter rise time, and greater

consistency from task to task. Once the reactions become consistently

positive (or negative), then the student is exhibiting the stable re-

sponse that is characteristic of the construction of an attitude.
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If researchers are to understand the development of attitude toward

mathematics, they will need use the same kinds of methods that are

now used to understand cognitive development. For example, research

on affect should include the use of individual observations, clinical

interviews, and teaching experiments. Since these techniques are

standard for conatructivist researchers, they should be willing to

expand the domain of their interests to include affective as well as

'cognitive constructions.
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ATTITUDES OF TWELFTH GRADERS TOWARD MATHEMATICS

L. Diane Miller, Louisiana State University

Three self-report techniques, the Revised Math Attitude
Scale, a researcher developed questionnaire, and an
interview schedule, were utilized in gathering data about
twelfth grade students' attitudes toward mathematics. In
agreement with other studies, the results of this
investigation include: as students ascend the academic
ladder their attitudes toward mathematics deteriorates;
grades 7-8-9 were identified as the period of time most
influential in the development of students' attitudes
toward mathematics; students perceive mathematics as
useful but are hesitant in specifically describing how it
is useful; a significantly positive correlation exists
between grade point averages and attitudes; and when
considering success as a construct of attitude,
gender-related differences seem to emerge.

BACKGROUND

The amount of research conducted in the area of students' attitudes

toward mathematics has increased appreciably in the last ten years.

The increase in research on attitudes toward mathematics may reflect

the recognition on the part of mathematics educators that poor

attitudes may be behind a decreased enrollment in advanced

mathematics classes in high school. Another factor contributing to

the increased interest in attitudes is the recognition that certain

groups of students have been identified as not achieving to their
potential in mathematics. Females, minorities, and students from

low-SES families have not particpated in mathematics and

mathematics-related activities to the degree that their abilities

predict (Reyes, 1984). Affective variables have been found to be

related to the underrepresentation of these groups in mathematics

classrooms and careers requiring mathematics knowledge.

PURPOSE OF THE STUDY

The primary purpose of this study was twofold: (1) to assess the

attitudes of twelfth grade students toward mathematics; and, (2) to

171



141 -

identify factors which contributed to the development of their

attitudes. Other research efforts have documented that as students

ascend the academic ladder their attitudes toward mathematics

deteriorates (Aiken, 1970, 1976; Begle, 1979; Carpenter, et al.,

1981; Neale, 1969; Reys /4 Delon, 1968). The intent of this

investigation was to initiate work on explaining why attitudes toward

mathematics seem to decline as students progress through grades 1-12.

Once an explanation is found, research may begin on preventing this

decline and, possibly, on reversing the trend.

DESIGN AND METHODOLOGY

Three primary data collection techniques were utilized in addressing

the purposes of the study. A self-report attitude scale, the Revised

Math Attitude Scale (RMAS) designed by Lewis R. Aiken, Jr., was used

to measure the attitudes of 329 twelfth grade students. The RMAS

score allowed the investigator to divide the population into three

subgroups: Those with a dislike for mathematics (RMAS score range

0-29); those with a neutral attitude towards mathematics (RMAS score

range 40-49); and those students who liked mathematics (RMAS score

range 60-80). A second self-report instrument, a 4-item

questionnaire designed by the researcher, was used to ascertain if

the student liked mathematics in elementary school (grades 1-6),

junior high (grades 7-8-9), and high school (grades 10-11-12). The

fourth item asked students to check the one period of time which they

felt contributed most to the development of their attitude towards

mathematics: Grades 1-6, Grades 7-8-9, Grades 10-11-12. The

students who checked Grades 7-8-9 became candidates for interview.

One hundred twenty-six students (38%) identified grades 7-8-9 as the

period of time most influential in the development of their attitude

towards mathematics. Five males and five females were selected at

random from each attitude group. The interview was the third

self-report technique utilized to collect data for this study. The

same questions were asked of each respondent, but the questionnaire

also contained a set of open-ended questions that allowed for probes

of the individual's responses.
Other information collected on each

interview subject included the number and types of mathematics

classes they had taken in grades 9-12 and the grades made in these

classes.
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ANALYSIS OF DATA

The analysis of the data collected with the RMAS and the research

questionnaire included means, standard deviations, and tests for

significant differences between subgroups. A Pearson Correlation

between the RMAS score and the mathematics GPA resulted in a

significantly positive correlation (r = .38, p < .05). The four

items from the research questionnaire and the demographic data

obtained were analyzed through regression analysis. The reliability

coefficient of the RMAS (r = .97) was estimated by the coefficient

alpha method. Analysis of the interview data consisted of

transcribing the interview tapes and studying the responses to search

for trends.

RESULTS AND DISCUSSION

Attitudes as measured by the RMAS According to the RMAS mean

score (39.6) for the original population, the overall attitude of

this particular group of seniors was bordering between neutral and

having a tendency to dislike mathematics. The RMAS scores of 159

students (48%) indicated either a strong dislike (n = 50), a dislike

(n = 47), or a tendency to dislike (n = 62) mathematics. The RMAS

scores of sixty-six students (20%) indicated that their feelings

toward mathematics were neutral. One hundred four studer%s (32%) had

an RMAS score indicating either a strong liking (n = 16), a liking

(n = 32), or a tendency to like (n = 56) mathematics. An item

analysis of the RMAS resulted in the identification of several items

in which large percentages of the population were responding

negatively (Miller, 1986). Mathematics educators might consider

focusing on some of these items as change agents in an attempt to

alter students general attitudes toward mathematics.

The distribution of the RMAS scores by sex is interesting because

almost twice as many females have a strong dislike for mathematics as

males (n = 32 vs n = 17). However, three times as many females have

a strong liking for mathematics as males (n = 12 vs n = 4). The

numerical differences between the sexes for dislike vs like and

tendency to dislike vs tendency to like are not as great. More males

than females scored within the neutral range (n = 39 vs n - 24,

respectively). Are these data supportive of the contingency
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suggesting gender - related differences in the learning of and

attitudes toward mathematics? Possibly; however, one might also

surmise that females are not as inhibited as males at expressing the

strength of their emotions. The RMAS mean scores for males (40.7)

and females (38.5) are not significantly different at the 0.0001

level; thus, refuting any gender-related differences in attitudes for

this particular population.

Attitudes as measured by interview Various attributes of attitude

were discussed during the interview (Miller, 1986). Of particular

interest were the responses when students were asked, "In general, do

you think mathematics is useful?" Twenty-nine of them answered with

a strong "yes." However, when asked why they said mathematics was

useful, their answers were not as immediately forthcoming. The most

popular first response to the "why" probe was "Oh well, you know,

everybody uses math." Their hesitation in naming a specific reason

why mathematics is useful did not coincide with the strength of their

initial response. With continued encouragement to specifically

explain why they said mathematics was useful, seventeen students

expressed some type of involvement with money; balancing a checkbook,

making change, and comparative shopping were three specific examples

named. Other reasons named included aviation (one student was

learning how to fly), construction (three students worked part-time

on construction crews), keeping statistics on athletes, using

mathematics in other classes like chemistry and computer science, and

a few students said that mathematics is useful in some jobs but were

not specific. The nature of the students' responses to this question

and the follow-up probe suggest that students sense from society, in

general, and parents and teachers, more specifically, that

mathematics is useful, but they are not exactly sure why or how it is

useful.

The interviewer also asked students to describe themselves as being

successful or unsuccessful in the mathematics courses they had taken.

Ten of the fifteen males interviewed (67%) felt they had been

successful in mathematics. Of the fifteen females interviewed, six

(40%) described themselves as being successful in mathematics. The

responses to this inquiry support the arguments of researchers who

contend that sex-related differences in mathematics do exist.

Another factor supporting the existence of gender-related differences
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in mathematics was the comparison of the mean grade point averages

(GPA) between the two sexes. The females interviewed seemed to under

estimate their success in matnematics when compared to their male

counterparts. The mean GPA (based on a 4 point scale; with F = 0 and

A = 4) for the 15 female subjects was
2.47; the mean GPA for the 15

males subjects was 2.03. The ten males who considered themselves

successful in mathematics had a mean GPA of 2.42. The six females

describing themselves as successful in mathematics had a GPA of 2.68.

These data lend support to the "fear of success" construct discussed

by Leder (1985) and others.

Factors contributing to the development of attitudes Grades 7-8-9

were identified by one hundred twenty-six (38%) of these seniors as

the period of time most influential in the development of their

attitudes toward mathematics. The data collected in this study,

consistent with the results reported in other studies, indicate that

as students ascend the academic ladder, their attitudes toward

mathematics deteriorate (Miller, 1986). The seventh grade was

singled out by the majority of the 30 interview subjects as the one

year in which their attitude
towards mathematics changed the mo:t.

Some students said they started liking mathematics in the seventh

grade and others said they started disliking mathematics in the

seventh grade. Reasons given for naming the seventh grade as a

critical year focused on the changes between the elementary

curriculum and junior high school. For example, some students were

bored by reviewing in the seventh grade what had been taught in

grades 4-5-6. Some students who started algebra in the seventh grade

were excited by the challenge of new content. Other students were

discouraged by the amount of work required in the seventh grade,

unlike grades 4-5-6 when "math was a breeze." Students claiming to

have mathematics anxiety, indicated that the seventh grade teachers

were not smpathetic. They only spent an hour a day with their

seventh grade teacher and that was not enough time for the teacher to

get to know them. Other comnents included the lack of practical use

for the mathematics studied in grade seven and beyond.

Attitude vs GPA Permission was secured to obtain the mathematics

grades of the thirty interview subjects. The ten students in the

"dislike mathematics" category (RMAS score range 0-29) had a mean

grade point average (GPA) of 1.92 (on a 4-point scale; F 0 and
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A = 4). The ten students in the "neutral attitude" category (RMAS

score range 40-49) had a mean GPA of 2.18. The subgroup in the "like

mathematics" category (RMAS score range 60-80) had a mean GPA of

2.67. The Pearson Correlation coefficient indicated a significantly

positive correlation for these two variables (r = .38, p < .05). The

number of students in this sample prohibits the formulation of any

strong conclusions from the differences between the means or the

correlation coefficient. However, the results clearly indicate that

students with a more positive attitude towards mathematics have a

higher grade point average.

Predicting attitudes Can a twelfth grade student's attitude

towards mathematics be predicted? Using the student's sex and the

responses to the four items on the research questionnaire as

independent variables, a regression analysis was run with attitude as

the dependent variable. The best one variable model found that a

student's response to "Have,you liked math in high school?" was the

best predictor of the student's attitude towards mathematics as

measured by the RMAS. This result is not surprising because a

person's most recent experiences with an object would probably

greatly influence the attitude held towards that object.

Consistency of responses One aspect of the study that was

particularly interesting to the investigator was the consistency of

the data collected through two different self-report techniques:

written questionnaire vs oral report. The research questionnaire

asked students to answer the following question: "When would you say

that you developed your present attitude towards mathematics? Grades

1-6, Grades 7-8-9, or Grades 10-11-12." Respondents were instructed

to check one. All thirty students selected for interview had checked

Grades 7-8-9. During the interview, 47% of the students gave a

different answer to that question. This result is somewhat

disappointing since it questions the validity of the students'

responses not only on the research questionnaire but during the

interview, too.

SUMMARY

This research has documented that students' attitudes toward

mathematics can be measured and analyzed through a variety of data
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collection techniques. Attitude is a multifaceted construct which

develops over a period of time and under the influence of many

variables. Conversations with students in this study as well as

teachers and other colleagues make this researcher believe that there

is much room for improvement in the attitudes people have toward

mathematics. Before progress can be made toward reversing the trend

of development as students ascend the academic ladder, many

investigations must be conducted to ascertain what strategies would

be most successful in improving students' attitudes toward

mathematics.
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A CRITICAL SURVEY OF STUDIES,_ DONE IN KENYA,

ON THE DEPENDENCE OF ATTITUDES TOWARD MATHEMATICS

AND PERFORMANCE IN MATHEMATICS ON SEX DIFFERENCES

OF THE SCHOOL PUPILS

By

E. NUTHENGI MUKUNI, KENYATTA UNIVERSITY

ABSTRACT

Investigations that have been carried out in Kenya
since 1970's upto the present on the dependence of attitudes
toward mathematics and performance in mathematics on sex
differences have sought to find out whether there are
statistically significant differences between school boys
and girls in their attitudes toward mathematics and in

their performance in mathematics. Investigators have, as
well, tried to find out whether positive attitudes toward

mathematics are significantly correlated ,c) better per-

formance in mathematics.

Results indicate that, during secondary school years,
boys have more favourable attitudes towards mathematics

than girls. Performance in mathematics during
primary school years does not depend on the sex of the
pupil. Performance, however, depend on the sex of the
pupil during middle secondary school years i.e. at
level stage. At the later stage in secondary school, i.e.

'A' level stags, girls perform better in mathematics than

boys.

In Kenya positive attitudes toward mathematics are
significantly correlated with better performance in

mathematics.

A proposal to deal with this situation is suggested.

INTRODUCTION

Studies on the dependence of attitudes toward mathe-

matics and achievement in mathematics on sex differences

are numerous. In some of the studies significant corre-

lations between attributes have been found. Explanations

as to the causes of the differences have varied from socio-

BEST COPY AVAILABLE 178



-146-

cultural theories to theories that attribute them to bio-

logical differences betysen the sexes.

The view taken by this author is that differences

in attitudes toward mathematics and achievement in math.-

maticajwhere attributable to sex differences,cannot be

explained purely in either environmental or biological
terms. They spring from a very complex interaction of

these variables and this causes extremely varied. beha-
viour patterns in school pupils. Mathematics educators are
thus called upon to search for such instructional strate-

gies and practices for teaching mathematics as are likely

to enhance the creation of positive attitudes toward mathe-
matics and raise the level of performance in mathematics.

In this paper research, done in Kenya during the

decades of the '70s and and '805*, on the dependence of

mathematics performance and attituaes toward mathematics

on sex differences is reviewed and critiqued. Research

questions, methodologies, findings, and further recomme-
ndations are examined. The paper concludes with a proposal

for the kind of research that could be fruitfully carried

out in Kenya and perhaps elsewhere,in light of the Kenyan

experience so far. In 1987, through this paper, Kenyans

have had to pause and take stock of investigations on this

issue and then map out areas of further research where work

could be rewarding if, not more fruitful.

THE QUESTIONS

Investigations - all done in Kenya by Kenyan doctoral

and masters' candidates - sought answers to three basic

questions.

*Empirical investigations on the dependence of certain
educational attributes on sex differences in school lear-
ning situations started in 1974 with Eshivani(1974) stud).
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(a) Who performed better in mathematics, if that

was the case hool boys or girls ?

(b) Did all school pupils have positive or

negative attitudes toward mathematics ?

If that was not the case, did the sex of the

pupil influence their attitudes toward mathe-

matics ?

(c) Were attitudes toward mathematics and

performance in mathematics significantly

correlated ?

ON SEX DIFFERENCES AND PERFORMANCE IN MATHEMATICS

Kenyan investigators used some measure of perfor-

mance in mathematics (scores from self-made achievement

test, results from school-constructed examinations,results

from Kenya National Examinations Council (KNEC) records

and tested statistically if there were significant diffe-

nces between school boys and girls in their performance

in mathematics.

Namara (1980) tested mathematical abilities of 8

to 12 year olds using self-constructed mathematical

ability tests. He found no significant differences in

the performance of the pupils of both sexes.

Samumkut (1986) - used scores from school-construc-

ted examinations, Maritim (1985) - used KNEC records, and

Kapiyo (1982) - used self-constructed achievement and

ability tests. The three investigators used the t-test

to seek for significant differences in performance between

school boys and girls in the age group 13 to 17 year

olds. They found out that in this age group significant

difference in favour of boys existed. School boys per-

formed better than school girls.

Maritim (1985) using KNEC results found that for the

age group 18 to 19 year olds, i.e. at 'A' level stage,

girls nerformed significantly better than boys in mathe-

matics.
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In Kenya there,then,exists a situation_where young

pupils (8 to 12 years old) of all sexes perform equally
well in mathematics. Pupils in the early adolescence (13

to 17 year olds) perform differently in mathematics with
the boys performing better than the girls. Pupils in
their late addescence (8 to 19 year olds) reverse the

earlier situation and the girls perform better in mathe-
matics than the boys in the 'A' level examinations.

These findings are explained in several ways by the
investigators. The most persuasive would seem to be the

role played by the teacher of mathematics and the availa-
bility of adequate resources in the schools. In elemen-
tary grades the teacher is seen as friendly to all the chi-
ldren and thus treats them equally irrespective of the sex
of the child. In the secondary school grades teachers are

seen likely to be more role prescriptive in pupils' task

assignment. This could bring out readily different sex
role perceptions. These sex role perceptions would include

such precepts as "nice girls don't do math". At 'A' level

stage learning facilities are uniformly distributed. Girls

at this level are motivated to achieve since they have

opted to undertake further studies in mathematics. The

role of the teacher ceases to be all that predominant.

OH SEX DIFFERENCES AND ATTITUDES TOWARD MATHEMATICS

Investigations centred on the question of whether

boys and girls in secondary schools i.e. 13 to 17 year

olds differed significantly in their attitudes toward

mathesatics. Investigators used pupils and teachers que-
tionsaires and the Likert scale to assess attitudes toward
mathematics. The chi-square, percentages and the t-test
were used.

Mbuthia (1986), in a well documented study, found

that overall boys (97% of the sample) have positive wrzi-

tudes toward mathematics as opposed to girls (67% of the
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sample). In further tests he found the difference to be

statistically significant at the 0.05 level of signifi-

cance. The same findings occured in investigations

carried out by Opondo(1984), Otieno (1985), Samumkut(1986),

and Mbugua (1986).

Mbuthia (1986) as wall as Mbugua (1986) found out

that all pupils under investigation perceived mathematics

as being of value to society. The boys, however, declared

that they enjoyed mathematics more (94% of the boys) than

the girls (52% of the girls).

Samuakut (1986) found out that girls tended to have

positive attitudes toward mathematics and at the same time

they performed poorly in mathematics.

Mbugua (1986) found that 57% of the girls surveyed

attributed part of the reason for their liking maths to

parental encouragement. Otieno (1985) found that 54%

of the girls surveyedblamed their teachers for their hatred

of mathematics.

It has been suggested in these studies that further

studies, on how teachers and parents go about encouraging

girls to learn and study mathematics so that positive

attitudes toward mathematics are created, be done. The

practices identified to be conducive to this enterprise

be further reinforced,.

ON CORRELATION BETWEEN ATTITUDES TOWARD MATHEMATICS

AND ACHIEVEMENT IN MATHEMATICS

Kenyan investigators have sought to find out if

positive attitudes toward mathematics by pupils correlates

with better performance in mathematics.

Parker (1974) using 13 - 15 year olds assigned them

to control and experimental groups and these were taught

using different instructional strategies (programmed work

cards versus traditional methods). He found that there
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was no significant difference in attitudes towards mathe-
matics between treatment groups but that there was positive

correlation between achievement in mathematics and attitu-
des toward mathematics.

Studies by Kibanza (1980), Samumkut (1986), and
Patel (1985) use the same age-group and arrived at the
same findings. Patel (1985) established that for girls

poor attitudes toward mathematics resulted in poor achie-
vement in mathematics.

Discussions under this question seem to arrive at

a concensus that there seems a need to develop instruc-
tional strategies and practices in the teaching of mathe-
matics in Kenya that will encourage the creation of posi-

tive attitudes toward mathematics for all pupils and es-
pecially for girls in secondary schools.

DISCUSSION

Results of investigations done in Kenya in the 17010
and '80s' on performance in mathematics attitudes toward
mathematics show that these two important espects of
mathematics education partly depend on sex differences..

Findings indicate that for the very young in primary

grades performance does not depend on the sex of the pupil.

In early adolescence i.e. during secondary school years

performance seem to depend on the sex of the pupil such

that boys perform better than girls in mathematics. At

'A' level stage, however, girls have been found to perform

better in mathematics than boys.

Except in certain specific areas, investigations

indicate that the majority of boys, during secondary sch-
ool years, have favourable attitudes toward mathematics
and that it is not so in the case of girls in the same
age group.
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In Kenya investigations further show that positive

attitudes toward mathematics significantly correlate

with better performance in mathematics.

The question facing mathematics educators is what

can be done about a situation such as this so that half

of the school population is not forever disadvantaged.

That is assuming that knowledge of mathematics is a worth

while acquistion for all citizens.

PROPOSAL

It is proposed that Universities in Kenya undertake

research, along the following lines, to identify and

encourage the use, by teachers of mathematics, of those

instructional strategies and practices that have been

found successful in the teaching of mathematics for the

majority of children in Kenya.

Step One: Mathematics educators, in groups or

individually, to identify instructional strategies that

have proved, through usage, to be successful in motiva

ting both girls and boys to like mathematics as well

as pass mathematics examinations at national level. Me.ke

a list of these strategies.

Step Two: Researchers will use the list prepared

above to observe actual strategies and practices of

successful teachers of mathematics teaching the subject

in their classrooms. Researchers willvalidate_ their

list and improve on it.

Step Three: Researchers will proceed to use Semi-

Delphi Technique with a group of teachers in a well

selected sample until there is an acceptable degree of

agreement about the strategies. It is likely that at

the conclusion of this stage some improvement in awareness

and use of strategies and practices used by the better

teachers of mathematics will be acquired by most of the

other teachers of mathematics in the sample.
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Step Four: The government or its agencies could

then take over and continue the work initiated by the
Universities.

The important thing is to take the first step. This
author plus two of his graduate students, has done just
that. It is hoped to report some results of this experi-
ment in 1988.
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MATHEMATICS TEACHERS' BELIEF SYSTEMS AND TEACHING STYLES:
INFLUENCES.ON CURRICULUM REFORM

Janeal Mika Oprea and Jerry Stonewater
Miami University

The Allen Paragraph Completion Instrument and the
Schoenfeld Belief Survey were administered to thirteen
secondary and middle school teachers to assess their cog-
nitive development level (based on the Perry Scheme) and
mathematical belief systems. Results and implications of
this study will be discussed.

Reaearch has recently begun to emerge indicating that mathemat-

ics teachers' views about the subject matter, teaching, and learning

influence their classroom behavior (e.g. Madison-Nason and Lanier,

1986; Carpenter, Fennema, and Peterson, 1986; Thompson, 1984). How-

ever, as Thompson voted, the relationship between teachers' belief

systems and their instructional practices is far from simple.

Thompson (1984), for instance, observed inconsistencies between some

teachers' exp d beliefs and their actions in the classroom. A

model that has the potential of clarifying these incongruities and

providing a theoretical framework for the study of mathematics

teachers' belief systems is Perry's (1970) cognitive development

scheme.

The Perry scheme, which is an outgrowth of Piglet's theory of

cognitive development, is a hierarchial classification of "how people

understand or make meaning of their world" (Stonewater, Stonewater,

and Perry, 1987). The nine stages of the Perry Scheme are qualita-

tively different from one another with each representing a more com-

plex order of thinking than the stage previous to it (For further

details, see Conceptual Framework). From a theoretical point of view,

it is also possible that one's beliefs about mathematics might also

vary as a function of cognitive developmental level. Thompson's

(1984) study, for instance, appears to support this hypothesis. Al-

though her study did not focus on cognitive development, Thompson's

reported data supplied us with sufficient information to make a "best

guess" interp-etation of her subjects' Perry levels. From this, we

found indicAtions of a positive relationship between teachers' cogni-

tive devAopment level and the degree of consistency between their
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beliefs and instructional behavior. With this in mind, this present

study was designed to explore the relationship between secondary

mathematics teachers' cognitive development and their belief systems

as a first step to discover the extent tc which cognitive development

level is an intervening variable between beliefs and behavior.

The first phase of this study was the identification and assess-

ment of appropriate paper and pencil instruments to measure mathemat-

ics teachers' cognitive development and their beliefs about mathemat-

ics and mathematics teaching. These instruments were piloted with

thirteen secondary and middle school mathematics teachers. The re-

sults and implications of this first phase are the focus of thi,.;

paper.

The second phase will begin in May 1987 with the administration

of these instruments to a control group and participants of the Dis-

crete Mathematics Program (DMP), a project designed to prepare high

school mathematics teachers to Incorporate discrete mathematics and

applications into their existing curriculum (see Note 1). DMP will

thus serve as a vehicle to address the following research questions:

1. What is the relationship between secondary mathematics
teachers' attitudes, beliefs, cognitive development, and

their classroom behavior?
2. What characteristics of the participating teachers are asso-

ciated with their adoption of the proposed curricular and

instructional reform?

In addition to the administration of paper and pencil tests, 6 teach-

ers (3 UHF participants and 3 control teachers) with different Perry

pretest ratings, will be interviewed and observed during the 1987-

1.988 school year. Pretest results of phase two will be presented at

the PHE-XI conference.

CONCEPTUAL FRAMEWORK

Perry (1970; 1981) describes a sequence of stages that one moves

through when seeking to "make meaning" out of experiences. In gener-

al, movement is from a "right vs. wrong" dualistic conceptualization

of reality to an understanding that all knowledge is embedded in a

contextual and relativistic framework. The three major positions of

the theory that are relevant here are dualism, multiplicity, and re-

lativism. For a more thorough and complete description of the theory

as it relates to mathematics see Copes (1982), Stonewater, Stonewater,

and Perry (1987), or Buerk (1982).
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Dualism

In this first stage of development, students see the world in

right-wrong, black-white dichotomies. Further, the assumption of the

dualist is that all knowledge is known, that an authority (usually

the teacher) knows it all, and that it is up to this authority to

give the student the right answer.

Multiplicity

Movement from dualism into multiplicity represents a significant

broadening of the student's understanding. The student begins to

realize that there might be sore than one "right" answer, procedure,

or perspective, but tends to get lost in the muddle of multiple

rights since there is no understanding yet of the contextual nature

of deciding which right is best. In late multiplicity, this "multi-

ple rights" perspective is seen as license for an anything goes

approach. Often multiplistic students will be heard to say, "Every-

one is entitled to his or her own opinion on that problem. I don't

know why the teacher thinks her answer is right, mine is just as

good."

Relativism

As students move into relativism, another major shift in think-

ing takes place. They finally realize that right annwers depend upon

context and are now capable of thinking in relativistic or contextual

terms. They understand not only that there are multiple perspectives

on a given problem or topic in mathematics but that they can reason

relativistically about those perspectives. "Truth," as it were, de-

pends upon the mathematical system in which one is working, the

assumptions one makes, or the axiom/ one accepts as true.

METHODS

Subjects

Thirteen teachers from rural and suburban midwestern school dis-

tricts who are currently involved in two other research projects

participated in the pilot study (see Note 1). The 11 females and 2

males had an average of 11.85 years of teaching experience (s.d.

8.96). Twelve subjects had completed at least some graduate work.

Instruments

Each teacher was asked to complete the Schoenfeld Belief Survey

(1985) and the Allen Paragraph Completion Instrument (1983). The
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Allen Paragraph Completion Instrument is an assessment of a person's

cognitive development level as -aeasured by the Perry scheme. It con-

sists of two essay questions in which subject are asked to evaluate

their educational experience and to respond to a situation in which a

classmate is disagreeing with a professor about a point in a biology

book. For this study, the second item was modified by replacing the

work "professor" with "teacher" and the word "biology" with "mathema-

tics." Responses were scored by trained raters who categorized each

response as consistent with a position between 2 (dualistic) and 5

(relativistic) on the Perry scheme.

The Schoenfeld Belief Survey consists of 70 closed Likert-type

dad 10 open questions which assess a person's beliefs about mathema-

tics as well as about teaching and learning mathematics. For this

study, the instrument was modified to include only 57 of the closed

items and none of the open ones. Furthermore, four items, based on

Thompson's (1984) finding, were added.

Many of the Schoenfeld items were designed to distinguish be-

tween two possible categories of mathematical belief systems. The

first, Mathematics is Closed, asserts that "mathematics is a rigid

and closed discipline, inaccessible to discovery by students and

best learned by memorizing" while the second, Mathematics is Useful,

asserts that "mathematics is useful, enjoyable, and helps me to

understand things" (Schoenfeld, 1985, p. 16). It was hypothesized

that there would be a positive correlation between the teachers'

Perry position and the Mathematics is Useful subtest. Furthermore,

there would be a negative correlation between the teachers' Perry

position and the Mathematics is Closed subtest.

RESULTS

According to the analysis of the Allen instrument data, 5 teach-

ers were rated as relativistic (5), 5 as late multiplistic (4), and

3 as early multiplistic (3). Table 1 is the distribution of Perry

position scores by gender and teaching experience.
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Table 1
Distribution of Perry Position Scores

By Gender an3 Teaching Experience

Teaching Experience
0-10 11-20 > 20

Perry level M F H F

3 0 0 3

4 0 1 0 4 0 0 5

5 0 3 0 0 2 0 3

Means and standard deviations of each item on the Schoenfeld

Belief Survey was found for the three subgroups (i.e. relativistic is

Group K, late multiplistic it Group LM, and early multiplistic is

Group EM). Small simple sizes prevent a discussion of significant

differences between the subgroups; however, several significant

anomalies were observed. Contrary to the hypotheses, subgroup R did

not necessarily rats the Mathematics is Closed items lover (or Mathe-

matics is Useful items higher) than the two multiplistic subgroups.

In fact, several items were rated exactly opposite from what had been

hypothesized. For example, for the Mathematics is Closed item "math

problems can be done correctly in only one way", the means and stan-

dard deviations for this item were as follows: Group R, mean 2.8,

s.d. .75; Group LM, mean 3.4, s.d. - .45; and Group EM, mean

3.7, s.d. .47.

Furthermore, the relativistic group tended to have greater vari-

ance on items than either multiplistic subgroup. For instance, while

the mean was 2 for each group for the item "The validity of mathe-

matical propositions and conclusions is established by the axiomatic

methods," the standard deviations were as follows: Group R, a.d.

1; Group LM, s.d. 0; and Group EM, s.d. O.

DISCUSSION

As the first step in the exploration of the relationship between

secondary mathematics teachers' cognitive development and their be-

lief systems, paper and pencil instruments amid/luring these two vari-

ables were piloted and analyzed. We found inconsistencies between

our data and the way we expected the two constructs to be related.

Closer examination of the Allen instrument leads us to hypotheaize

that Perry levels might be different with regard to how teachers

think about teaching mathematics and how they think about the content

of mathematics. Specifically, the second item asked the teachers to
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react to the following statement: "A classmate disagrees with your

mathematics teacher about a point In the text concerning an answer to

a problem. They debated off and on for parts of several class per-

iods. Each side of the argument has Its supporters in the class."

Several teachers responded to this statement from a pedagogical per-

spective by discussing such issues as power struggle between teacher

and students, efficient use of class time, and the need to bring clo-

sure to class discussions. However, other teachers responded from a

mathematical perspective by discussing the importance of seeing dif-

ferent approaches to a problem. A few teachers addressed the ques-

tion from both perspectives and the two ports of their sewer indi-

cated different Perry levels. Through interviews, Buerk (1982)

found similar discrepencies with matnematicelly anxious women. These

observations suggest that the Perry assessment instrument needs to be

revised to separate out tho potentially confounding mix of pedagogy

and content.

The fact that the relativists' means on most of the Schoenfeld

Beliet Survey items had a higher standard deviation than did the

means of the two ultiplietic groups was also unexpected. For exam-

ple, in responding to items about "right answers" in mathematics, we

expected the relativists to converge on an understanding that such

answers are contextual, not necessarily right and wrong. Yet some

relativists agreed with Lhis view while other strongly disagreed.

One explanation for this variance is that cognitive development and

beliefs (as measured by the Schoenfeld instrument) are in fact not

related, resulting in a potentially high variance in responses by

Perry level. On the other hand, if the two constructs are related,

then this high variance for the relativists can be explained from a

cognitive development perspective. Theoretically, a person can use

reasoning patterns consistent with his or her current level of think-

ing or below, but one cannot use reasoning
patterns above his or her

level. Based on this argument, it is thus entirely consistent with

cognitive development theory that the relativists had more levels

at which to think (5) than did
the pre-relativist teachers (3 and 4)

and could fluctuate between these levels. This could account for the

higher degree of variance for the relativistic group.

The second phase of this study will be to investigate the rela-

tionship between secondary mathematics teacatlers' cognitive develop-

ment, beliefs, attitudes, and clasroom behavior. This investigation
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could have profound implications in the area of curricular develop-

ment and teacher education if they support Carpenter (1986) assertion

that "teachers' beliefs ... affect how [they] perceive ... [the in-

service] training and new curricula that they receive and the extent

to which they implement the training and curricula as intended by the

;evelopers" (p. 226).

NOTES

1. The two projects, The Discrete Mathematics Program and the Miami

University Teletraining Institute, are supported by a grant from

Title II of the Education for Economic Security Act and administered

by the Ohio Board of Regents.
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PERSONAL. CONSTRUCTS OF MATHEMATICS AND MATHEMATICS TEACHING

John E. Owens, The University of Alabama

Repertory grid technique and extensive interviews were used

to investigate four preservice secondary mathematics

teachers' personal constructs of mathematics and mathematics

teaching. Kelly's Personal Construct Theory and Perry's

developmental scheme provided a framework for the analysis of

the experiential, mathematical, and pedagogical perspectives

through which the preservice teachers interpreted their

undergraduate teacher preparation programs and anticipated

their roles as teachers. Constructs related to teaching

roles tended to focus on personal, non-intellectual

qualities. Constructs relating to mathematics were affected

by prior success with pre-college mathematics and anticipated

uses of mathematics in teaching roles and were often

discordant with the participants' perception of subject-

matter preparation at the college level.

Kelly's (1955) Personal Construct Theory and Perry's (1970)

developmental scheme provided a framework for investigating the sources

and nature of the construction systems employed by four preservice

secondary mathematics teachers as they interpreted their prior school

experiences and anticipated their future teaching roles.

Kelly's theory represents a constructivist viewpoint, recognizing

the learner as an active processor of knowledge--assimilating and

organizing experience through an evolving system of lox-polar images,

termed constructs, that control the way in which events are perceived.

This constantly evolving system is both modified by experience and

determines how experiences are perceived by the Individual.

An individuals' actions represent choices from alternatives along

a flexible and frequently
modified network of pathways as the

individual seeks to predict, and thus anticipate, future events.

However, it is not the pathways themselves, but the constructs that

facilitate, or restrict, the choices of paths that constitute the

individual's construct system. Kelly aeveloped "repertory grid

technique," used in this study, as a method of eliciting and

investigating the nature of, and relationships between, various

constructs comprising the individuals' conceptual system.
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Perry'S scheme is used as a complement to Personal Construct

Theory, providing a more global framework for describing the

participants' developing "worldviewr" as it relates to teaching and to

mathematics. The scheme was designed to describe the intellectual and

ethical development of undergraduate college students and is primarily

concerned with the relationship of the individual with perceived

authority.

Four major stages of growth are posited: Dualism (a dichotomus

good /had, right/wrong, we/others structuring), MUltiplism (a plurality

of answers is perceived but without internal structure), Relativism

(multiple perspectives emerge, allowing for contextual analysis of

events), and CoMmitMent (acceptance of personal responsibility for
choices in Relativism). Alternatives to growth (Escape, Temporization,

and Retreat) are available to the individual at various stages.

DESIGN OF 711E STUDY

The study was conducted over a nine-week period during the spring

of 1986. Data were collected from each of the seven secondary

mathematics education majors enrolled in a post-student-teaching

seminar at the University of Georgia. Each completed a series of seven

one-hour interviews and a written task in addition to elicitation and

ranking instruments characteristic of repertory grid technique. From

the six students who had jointly progressed through the mathematics

education curriculum four students, representing a range of achievement

on college coursework, were chosen for case studies.

Interviews were of three types: open-ended discussions aimed at

developing an understanding of the participants' conceptions of

mathematics and its teaching, focussed interviews for eliciting

participants' reaction to scenarios of hypothetical secondary

mathematics classroom situations dealing with student misconceptions,

and problem-solving sessions designed to investigate the participants'

understanding of major ideas in the secondary mathematics curriculum

and the "socially effective symbols" (Kelly, 1955) with which they

communicate these understandings. Interview data formed the primary

basis for ascertaining the participants' development relative to

Perry's scheme and served as a medium for exploration of meanings

ascribed to grid items by the participants.

Repertory grids were administered in two stages utilizing

construct elicitation and final grid instruments. Two sets of initial
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Tables S-1 and S-5 i I iustrate one participant's topic and role

rankings on the final iirids and Tables 5-3 and S-T the corresponding

correlation matric es . Tables 8 -13 and 8 -ti3 relate the suninary

relationship scores, by participant, for role and topic constructs.

The complete descriptions of the elements, abbreviated above in Table

S-I and S-5, are; f or the topic grid - Constructing a proof, Graphing

an equation, Solving a word problem, Solving an equation, Working with

fractions, and Probability and statistics; f or the role grid A

typical secondary mathematics education major, A typical mathematics

professor, Your best mathematics teacher, Yourself, A typical high

school mathematics student, and Your worst mathematics teacher.
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elicitation instruments, one eliciting role constructs and the other

topic constructs, were completed by the participants prior to the first
interview. Each set involved the presentation of triads of teaching

roles or mathematical topics which the participants were instructed to
group in the following manner: "Consider the three topics (roles)
presented. Describe some way in which you view two of the topics

(roles) as similar, yet different from the third." For example, asked
to group a favorite high school mathematics teacher, a favorite college

mathematics instructor, and a disliked high school mathematics teacher

the participant might group the two favorites by describing them as

"encouraging" in contrast to the disliked instructor who was perceived
as "intimidating".

Descriptors used by the participants to characterize the

similarities and differences supplied a range of bi-polar constructs

for the resulting final grids. Participants were asked to use these

constructs to rank, along a Likert-type Scale, a selection of roles

(topics) representing teaching (mathematical) elements (TABLE S-1 and
S-5). Role and topic elements were chosen from common themes voiced by
the participants during the interviews.

Grids were analyzed using procedures suggested by Fransella and
Bannister (1977). Correlation matricies (Tables S-1 and S-5),

relationship (variance) scores, and cluster graphs (Figures S-1 and S-
2) were constructed for each participant's role and topic grid.
Summary charts of relationship scores (Tables 8-13 and 6-14) and

cluster graphs (Figure 6-1) comparing participants across elements and
topics were constructed for cross-case comparison.

Relationship (variance) scores play a pivotal role in personal
construct theory. These represent the explained variance from each of
the constructs on the final grids and reflect the relative "intensity"

with which constructs impact on the participants, interpretation of

experience (Fransella and Bannister, 1977). A construct with a higher
relationship score is thus posited to represent a more global

influence, or control, on how the individual Interprets events. Table
8-13 and 6-14 provide the relationship scores and ranKing by

participant for the role and topic grids.

RESULTS

While constructs in Personal Construct Theory are bi-polar (e.g.,

"encouraging/Intimidating"), only the "likeness" pole (e.g.,
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"encouraging") of the construct is given here for breviety. Comments

relating to a participants' positive or negative connotation of a

construct refer, to the stated pole. For example, if Laura is described

as viewing "easy" in a positive sense, this refers to the connotation

she attributes to the likeness end ("easy") of the construct

"Easy/difficult." JudgMents of positive or negative views were based

on interview data and correlations with other constructs.

The findings reported here focus on similarities and differences

in constructs and worldviews held by two of the participants: Susan and

Laura. Each is a twenty-two year old white female with a high (3.37

and 3.80, respectively, on a 4 point scale) grade point average, from a

middle-class background, and actively involved in religious and

athletic endeavors.

Constructs of Mathematics. On her topic grid, Susan's most

"intense' constructs, based on relationship scores, were "varied,"

"advanced," "most useful," "most liked," and "abstract." Susan viewed

each of these constructs in a positive sense. Laura's most intense

constructs consisted of "easy," "creative," "advanced" and "easiest to

learn" (tie), and "best at." Laura viewed "creative" and "advanced" as

negative aspects and the remaining three constructs as positive.

FIGURE 8-i
SUMMARY CLUSTER GRAPHS - TOPICS

EASY/DIFFICULT X MOST USEFUL/LEAST USEFUL
EASY

SUSAN

EASY
LAURA

---1---11,12

4

12- 15 5

9 14 - -10,14

15 4 1- 11 .
-1-

1--1--1--1--1-- --1--1--1--1--1 I- -I- -I-- I-- I-- 1-- I-- I-- I -I --I

LEAS - 10 13 MOST LEAST MOST

3,5 6 3
_ _

7 6

7 -

- 13

DIFFICULT DIFFICULT
1-invigorating, 2-easy, 3-abstract, 4-easiest to learn, 5-essential,
6-varied, 7-advanced, 6-most useful, 9-best at, 10-organized,

11-conclusive, 12-exact, 13-creative 14-most liked, 15-easy to teach

Cluster graphs can be used to graphically portray relationships
between constructs for an individuals' system. Coordinates
represent the signed variance (x 100) between the constructs chosen

for the axes and the remaining constructs. A comparison of Susan's

and Laura's graphs (Figure 8-1), with "easy/difficult" forming the
Primary (y) axis and "most useful/least useful" the secondary (x)

axis, shows a strikingly different trend for the two participants.
To Susan, constructs related to secondary mathematics topics that
are viewed as "most useful" also tend to encompass those that are

viewed as "difficult." For Laura, the opposite tendency exists.
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Susan's constructs suggest a view of mathematics that values

complexity, academic achievement, and aip1ication, and one in which she

considers her own preferences to play a role. Interview data supported

these findings, suggesting Susan was in the process of developing a

relativistic view of mathematicscharacterized by reflection and the

use of alternative viewpoints.

These characteristics were evident in her approach to student

scenarios and problem-solving situations (she would typically question

the context and meanings of the situation/ problem before expressing a

view) and in her response to the study itself (each week she would want

to discuss ideas that she had developed based on the previous session).

Susan easily alternated between expressing her perception of a "teacher

view" of a situation and a "student view."

Laura's more "intense" topic-grid constructs suggest a view of

mathematics that focuses on simple, straight-forward procedures which

she can easily accomplish through easily learned routines. Interview

data suggested that Laura conceived of mathematics as a vehicle for

"performance," an area in which she had received constant praise but

held little meaning outside the classroom context.

Laura's reactions to student scenarios typically involved an

attempt to repeat strategies "her (cooperating) teacher" had used. Her

approach to problem-solving situations was marked by attempts to apply

learned techniques, often replying "I should remember how to do this,"

and a lack of alternatives when she did not readily recognize a

solution strategy.

Laura's position on Perry's scale was deemed to be that of "Escape

in MUltiplism" where she finds her "identity in carrying out

assignments of external authority by performance." From this

perspective "creative" and "advanced" mathematics can be threatening to

her self-perceived mathematical abilities. "Easy," "easiest to learn,"

and "best at" suggest constructs supportive of success in accomplishing

assigned tasks.

Constructs of Mathematics Teaching. Susan's live highest rated

constructs from the role grid were "encouraging" and "motivating" and

"inquisitive" (tie), and "respected" and "reliable" (tie). Laura's

were "respected," "encouraging" and "interesting" (tie), "motivating,"

and "flexible." All were viewed as positive aspects by each

participant. Each evidenced an "Idealized" view of a favorite former

mathematics teacher, with Susan rating her "best" mathematics teacher

first on 12 of 17 constructs and Laura rating this person highest on 10
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of 17. Each demonstrated self rankings that suggested a close

identification with their "best" teacher. Both participants described

themselves as having a strong social orientation to teaching; scores

reflective of more intellectual concerns (e.g., "intelligent,"

"abstract," "complex") ranked low on both partic.pants' role grids.

Susan's highest rating on "inquisitive" prcvides a contrast

between the two participants' perceptions of teaching; "inquisitive"

was the lowest-ranked construct on Laura's role grid. Susan's approach

to teaching is an active one in which she sees herself as a decision

maker, capable of making judgments on content and methodology. Laura,

however, is passive In her approach, deferring to others for decisions

on content and methodology.
"Flexible," which ranked fourth on her

role grid, was interpreted by Laura as an ability to readily follow

instructions from those she perceived to be in authority.

CONCLUSIONS

The cases of Susan and Laura, only partially discussed here,

h:ghlight the broad differences in perceptions of teaching and of

mathematics that can exist between two ostensibly similar participants

in a teacher education program. Other case studies (Owens, 1907)

suggest that these individuals are not ends of a spectrum but represent

part of a complex array of beliefs held by preservice teachers.

The constructs through which preservice teachers view mathematics

and mathematics teaching are important determinants of how individuals

interpret their undergraduate experiences and anticipate their teaching

roles. These constructs are integral to the individuals' developing

worldviews which perform an important function in structuring their

roles as professionals. Knowledge of preservice teachers constructs

and worldviews can provide teacher educators with understandings of how

Individuals perceive their undergraduate experiences, and should play a

central role in the design and conduct of these programs.
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BELIEFS, ATTITUDES, AND EMOTIONS:
AFFECTIVE FACTORS IN MATHEMATICS LEARNING

Douglas B. McLeod
Washington State University

Abstract

Current research on the role of the affective domain in
mathematics learning takes a variety of forms. Some
researchers focus on the beliofs about mathematics that
are held by students or teachers. Others focus on the
attitudes of mathematics learners. A third group is
beginning to look at more visceral, emotional responses to
mathematics. This paper responds to the research on
affective issues that is reported in this volume, and
suggests directions for future research.

Research on affective issues is well represented in this volume. There
are 13 papers that deal with affect and its relationship to mathematics
learning and teaching. This paper will deal first with issues of terminology,
and then continue with some comments on each of the papers. Since the
papers are required to be brief, and since research on affect is notoriously
difficult to communicate accurately, the possibilities for misinterpretation
are many. It seems to me that short papers like these may constitute a
form of projective test; readers are likely to see in the papers reflections
of their own interests. I hope that this reader has not imagined too much of
his own interests in the papers. I also hope that the authors of the papers
will not find too many errors in my comments.

DESCRIBING THE AFFECTIVE DOMAIN

The difficulties of saying what we mean in the affective domain are
well known. In a recent paper, Reyes (1987) outlines the misinterpretations
that occur when psychologists and researchers from mathematics education
try to discuss affect. Her discussion makes a number of suggestions
regarding terminology in the affective domain that I will try to follow here.

The affective domain is used here to refer to a wide range of feelings

201.



- 171 -

and moods that are generally regarded as something different from pure

cognition. The main terms used to describe the affective domain are

beliefs, attitudes, and °motions. These terms vary from "cold" to "hot" in

the level of intensity of the feelings that they represent. They also vary in

their stability; beliefs and attitudes are generally thought to be relatively

stable and resistent to change, but emotional responses to mathematics may

change rapidly. For example, students who say they dislike mathematics

one day are likely to express the same attitude the next day. However, a

student who is frustrated and upset when working on a non-routine problem

may express strong positive emotions just a few minutes later when the
problem is solved. Finally, although it is impossible to separate student

responses into cognitive and affective categories, some of these terms have

a larger cognitive component than others. For example, beliefs seem to

involve mainly cognitive processes that are typically built up over a long

period of time. Emotional responses, however, may involve little cognitive

processing, and their rise time can be very short. So the terms beliefs,

attitudes, and emotions are listed in order of increasing affective

involvement, decreasing cognitive involvement, increasing intensity, and

decreasing stability.

Sometimes researchers get. involved in arguments about whether

cognitive processing can be separated from affective processing. A similar

argument exists about whether one dominates the other. In this paper I will

assume that affect and cognition are inextricably linked, and that we cannot

separate the two. However, the presence of both thought and feelings in

mathematics students at all times does not imply that the two domains are

always equally powerful. Sometimes we are more influenced by affective

factors, sometimes less. Now that we have established some preliminary

groundwork, let us try to define the three terms: beliefs, attitudes, and

emotions.

Beliefs about mathematics generally involve very little affect, and are

frequently based as much on cognitive responses as on feelings or affective

responses. Beliefs about self may have more of an affective component, but

in general beliefs will be viewed as primarily cognitive in nature. For

example, students may have beliefs about the usefulness of mathematics, or

about their role as mathematics learners. For further discussion of the role

of beliefs in mathematics learning and teaching, see Reyes (1987),

Schoenfeld (1985), and Silver (1985).

Attitude toward mathematics is used to refer to feelings about

mathematics that are relatively consistent. For example, attitude will be

used to refer to how much students like mathematics, and to how confident

they feel about doing mathematics. Attitudes may have a component that is
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a belief, but they are distinguished from beliefs by the feelings that
accompany the beliefs. For further discussion of alternate definitions of
attitude, see Leder (in press) or Reyes (1987).

Emotion is used to describe affective reactions that are more intense
than beliefs or attitudes. Emotions generally involve some physiological
arousal (tense muscles, rapid heartbeat) and some redirection of the
individual's attention. Typical emotions would include Joy, anxiety,
frustration, and surprise. For further discussion of emotion, see Mend ler
(1984).

The papers have been grouped into three categories, depending on
whether they deal primarily with beliefs, attitudes, or emotions. Of course,
many papers deal with more than one of these, and no doubt alternate
classifications are prssible. However, I think that this means of
categorizing the papers will be useful in finding interesting comparisons
among them. We begin with papers that deal with beliefs.

STUDENTS' AND TEACHERS' BELIEFS ABOUT MMHEMATICS

Research on students' beliefs about mathematics has become much
more prominent in recent years, especially in research on the teaching of
mathematical problem salving (Silver, 1985). Student views c
mathematics can often have a major impact on their performance, as
Schoenfeld (1985) has noted. Most of this research has focused on
secondary school students (15 years and older), but some investigators have
begun to look at younger students. Among these investigators are Kouba and
McDonald in this volume.

Kouba and McDonald have begun a coordinated research program to'
determine what students believe is part of the domain of mathematics. This
research started with elementary school students and their beliefs about
what constitutes mathematics, and has now continued with junior high
school students (ages 12 and 13). As one might expect, students at thisage
describe mathematics in terms of their experiences in mathematics
classrooms. These experiences are often limited to typical textbook
exercises, so students frequently fail to see the mathematics in a
particular setting when that setting is different from what is found in most
textbooks. New teachers are often surprised that they have to spend so
much time answering questions like "Why do we have to learn this stuff?"
Given students' limited conception of the domain of mathematics, perhaps
their question is more legitimate than we realize. If they had a more
mature understanding of what really constitutes mathematics, they would
have a better understanding of why schools require mathematics.
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Bliss and Sakonidis report related work on student beliefs about truth

in various kinds of domains from mathematics to religion, Those students

(aged 11 to 16) generally agree that mathematics and science have a lot of

truth in them, and are less certain about history and religion. The empirical

and logical nature of mathematics seem to be the major sources of these

judgments, and It was a relief to see that only a few students attributed the

truth of mathematics to the fact that the teacher said it was true.

Both of these studios on student beliefs provide useful data that help

explain how student perceptions of mathematics develop, Both studies

provide the kind of broad picture of student beliefs that can result from

statistical studies of questionnaire data on relatively large numbers of

students. I hope that future studies will continue to gather data in this

way, and also gather some other kinds of data that will supplement that

which Is reported here. For example, more detailed case studies of a few

students would help make the data presented here more real, especially for

a constructivist audience. Another strategy for making the data more

meaningful would be to provide more cross-sectional or longitudinal data,

thus allowing readers to make the comparisons between different ages that

would allow us to see these beliefs develop over time.

Two other studies (by Owens and by Oprea and Stonewater) deal with

beliefs about mathematics, but these two focus on the beliefs of teachers.

Both studies use the Perry Scheme as a structure for the analysis of

teachers' beliefs, and both supplement that scheme with related data from a

second theoretical framework. Also, both studies use small sample sizes

where the emphasis is on gathering substantial amounts of qualitative data

on only a few subjects. Presenting this kind of qualitative data in seven

pages Is a very difficult task, and both authors have clearly worked hard to

do the best job possible under the circumstances.

Owens presents convincing data on how the beliefs of two of his

subjects can differ substantially, even when both appear to be very similar

on other dimensions. Some of the data were presented In compact and very

complex grids that were relatively opaque for me; I suspect that the

attempts to quantify the mostly qualitative data require more space to

make clear than was available here. Oprea and Stonewater have collected

data that should be helpful in revising their instruments and their

theoretical framework, even though the results which they obtained were in

conflict with their expectations.

A major problem in the work on teacher beliefs is the lack of an

appropriate theoretical framework. Although the Perry Scheme has some
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appeal, I am uneasy with its application to mathematics education. Even the
recent revision and expansion of the scheme (Berenky, Clinchy, Goldberger, &
Tarule, 1986), which tries to improve the theory's application to women as
well as men, seems to miss some of the relevant aspects of mathematical
beliefs. It seems to me, for example, that the scheme needs to take into
account the specific requirements of the discipline of mathematics,
including its logical structure and complex ways of representing concepts. I

am also uneasy with an approach that does not take into consideration the
subjects' specific knowledge of mathematics or their level of general
ability, and how these kinds of knowledge may influence their performance
on measures designed to classify people into categories of dualism,
multiplicity, or relativism. The efforts to supplement the Perry Scheme
with other frameworks (by Kelly and by Schoenfeld) are certainly helpful.
However. I am left with the feeling that these frameworks also need more
development and refining before they will provide an adequate structure for
the analysis of teacher beliefs.

ATTITUDES TOWARD MATHEMATICS

Research on beliefs has been troubled by the lack of adequate theory,
and the same may be said for the work on attitudes. But one area of
accomplishment has been the research on how attitudes toward
mathematics differ when we compare girls and boys (Leder, 1986). The
work of Makuni makes a substantial addition to this area. In this paper,
which is based on a substantial program rf research carried out in Kenya,
we find that gender-related differences can be identified in one more
country, and that the pattern of these differences is generally quite similar
to what has been reported in Australia, North America, the United Kingdom,
and other areas. The developmant of effective ways to address these
differences deserves high priority all around the world.

Further research along these lines is reported by Miller, who used three
separate techniques in assessing the attitudes of twelfth graders. The use
of multiple measures is a strength of this study; however, the scales
developed by Fennema and Sherman (1976) would have been useful in making
this study more comparable to others in the field. Also, the
Fennema-Sherman scales provide ways to measure more of the varied facets
of the attitude construct than does the Aiken scale.

A major contribution of the Miller study is its investigation of the
genesis of negative attitudes toward mathematics. The data from this
study suggest that seventh grade is an important point in the development
of attitude, a finding that agrees with other research in this area. This
finding should encourage the support of current efforts to focus
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intervention strategies at the early adolescent age group.

A related paper by Lucock deals with both beliefs and attitudes. This

work discusses beliefs about the usefulness of mathematics as well as the

attitude of liking mathematics. A strength of this study is that it allows us

to differentiate student responses that focus on routine mathematics from

those that deal with mathematical problem solving of a non-routine sort.

Other aspects of the study range widely over a number of topics that are

difficult to summarize briefly here. Although the study lacks the kind of

technical features that would provide more assurance of the quality of the

data, the results conform in general to other studies about the development

of attitudes toward mathematics.

EMOTIONAL FACTORS IN MATHEMATICS LEARNING

The remaining papers on affect deal with somewhat more emotional

issues, ranging from mathematics anxiety of some degree of intensity to

emotional responses that have a physiological aspect to them. We begin

with the papers on mathematics anxiety.

The work by Lacasse and Gattuso provides us with the results of their

experience in running workshops on mathematics anxiety. Their analysis of

the problem shows good practical knowledge of "mathophobes", and makes a

number of useful suggestions for providing instruction that alleviates the

fears of the anxious, especially those who are adult students. This research

is very much in tune with related work on mathematics anxiety in that it is

based in practice, not in theory. Oneof the nice features of this work is

that it makes use of the expertise of both psychologists and mathematicians

as they address a truly interdisciplinary problem.

In a related study, Evans reports on adults' anxiety about mathematics,

including their scores on the MARS scale. Again, I would be more

comfortable with the more extensive measures that are a part of the

Fennema-Sherman scales, but the MARS instrument does have its adherents,

mainly from counseling psychology. More important than my preferences in

instruments is the fact that this study, like several of those discussed

above in the attitude section, presents consistent data on gender-related

differences in affective responses to mathematics. In general, these

differences indicate that women express more anxiety than men, and that

this difference persists even when the women tend to be more talented in

mathematics than the men. Moreover, the unfortunate underrepresentation

of women in mathematical careers seems to be one of the results of these

differences in affective responses.
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The interviews that were a part of the Evans study provide an
important part of the data. The subject who referred to "panic" in
describing his affective reaction to doing sums in public reflects exactly
the kind of emotional response found by Buxton (1981). In an emensive
study of these extreme emotional responses, Buxton providG., a model of
how to study mathematics anxiety. The work has a strong theoretical
foundation, and yet speaks directly to the needs of mathematics education
for improved practice in dealing with anxiety in the mathematics classroom.

Coutts and Jackson report a study on personality variables that are
related to success avoidance in mathematics. The notion of success
avoidance is a useful concept that grew out of work by Homer in the 1960's.
Research on success avoidance has been interesting, but not as successful
as originally hoped. It seems that investigations of a single variable like
success avoidance are unlikely to provide as rich a picture of student
behavior as we need. This study uses 22 personality variables to look for
relationships between these characteristics and success avoidance. The
fact that significant relationships were found with two variables is not
surprising, but fortunately the data make sense in terms of our practical
experience.

The paper by Lip& takes a psychoanalytic perspective on
mathematics anxietyquite an unusual perspective for research in
mathematics education. Although I find the Freudian interpretations of the
students' views of the relationship to the father to be quite extreme, I am
favorably impressed by several aspects of this paper. For example, the role
of the unconscious has received very little attention in research on
mathematics education, even though mathematicians like Hadamard suggest
that the unconscious plays a central role in mathematical problem solving,
Some cognitive psychologists (Mandler, 1984) are also attempting to bring
back research in this area, so perhaps the time is right for a more serious
look at this topic. Also, Legault reports the use of projective techniques to
assess affective factors; previous attempts by Fennema and others to use
these kinds of techniques met with little success, but perhaps researchers
in mathematics education should give them another try. One final aspect of
this study that I liked is that it combines Piaget and Freud in an interesting
way. This kind of healthy eclecticism is good for research in mathematics
education.

The last paper that I will discuss also deals with mathematics anxiety
and also uses interesting and unusual (for mathematics education) theories
and measuring techniques. Gentry and Underhill base their work on
Bandura's ideas about anxiety, and include measures of muscle tension, as
well as attitude scales, in their efforts to assess the emotional side of
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mathematics learners. Although this work may seem a bit exotic to some, I

am encouraged by the results, and I see it as a model for the kind of
exploratory research that is needed on affective issues in mathematics

learning. The importance of the physiological measures is emphasized by

the fact that there was little correlation between a traditional attitude

measure and the measure of muscle tension. It seems likely that these two

measures are tapping into very different aspects of the affective domain.
The instructional interventions that were used in the study were well

specified, and directly related to currently prominent theories. The
cognitive restructuring strategy is very much like what Meichenbaum (1977)

would recommend, and Mend ler's (1984) theory would be quite relevant to

the use of the modified progressive relaxation intervention. Moreover, both

of these intervention strategies are directly related to the techniques used

in some of the current workshop efforts on the topic of mathematics

anxiety. Further research along the lines presented by Gentry and Underhill

seems to me to be a major step forward in research on the affective domain

in mathematics, and especially research on mathematics anxiety.

The thirteenth and final paper (by McLeod) deals with a constructivist

approach to the development of attitudes toward mathematics. It attempts

to use concepts from cognitive science to show how attitudes could develop

out of the basic emotional responses that are the foundation of Mend ler's

(1984) theory of affect. The paper fails to pay sufficient attention to the

role of beliefs in the development of attitudes toward mathematics, but

otherwise I find myself in general agreement with the author.

DIRECTIONS FOR FUTURE RESEARCH

In the limited space that is left to me, I would like to discuss briefly

two major issues for future research, specifically the need for better

theory and the need for multiple methodologies in the study of affective

issues in mathematics education. I will also suggest some specific problem

areas that need further elaboration and more attention than they have

received so far.

The major weakness of current research on affective issues in

mathematics education continues to be the lack of a strong theoretical

foundation for the work. This observation has been made on many occasions

by many different people, and I believe that we are now in a position to

make some improvements. Mender (1984) has made a significant effort to

bring research on affect into the mainstream of work in cognitive

psychology and cognitive science. Since he takes a constructivist point of

view, Mend ler's views seem parficularly appropriate for discussion at the

PME conference. Meichenbau41 (1977) also presents a theoretical position
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that is cognizant of and consonant with the currently dominant paradigm of
cognitive psychology. Skemp (1979) also does a good job of taking affect
into account in the development of his theory of learning; since his work is
closely tied to both mathematics and to developmental psychology, his
theory has special relevance for the the psychology of mathematics
education. Finally, Weiner (1986) has developed a theory of affect that
builds on current research in social psychology. Weiner's work has been the
basis for the most successful research done on affective issues in
mathematics education (Reyes, 1984; Fennema & Peterson, 1985). Most of
this work has been done in the context of research on gender-related
differences.

There are a number of other theories that are also useful, and many of
them are referred to earlier in this volume. However, the four listed above
are my first choices. There are many other theories (for an overview, see
Strongman, 1978), but these four seem to me to be the ones that are most
relevant to mathematics learning and teaching. Of course, each of these
theories needs to be tailored and refined to meet the needs of research in
mathematics education.

In addition to concerns about theory, we need to develop and refine a
variety of research methods that will Et the needs of our theories.
Research on affect is still dominated by paper-and-pencil instruments, even
though research on the cognitive processes of students has long since moved
on to extensive use of more clinical methods. Many researchers have chosen
to supplement their questionnaire data with individual interviews, and a
few have even chosen to use measures of physiological changes that are
indicators of affect. Both of these choices are welcome as we try to
provide a better picture of the affective domain and its influence on student
performance. I would also suggest that we use some of the techniques of
our colleagues in psychology and anthropology, including closer
investigation of facial responses. Some researchers rely almost entirely on
facial expression as an indicator of emotional response (Mandler, 1984), a
position that I do not hold. However, good educational research needs data
from a variety of perspectives, and obtaining videotapes of facial
expression seems much more suited to educational research than some of
the other biomedical methods that may be a standard part of the
psychological laboratory.

In the area of research on beliefs about mathematics, we need to learn
more about the methods of anthropologists, and how they determine the role
of culture in student performance (D'Andrade, 1981). In the study of
attitudes, we need more than just questionnaires and statistical analyses of
the data. In the study of the emotional side of mathematics learning, we
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need more and better ways to measure students physiological responses and

facial expressions, as well as strategies for measuring other indicators of

the more intense affective reactions that many students exhibit in relation

to mathematical tasks.

In closing, I would like to suggest three topics that deserve special

attention in research on affective issues in mathematics education. First,

current research on the teaching of higher-order thinking skills and

non-routine problem solving needs to pay more attention to affective issues.

These more intense intellectual activities are often accompanied by more

intense affective reactions, and we need better data on student responses in

this area. Second, we need to pay more attention to the role of affect in the

life of working mathematicians. For example, recent research by Silver and

Metzger (1987) points out that aesthetic considerations play an important

part in the decisions that research mathematicians make in solving

non-routine problems. Mathematicians frequently talk about ''pretty"

problems or "elegant' solutions; we need to investigate teaching strategies

that will help students develop these desirable characteristics. Finally, the

current emphasis on affective influences and gender-related differences

needs to be strengthened and expanded. I suggest that all studies of affect

should incorporate gender as a part of their concern. Substantial progress

has already been made In building our understanding In this area (Fennema &

Peterson, 1985; Reyes, 1984), but more progress is needed if we are to do

our best in dealing with educational inequity and with correcting the
underrepresentation of women in mathematical careers.
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LA PENSEE ALGORITHMIQUE DANS L'INITIATION A 1' ALGEBRE
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RESUME
Nous pensons quit y a lieu de fonder l'apprentissage de
ralgebre stir des structures cognitives deja presentes chez
les eleves, et qu'une facon d'atteindre ce but est de leur
proposer des problemes externes aux mathernatiques macs
potentlel algebrique" et de les inciter, toes de la

formalisation, a rutilisatton de noms significatifs
concordant avec la semantique du probleme.
D'autre part nous croyons en general on passe trop vite dequ
la situation a modeliser Ala representation algebrique et
aux manipulations syntaxiques necessaires a la resolution.
Pour faciliter cette transition et le developpement des
structures cognitives appropriees, nous proposons

l'utilisation de representations algorithmiques
intermediaires realisables a l'interieur dun "environnement
algebrique informatise base sur tin langage de

programmation dedie.

L'algebre occupe generalement une place importante clans les programmes

d'enseignement des mathematiques au niveau secondaire; par ailleUrs,

l'apprentissage de l'algebre semble causer beaucoup de difficultes aux

eleves qui l'entreprennent. Dans ce court article, nous essaierons

d' identif ler certains problemes rencontres par les debutants, den discuter

les causes possibles, et de proposer certains elements de solution. Dans

ce qui suit, nous designerons par -algebre elementaire l'algebre

enseIgnee au niveau secondaire: l'algebre elementaire comporte donc

mtnimalement l'algebre des polyrtmes en tine indeterminee, mats aussi les

forict ions Ifnealres, quadratiques, trIgonometriques, exponent lel les et

logarithm iques.

LES TROIS ASPECTS DE LA DEMARCHE ALGEBRIQUE

II importe tout d'abord de prec.ser le cadre conceptuel que nous avons

adopte. Dans la pratique de is demarche algebrique, nous distinguons trois

aspects principaux: syntaxique semantique interne et semantique externe.
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Lorsqu'il s'agit de reconnaltre le type dune formule (exemple: un polyrvirne
de &gee trois), d'effectuer des manipulations formelles correctes ou
erronnees (exemple: remptacer la b)2 par a2 tab + b2 ou par a2 b2
ou de choisir d'appliquer une regle de reecriture en fonct ion dunestrategie
heuristique (exemple: pour resoudre requation 3x + 2 = 7, soustraire
d'aboed 2 aux deux membres de ('equatIon), nous nous trouvonsen presence
de l'aspect syntaxique. tl est facile de constater rhegemonle des
pratiques syntaxiques dans l'enseignement actuel de l'algebre elementaire:
11 s'agit IA de methodes abstraites et puissantes en vertu de leur
gencsrallte, mats dont la raison d'etre echappe le plus souvent aux eleves
debutants.

II est plus diffIcIle de decrire ('aspect semantique interne de l'algebre
elementalre, peut-etre parce n'apparalt clairement qu'en algebre non
elementaire. Consickwons, par exemple, la recherche dun modele
ensembliste rendant vraie Videntite a+(b*c) (z+b)*(a+c): on est aloes
amene a specifier un domain ck, les variables a,b,c prendront leurs valeurs
possIbles, alnsi qu'une Interpretation des symboles et * via des
fonctions binaires sur le domaine dl jA specifte. Dans notre cos, on peut
choisir comme domain l'ensemble des parties dun ensemble X, et
interpreter + ( respectivement: 0) comme la fonction qui assocte a un
couple de sous-ensembles de X leur difference symetrtque
(respectivement: leur Intersection).

En algebre elernentaire, le domaine de variation est toujours un ensemble
de nombres (Interval le de nombres naturels, enttees, ratlonnels ou reels)
qui tres souvent nest pas precise, et les operations ont une interpretation
canonique invariable: en realite, on est en presence dune interpretation
ensembliste unique (et des diverses sous-structures induites par
certatnes restrictions du domaine). Ainsi l'aspect semantique interne de
l'algebre elementalre se resume-t-il en des choix judicieux du domaine de
variation des variables (exemple: l'identite log(x*y) log(x) + log(y) n'a de
sens que si x et y soot positifs, meme si le membre de gauche est ciefini
quand x et y sont taus deux negatifs) et au calcul numerique (evaluation).
On peut exprimer ceci en disant que la semantique interne voit les
expressions algebriques comme des fonctions (toujours algorithmiquement
calculables) definies sur des ensembles de nombres, eventuellement
representees par des tableaux de valeurs, des graphes cartesiens, ou des
algorithmes de calcul.
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Avec l'aspect sernantique extern, nous quittons le domain strictement

mathematique pour nous interesser dune part aux representations

algeriques (mathematisations, modelisations) de situations non

mathematiques ou de problemes algebriques narratifs (ca d. enonces en

langue naturelle), et cfautre part aux Interpretations d'activites

algebriques (exemple: manipulations formelles) en termes des contextes

representes. Cet aspect retiendra particulierement notre attention car
c'est a ce niveau que l'eleve est suceptible d'etablir des liens entre ses

propres structures cognitives et les concepts algebriques qu'on lul

propose, de construire une signification pour ses activates algebriques.

Nnus pensons que rapprentissage des rudiments de l'algebre dolt se fonder

sur des structures cognitives déjà presentes chez les eleves et dont Ia

"distance aux concepts a construire nest pas trop grande. Dans ce

contexte, une approche prometteuse consiste a proposer des

situations-problemes externes aux mathematiques macs a "potentiel

algebrique et d'inciter a des generalisations successives, obtenues en

donnant des noms signif icatifs explicitant Ia nature generale des 'objets"

en presence, cornme dans $'exemple suivant:

3 * 5 -> 15

3 objets * 5 dollars par objet -> I5 dollars

nombre d'objets * 5 dollars par objet -> prix paye

nombre d'objets * coat par objet -> prix paye.

Remarquons que les expressions de l'algebre elementaire (avec leurs noms

de variables "abstralts" eels a, b, c, x, y, z) resident a un niveau
cfabstraction plus oleve en ce qu'elles generallsent une classe de

situations-problemes: par exemple, requation algebrique x * y z

generalise autant la situation precedente que Ia situation
longueur de la base * longueur de Ia hauteur -> aire du rectangle.

LES PRODLEMES NARRATIFS

Comme nous venom de le voir, les problemes algebriques narratifs nous

semblent jouer un role tres important dans Ia construction des concepts

fondamentaux de l'algebre chez les cloves debutants. Depths plusieurs

anodes, des chercheurs tentent de modeliser les processus cognitlfs mis

en oeuvre pour traduire en equations des problemes algebriques narratifs.

Ce travail a debute avec Bobrow (1968) qui a developpit sur ordinateur un
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programme appele STUDENT. Paige et Simon (1966) ont (*mare que le
processus de traduction directe utilise par STUDENT aoprovime le
traitement par certains individus des problemes narratifs algebriques;
macs its ont aussi souligne qu'une traduction directe ne peut rendre
compte du processus humain de resolution qui s'appuie stir des
connalssances semantiques propres au language naturel. En nos propres
mots, le traitement effectue par STUDENT est exciusivement syntaxique
alors que l'humain utilise aussi une semantique extern. D'autres
recherches dans ce domain ont soulIgne le role des schemes dans la
representation des problemes algebriques nairatits (H1nsiey, Hayes et
Simon 1977; Mayer 1980; Schank 1982). En depit de ces progres
theoriques, les enseignants en mathematiques sant relativement depouryus
quand 11 s'agit (Tattier les eleves A representer les relations des prablemes
algebriques naiTatif s.

Par ailleurs, les chercheurs ont recemment fait de Brands progres dans la
mocielisation de la facon uttlisee par les Jeunes enfants pour representer
et resoudre des problemes arithmetlques narratifs. Ces modeles, tel celul
developpe par Klntsch et Green() (1985), construisent une representation
d'un probleme namedf qui hcorpore l'infonnation requise pour le resoudre.
En d'autres mots, la representation specifie ('operation A effectuer, telle
('addition, Ia soustractlon ou le denombrement d'objets. Cette theoie a
ete perfectionnee par Larkin (1986) qui a distingue trots phases dans le
processus de construction dune representation. Dans la premiere phase,
l'enfant lit les mots du probleme et en constrult tine representation
interne de base, qui correspond directernent A la situation physique
decrite. Dans la phase suivante, II ajoute de nouvelles relations
mathematiques (en se basant stir ses connaissances anterieures). La
representation mathernatique resultante suggere un calcul particuller qui
est effectue fors de Ia troisleme phase. Selo() Larxin, la phase de
representation mathematique petit etre escargot& quand l'entant tente de
calculer (phase 3) en se ftant directement A la representation de base
(phase 1).

On petit constater tine disparitIon semblable de la phase de representation
algebrique Iorsque des eleves tentent d'ecrire tine equation (phase 3) en se
fiant stir tine representation de base apauvrie dun probleme algebrique
narratif. Les approches usuelles denseignement ne semblent pas doter les
eleves de moyens de construire des representations mathematIques
agquates pour les problemes algebriques narratifs. Selon une etude
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recente (Clement, Lockhead et Soloway 1980), ('utilisation d'un

environnement informatique mettant ('accent stir tine sernantique

procedurale active des equations semble fournir tine methode puissante de

construction de representations mathematiques efficaces. Clement a

montre que l'apprentissage de Ia programmation stir ordinateur aide les
etudiants a se former des representations mathematiques de certains
types de problemes, en incltant a tine approche algorithmtque dans
retablissement d'equations.

UNE INTRODUCTION A L'ALGEBRE

Rappelons que nous voulons partir d'actIvites significatives et inotivantes
pour l'eleve, et qu'll est par consequent hors de question d'introcluire le

symbolisme algebrique autrement quo comme tin codage de probiemes en
rapport avec les experiences anterieures de l'eleve. Nous pensons que lors

de l'Introcluction des concepts algebriques, on passe trop Vito de la

situation A modeliser ()U du probleme narratif a la representation
algebrIque et quit y await lieu de passer par tine suite d'etapes

intertnedialres en vue creclalrer et de faciliter eventuellement ce
processus. Nous avons deja mentIonne une premiere etape, consistant

utiliser des variables dont les noms sont signifIcatifs pa' rapport a la

situation-probleme a l'etude. De plus, 11 semble plus facile pour le

debutant d'utiliser le mode imperatif (base stir l'affectation informatique)

plutat quo le mode declaratif (base str l'egalite mathematlque): ainsi au
lieu daft inner que le coat total egale le produit du nombre d'objet par le

coat unitatre, 11 semble plus simple de decrire comment calculer he coat

total en multipliant le nombre d'objets par le coat unitaire. On est ainsi

amens a representer he probleme a resoudre canine tin programme
constitu* dune suite d'affectations simples (evitant ainsi au debutant les
difficultes Ilees a la composition d'operations dans une Meru expression
et a l'application des regies de priorite des calcul) portant stir des

variables (ayant des noms significatlis) dont les valeurs peuvent etre

specifiees au depart par l'uttlisateur (variables d'entree) ou affichees a la
fin de l'execution (variables de sortie). Outre les possibilites d'execution

et de trace dormant tine retroaction a l'eleve sur raclequation du programme

a Ia situation-probleme etudiee, cette representation informatique est
suceptible de faciliter grandement la recherche de la ou des solutions du

probleme, ce qui est tin facteur de motivation non riegligeable pour l'eleve.

Dans cc contexte en effet, la recherche dune solution pout presque
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toujours se ramener cerner des valeurs d dormer aux variables d'entree
de sorte que deux ou plusieurs variables de sortie deviennent egales; pour
le debutant, ceci est heaucoup plus accessible que les manipulations
formelles habituellement employees.

Nous nous proposons donc de creer un "environnement aleebrique bast str
un Iangage de programmation didie qui pourralt servir de representation
intermediaire permettant notamment:

* de mettre en evidence les variables pertinentes du probleme
0 de designer ces variables par des nuns signilicatifs

(mats aussi de permettre eventuellement des abbreviations)
* de pouvoir faire appel a des variables intermediaires

(presentes en informatique mats ignorees en mathematiques)' dormer un sans dynarnique aux variables en fonction des executions
possibles du programme

(demande de valeur en entree, affectation suite a un calcul)
* de trouver une ou plusieurs solutions sans necessairement devoir

faire appel a des methodes de manipulations syntaxiques
(methodes de recherche nunerique avec. heuristiques)

Par des observations et des interventions awes d'eleves en interaction
avec cet environnernent informatique, nous nous proposons de verifier son
impact sir le developpement des strategies cognitives de construction des
representations algebritems.

Notons que cette reprtscntation d'un probleme narratif par un programme
faisant la transition avec recriture algebrique usuetie nest qu'one etape
dans notre vision algorithatique to rapprentissage de ralgebre. On pout
aussi voter une equation (reliant deux expressions) comme rassertion de
reouivalence tie deux programmes, et Its manipulations algebriques comma
des transformations de programme:: preservant requivalence. Mats nous
touchons ici les aspects sernanttque interne et syntaxique de
rapprentissage de ralgebre: cecl fera eventuellement ('objet de
communications subsequentes.
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Abstract

The computer program Green globs was analyzed for effecting a
global understanding of transformations on functions resulting from
altering the coefficients of its algebraic representation. Particular
efforts were made to tie together the graph of a function with its
algebraic rule. Two groups of students worked with the software;
one group worked in a highly structured environment with the
computer being used to illustrate and reinforce specific
transformations. The other group discovered the effect of the
transformations alone. Statistically significant differences between
the two groups were not obtained. Test results and interviews
indicated that, overall, transformations in specific cases were
understood by both groups, but that a general, global
understanding eluded them. The potential of using this sort of
microworld type environment is discussed.

OBJECTIVE

One of the major goals of school and college mathematics is to lead students to
a sound understanding of the major underlying notions associated with the graphing
of functions. In particular, the structured relationships between the graphs of
functions arising from each other under simple transformations are important in this
connection E.g., students should be able handle the following types of tasks:

to graph functions such as If(x)1, f(x-a), 1-1(x) and similar ones from
the graph of a given function f(x) (without algebraic description);
to graph simple rational functions such as (x2-4)/(x-I-2) or
(x2-2)/(x+I) after determining, by Inspection, their asymptotes and
local discontinuities;

to discuss the graphs of functions such as f(x)= x2- 51x1 +6 by relying
on their symmetry properties.

Important as these goals are for understanding the deep structure of functions and
their graphs, they are usually not a(,hieved through the curriculum. The purpose of
this paper Is to analyze, from a cognitive viewpoint, activities which lead students to
understand such functional relationships.
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THEORETICAL FRAMEWORK

The theoretical background to our work is given by three complementary
research strands which have been developed over the past few years.

(i) The theoretical framework for analyzing aspects of the function
concept proposed by Dreyfus and Eisenberg [19841;

(ii) Experimental evidence about student misconceptions on function
concepts obtained by Vinner [19831,

(iii) The constructivist approach to facilitate abstraction via microworlds

as developed by Thompson [19851.

According to (i1), a function is typically considered to be an expression or an

equation. Students view graphs per se as peripheral to the function itself, as an
additional load; and if they can avoid dealing with them, they will A group of pre-

service teachers were asked to present a graphical argument for developing the usual

formulae for the coordinates of the vertex of a parabola given by y=--ax2+bx-j-c. The

expected response of setting the first derivative equal to zero was obtained. Then

graphs of equations of the form y--a(x-p)21-q were discussed; afterwards the
students were again asked for a graphical method for finding the coordinates of the

vertex of a parabola. Once again, they returned to the first derivative. The

relationship between the graphing activity and the coordinates of the vertex

completely eluded them.

METHODOLOGY
The teaching of the function concept should be designed with the above

considerations in mind. As teachers, we have a twofold task:
(a) To transmit to the students a more well-rounded concept of what a

function is, namely an abstract mathematical object having any of
several concrete representations, one of the most useful of which is a

graph; and
(b) To teach students to recognize those situations where graphical

processing of functional relationships is more efficient than alLebraic

processing.
Point (iii) above has produced evidence pointing to the potential of mathematical

microworlds for promoting abstraction The present work is in keeping with these

results. It uses the commercially available software Green Globs [Dugdale, 1984

This software presents a set of points in the plane and the student is supposed to

generate a graph traversing neighborhoods of these points. By focussing on the

effect of changing particular parameters in the equations, insights and generalizations

on the deep structure of functions is, theoretically, obtained.
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On the basis of the theoretical background and the properties of the software, we
arrived at the following hypotheses for this study:

Ilypotheses

(i)

(2)

Understanding the relationship between the algebraic and graphical
representation of a function is facilitated by the activity of
discovering and specifying in algebraic form graphs which traverse
given regions.

The influence of changing the parameters of a function on its graph
can be understood by structured activities as described above.

5. Given. the graph of y=f(x).
The graphs below were obtained
from that of y=f(x). Match each
graph with its formula.
(Five different funtions were given
in the test; two of them are
shown here.)

y=f x-1)
y=2f(x
y =f(2x
y=4(x
y=f0x1
y=lf(x)1

y=f(x)+1
y=qx-I-1)
y=i4f(xi

x
y=f -x)
y=f -1x1)

6. Given: A set of thregs graphs wh ch fit
the formula y=a(x-d) -Fe. Write down,
which of the parameters a, d, e are
identical for the three graphs in the
sketch.
(Six different sets of three graphs were
given in the test; only one of them is
shown here.)

10. Write next to each formula which one
of the four graphs in the sketch fits
it.

O Y=x2-Rx-I-1
O y=1-x`
O Y=x2-2A
O y =1 +x

Figure 1: Representative Test Questions
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Procedure

Two matched groups of 8 students each were chosen from 45 eleventh andtwelfth graders in an academic high school The students were chosen and matchedon the basis of their scores on a pretest and teacher
recommendations. Within eachgroup of eight, the students were paired according to their performance on thepretest, the two strongest ones together, and so on. The groups used the GreenGlobs software, in pairs, for six 50 minute sessions spread over four weeks. In thesesessions, Group A was free to choose functions to p'ay with, help being provided bythe tutors only when requested The activities in Group B were highly structured.

In each session, Group B students were directed to use a certain type of functionand to investigate the effect of changing the parameters of these functions Sucheffects were then discussed with the group as a whole. As a consequence, Group Bactually used the software somewhat less than Group A.

The actions of the students were followed in detail and recorded by an observer.After the end of the instructional period, a posttest was administered, the posttestwas identical to the pretest Representative test questions are listed in Figure 1.
Moreover, one student from each pair was interviewed for about 30 minutes; the
interviews were semi-structured; while predetermined questions and hints were beingused as guide posts, an effort was made to keep the discussion flowing freely.
Representative interview questions are listed in Figure 2.

1 Given f(x) =x3 -3x2, let g(x)=-f(x+3). Find g(-2).
(This question was accompanied by a graph of f(x)).

3.

In the accompanying figure the graph of the
function y---=f(x) is given. Sketch
qualitatively the graph of the function
g(x)=1/f(x).

Figure 2: Representative Interview Questions

While the wr tten tests focussed on achievement with respect to the skills under
investigation (the influence of parameters on graphs and the effect oftransformatioos on graphs), the interviews were designed to uncover the reasoning
processes employed by the students in order to answer the given problems. Theanalysis of the observer's records, pre- and posttest scores, and the interviews
comprise the data for this study
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RESULTS

At the outset of the instructional period, students in both groups worked solely

with linear functions. Their linearity-boundedness was very strong, in spite of

extensive exposure they have had in their studies with other types of functions.

Markowits, Eylon and Bruckheimer 119861 noted this gravitation to linearity in junior

high school students, but the strength to which it was observed with these advanced

students was surprising. Only after being explicitly and repeatedly required to do so,

did the students experiment with other types of functions: polynomials and absolute

value functions. And even then, they were frequently coming back to the linear, and

later quadratic functions. This tendency, amazingly, was least strong among the

weakest pair in each group. In fact, while the strongest students tended to spend a

lot of time designing expressions according to their needs, the weakest ones tended

to proceed on a purely experimental, often somewhat arbitrary fashion, just trying

out what happens if they type in a certain formula. As a consequence, the weaker

students were more likely than the stronger ones to work with more complicated and

more advanced functions; a typical example they used was f(x) =1x3- 45+x2 -x/ (note

the order of the terms). They would, however, have but the most elusive idea of the

graph to be drawn by the program. Overall, the "what if not" sort of thinking as

described by Brown and Walter (1969) was not internal to the students: The better

ones were too hesitant to experiment with unfamiliar functions while the less able

ones experimented with new formulae without any attempt at thinking them through

beforehand.

The discussion of the pre- and posttests will focus on those questions which

concern our main interest: the effect of changing parameters and the

shifting /stretching transformations f(x±a), f(x)±a, f(tax), ±2f(x). These ouestions

constituted 70% of the test and 100% of the interview. Henceforth these questions

will be called non-standard. The standard questions included algebraic computations,

graph reading and graph
identifications such as in Question 10 (see Figure 1). The

test results were not statistically different for Groups A and B. Therefore the

combined results are listed in Table 1.

Table 1: Mean Percent Subtest Scores

Questions Pretest Posttest

Standard 71% 75%

Non-standard 24% 50%

Hypothesis (1) appears to he borne out, even if less strongly than could have been

expected. The students did make progress, during the instructional period, on the

2 24
1
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very difficult topics that were addressed. On the non-standard questions the
students doubled their scores; that is, understanding the effect of altering the
parameters of a function is facilitated through the Green Globs software. But their
overall Ea% score on these questions indicates that this link is still not very strong.
A more detailed analysis of the test results reveals that on Question 6 they more
than trebled their scores with only relatively slight improvement shown on Question

S. The familiarity of the graphs used in Question 6 may be responsible for these
differences. In Question 6 the students had to deal with a higher level of abstraction
because the functions were given graphically only, and did not correspond to any
equations known to them. Hypothesis (2) can not be accepted on the basis of the
test results alone. Both groups improved approximately to the same extent. It thus
appears that the activities with Green Globs in general caused this improvement

rather than the structuring of the activities which was particular to Group B.

The Interviews focussed In particular on the extent to which the students had
established the connection between the graphical and the algebraic representation of

functions. Almost all students did adopt a visual mode of operation; this mode,
however, was often on a purely intuitive level; In most cases, an integration between
the visual and the analytic mode was achieved by only three out of the eight
students interviewed. The others did not fully link the rule of a function (its
algebraic representation) to its graph (its geometric representation). Although they
could confidently discuss the graphs of specific linear functions, they found it
difficult to specify which among several graphs satisfied with a>1 and
b>1. This lack or global understanding manifested itself on all questions except
those with quadratic functions: While not a single student missed Question 10 (see

Figure 1), it emerged from the interviews that the advantage of working with
quadratics In the form a(x -d)2 +e rather than ax2+bx-i-c was recognized by more

than half the students (evenly divided between Groups A and B).

DISCUSSION

One of the goals of the Green Globs software Is to place the emphasis on the

geometric representation, subordinating to a lesser role the algebraic rule, rather

than vice-versa which Is the way things are usually handled in school. The direct
link between the two representations established by the software, has helped the

students In the study progress towards establishing an analogous mental link.
Overall, the understanding of this link has, however, remained vague for more than

half of the students.

This study has to be viewed as one of a series of similar studies, which have all

been undertaken within the theoretical framework of mathematical microworlds (see
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(iii)). In each of these studies, the goal has been one of achieving a process of
abstraction on the part of the student; all these studies have met with only partial
success (Dreyfus & Thompson, 1985; Dreyfus, 19861. The question naturally arises,
whether the theoretical framework needs to be revised in view of these limited
successes. At present, this does not seem to be appropriate; in fact, all three
studies referred to were rather short term. Extremely high level activities are
required for the processes involved in abstraction in general, and in particular in the
conception of a function as an abstract mathematical object, and the establishment
of the connection between different representations of this object. It is hoped that
longer and more systematic exposure to dual and triple representations of
mathematical objects wilt achieve a dearer effect. But, at present, this is simply
speculation.
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BELIEVING IS SEEING:
HOW PRECONCEPTIONS INFLUENCE THE PERCEPTION OF GRAPHS

E. Paul Goldenberg, Ed.D.
Education Development Center, Inc.

and Educational Technology Center, Harvard University

Contrary to a common assumption that graphs of function are somehow in-
herently more accessible to students than are symbolic presentationsafter
all, students have spent years perceiving and drawing visual forms before
they first encounter algebraic symbolsvisual presentations have their own
conventions and ambiguities. Perceptual strategies that are sufficient for
interpreting scale and relative position in real-world scenes are inappropriate
when dealing with the infinite and relatively featureless objects in coordinate
graphs of simple polynomial functions. Aided by software that dynamically
links graphical and symbolic representations of function, our preliminary
clinical studies show that perceptual illusions and shifts of attention from
one feature to another obscure some of what the educational use of graphs is
supposed to illucidate. The paper is illustrated with specific examples of
illusions with linear and quadratic graphs.

Software that allows students to probe the nature of function by exploring with linked
graphical and algebraic representations has recently been proliferating for three reasons:
there is a perceived need to increase the emphasis on graphing in the algebra curriculum; it
is theoretically reasonable to suppose that appropriate visual representations help invest
meaning in, and thereby promote the learning of, the symbol system with which algebra
students must ace; and computer technology lends itself well to this application.

As is often the case, new technological capabilities bring new questions to the fore.
While investigating what had initially seemed to be straightforward questions like "Does
this kind of software help students learn to make fewer of the canonical errors?" my
colleagues and I found ourselves faced with several surprises and some new questions
about fundamental issues in how people perceive graphs.

Common-sense supports the notion that the use of more than one representation of
function will help learners understand what remains less clear when only one representation
is used. Presented thoughtfully, multiple linked representations increase redundancy and
thus can reduce ambiguities that might be inherent in any single representation. Algebraic
expressions specify the exact relationship, but give neither single examples nor a visual
gestalt. Graphs provide a gestalt within the limits of the graph but leave precise details
unclear. Tables provide examples of the mapping but do not specify its nature. Said
another way, each well-chosen representation views a function from a particular
perspective that captures some aspect of the function well, but leaves another less clear:
taken together, multiple representations should improve the fidelity of the whole message.

The theoretical arguments presented above are reasonable enough, but they may not be
valid. In fact, little is known about the cognitive impact of multiple linked representation in
algebra and until recently it has been impractical to examine these suppositions clinically.

Our early experiments have shown that students often misinterpreted what they saw in
graphic representations of function. Left alone to experiment, they could induce rules that
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were wrong. We began to study how students develop strategies for using graphical
information to give meaning to symbolic representations of function and vice versa. To
what, in fact, do students attend when they look at graphs? What are the misconceptions
that they bring with them and how do these misconceptions distort the information that they
glean from the graphs? And how, if at all, do these distortions affect a student's ability to
use graphical representations of function to inform the understanding and manipulation of
the symbolic algebraic representation?

288
These questions grew ini-
tially out of observations
with two bright, successful,
second year algebra stu-
dents. They were shown the
computer screen illustrated

-38 3 in figure 1, and asked to
discover the polynomial
(-2x2 + 30x - 108) that
created this graph. They
were encouraged to use
whatever means they chose,
including making computer-

Figura I supported measurements on
the graph and trying out va-

rious expressions and observing differences between the graphs they created and the target.

Although the students had not previously tried to match a target graph, they had had
some prior experience using the software to explore graphs of this type and had built up
some expectations about the effect of the constant term and the coefficient of x2 in the
graph of a parabola. Appropriately, their first analyses made use of these notions.

They believed that something they referred to as "shape" was controlled by the coef-
ficient of x2 and also knew that if the parabola was "upside down," the coefficient must be
negative. After a single experiment tryingto match the target parabola they reasoned from
its "pointiness" that its x2 coefficient must be -2. They also had a notion of "height" and
believed it was controlled by the constant term. They chose the value of the constant term
t estimating where the parabola crossed the y-axis. Seeing that the y-intercept was
roughly midway between the origin and the bottom of the graph (at -200), they tried -100.
Although they believed that the x-coefficient controlled left-right placement, they said that
they had no idea what value to use for it and so they made an arbitrary choice and picked 2.

Figure 2 shows the graph of their function (solid) superimposed on the target parabola
(dashed). Their parabola appeared to have the same "shape" as the one they vere trying to
match, so they felt confident in their choice of the coefficient of the x2 term. Further, as
well as one could see at this scale, the two curves had the same y-intercept, which fit their
criterion for the choice of the constant term Only the x coefficient remained undiscovered.

Yet, despite the confirmation of two of their reasoned choices that we may derive from
the graph, and, remarkably, despite their expressed awareness that their third choice was
the least trusted even from the outset, they saw the graph as disconfirming their choice of
the constant term. Recall that they chose the constant term by examining the y-intercepta
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measure intended eventually to insure that the two functions had the same height for
identical values of x--but they coded what they were doing as deterniining "height," not y.
intercept. When we compare the "height" of two objects, we do so by attending to
corresponding features of the two objectsin this case, the vertex.

2011 The visual impression so
dismayed them that they capi-
tulated and "corrected" the
constant term from -100 to 4
to account for their "error."
The new expression was far-
ther from the target but was

-3$ 30 more satisfying because its
graph was just as "high" as
the graph that they were
trying to match (see fig. 3).

It is important to characterize
what happened clearly. To
my eyes, figure 2 showed
that they were correct; the pa-

rabolas are equally "high" at
2110 the y-axis. But in their eyes,

figure 2 was disconfirming.
What we believe influences
what we see in the graph.

The way in which the illusion
distracted them from their

-311 3$ originally correct analysis of
the problem is reminiscent of
the not-quite-conserver in the
Piagetian task in which equal
quantities of juice are poured
into glasses that differ in
width. Initially two identical
glasses are filled with juice
and the child verifies that

they are the same. When the juice from one of these glasses is then poured into a narrower

container, its level rises higher than the level in the other original glass. Young children's

thinking in this situation seems dominated by the visual impression: the new glass must

have more. Older children and adults witnessing this experiment are guided more strongly

by their expectation that quantity remains invariant despite appearances. In between, there

is an intriguing stage when a child might well expect that after pouring from one container

tt, the other the amounts would be the same, but wouldthen give ineven spontaneously
expressing surprise as the algebra students didto the perception. Logical thinking has

developed considerably, but is not robust enough to prevail over perception.

The students' confusion in this case appeared to result from a shift of attention from

one feature (the y-intercept) to another (the vertex). Not only is the vertex a more salient
feature, but in real-world everyday strategies for judging height, it is the feature we would

be most likely to use. (More will be said about real-world strategies later.) In other cases,

Figure 3 -211 -2x2+ 2x +4
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confusion seems to arise from the same mechanisms that give rise to familiar perceptual
illusions. Consider, for example, what happens when the students take the expression they
have just developed and begin to change the coefficient of x to "move it over." Figure 4
shows how the graphs appear when they have all but the constant term correct. When they
looked at graphs like this, they knew that they needed to adjust the constant, but it also

200 appeared to them that the
inner parabola was more
obtuse than the outer. Here,
the target parabola (dashes)
appears blunter than the trial
parabola above it.

As was true of the confu-
sion regarding the meaning
of "height," illusions such
as the one illustrated here
were sometimes powerful
enough to draw their atten-
tion back to the already cor-
rect coefficient of the x2
term and cause them to
change it.

-30

/figure 4 $0 -2x2+ 30x + 4

30

A GENERALIZED THEORY OF ILLUSIONS

The Cartesian graph spaces with which we are confronted in books and on computer
screens are rectangular segments of a plane on which some shape appears. Most
commonlyalways in the case of algebraic functions that are defined over the entire
domain of real numbersonly a portion of the shape appears. Through our experiences
with partial views of real objects (e.g., views of things being shifted up or down as viewed
through a window) we develop working strategies for interpreting such views. it makes
sense that as we first learn to read graphs, we interpret what we see in them according to
those strategies that have been successful for us in other realms, and we continue to use
such strategics until our new experiences teach us to do otherwise.

In fact, when the object being viewed is infinite in size and relatively poor in discrete
identifiable features, our everyday strategies fail: what we experience is often a perceptual
or attentional illusion. The student work described above gives examples of both.

Imagine a person slowly descending on a scaffold outside your office window. As the
person's feet first appear at the top of your window, you already have a very good idea of
the overall shape of the person. Assuming a constant rate of descent, you have a good idea
when that person will be fully visible. Aided in part by the availability of readily
identifiable, discrete elements in the scene (e.g., shoelaces, buttons), you have no difficulty
at all knowing which direction (down) the person is moving. Finally, because people are
not too variable in size (among other clues) you can tell that you are seeing a 6 foot person
descending immediately outside your window and not a 240 foot person 40 feet away.

By contrast, overall shape, magnitude of a translation (corresponding to the rate of
descent of the person in the window), direction of movement, and scale (corresponding to
the distance of the person viewed in the window) may all become ambiguous when the

0 I z n
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object viewed is infinite in size and has the kinds of regularities of shape and lack of readily

recognizable sub-elements inherent in lutes and parabolas.

TOWARD THE DEVELOPMENT OF A TAXONOMY OF ILLUSIONS

We are currently beginning to classify the sources of confusions that arise in the perception

and interpretation of graphs. This paper will illustrate only two: orientation of the graph

within its window, and interaction between scale and function.

Consider, for example, what one sees when looking at a family of linear functions
Ax+B that differ only in the value of the constant B. If we already know the algebra, we
have built up some analytic expectations. What we e-71ect to see is that the graph of a line

moves up as B is increased, as in figure 5.
2 2

Figure fia 2 -.5x - 1 Figure 6b -.6x +2

Because an infinite line presents us with no discrete points to watch, however, it may

also appear to be moving from left to right as the constant tenn increases (figures 6a, 6b) or

even from right to left if the line slope is positive. The way the line appears to move
depends totally on the angle it makes with the window through which you view it. Though

the appearance is a perceptual phenomenonnot one that any amount of algebraic
sophistication can changealgebraic sophistication can lead us to ignore appearances. We
may even be able to "see" that the segment of line visible in figure 6a has "moved off the

top of figure 6b" and a new segment, previously unseen, is now visible.
2

z

Figure 6a -2x - 2 Figure 6b -2x +

A student who is learning the algebra for the first time, however, has no such analytic
expectations. This has important implications for the use of inductive learning experiences

with graphing software. Exploration with such software may certainly lead students to
"correct" conclusions, but it may also lead to very complex rules like:
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There are five cases that describe how the, graph of a linear function
Ax +l3 changes as B increases.
IAI << t the line moves up as B increases
IAl » I, A > 0 the line moves to the left
IAI » I, A <0 the line moves to Me right
IAI I, A <0 the line moves diagonally to Use rionheast
iAl I, A > 0 the line moves diagonally to the northwest

This may be an interesting place for students to be at some stage in their mathematical
learning, but is certainly not where we want them to arrive as a final destination. Worse
yet, student propensity to choose integer values rather than decimalstherefore missing the
cases where lAl< I makes it highly likely that students will choose initial examples that
lead them to the left-right theory withouteven seeing the up-down or diagonal movements
that might lead some to expect or wanta simplification.

2 Finally, there is an added complication. Even
the complex rule given above assumes that x and
y are symmetric on the graph. The (visual)
angle that a line makes with its "window"
depends both on the line's (mathematical) slope
and on the relationship of the scales of the two
axes. In figures 5 and 6, the xand y axes arc
represented in the same scale. Figure 7
represents the same function that appears in
figure 5b but, because the scale has been
changed, its graph resembles the family of
functions represented in figure 6.

Scale affects perception in other ways as well. An infinite line viewed close up (figure
8a) or from afar (figure 8b) appears not to change shape, though it moves "closer" to the
center of the window. This accords perfectly with our everyday experience with normal
objects: as we veiw an (ordinary) object from the same direction but at varying distances,
angles in the object are preserved but distances (in thiscase, the distance from the center of
the window) are not. (Of course, the line in figure 8b may equally well be perceived as
"higher," suggesting that there has been a change in the constant term.)

2

Pious -,bx +

2 -20

Figure fla -1 Figure flb -20

20

We have a very different experience with the parabola. Figure9 shows a closcup view.
The small box in figure 10 is a reduction of figure 9, one-tenth its linear dimensions. The
extended view of that parabola is how it would appear on a scale symmetric in x and y and
running from -20 to +20. Unlike a straight line, the parabola doesappear to change shape.
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Although the portion of the plane that we see in figure 9 corresponds to a fraction of that

shown in all of figure 10, we automatically compare the tiny chunk in figure 9 with all of

figure 10, not just the segment in the box, fooling our eyes into thinkir.g that angle has not

been preserved.

If we compare equivalent portions, we avoid the illusion. The boxed area of figure 10

alone does not appear to be a different shape from that shown in figure 9. Thus, when the
scale of the parabola changes in a window of fixed size, the parabola appears to change

shape Yet, when the scale of the window changes along with the scale of the object in
itthat is, when we see the window as well as the parabola from afarwe have no such

illusion.

2

2

Figure 9 2 x2 - -

2

Understanding this interaction between scale and "shape" is important becausestudents
typically use "shape" of a parabola (on a constant scale and in a fixed-size window) to
determine the A coefficient. Thus, though they learn strategies for solving their problem,

the strategies are based on an underlying notionthat parabolas may have different
shapesthat is erroneous. The shape that they see is, in part, an artifact of scale

We are now studying the implications of these illusions. As suggested in the metaphor

of viewing the window-washer from your office, the unavailability of easily trackable
pointslike ankles and shoelacescauses some of the confusion. Perhaps students need

more experience with discrete functionsor continuous functions such as Alr-Bl+C which

have "special" pointsas a background for continuous ones. Another problem appears to

be due to the infinite range and domain of the functions. What are the implications in this

case? The interaction between scale and function is leading us to invite students to graph
familiar functions on variously distorted graph papers, to help us learn what they consider

the necessary features of a graphing environment, and to help them explore the invariants

of graphs under particular transformations.
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Understanding feedback systems.

Claude Janvier and Maurice Garancon.

This paper attempts to define what is meant by
understanding feedback systems. Understanding is
envisaged as a form of coordination of three
external representations in view of
characterizing the evolution of the system and
predicting the effeots of changing one variable.
Difficulties are described on the basis of this
analysis. A computer program that is meant to
study further this understanding is described
together with the planned experimentations.

Feedback system are sets of variables interconnected in a special
way and whose values evolve with time. A simple ecological system
which involves a few populations characterized by eating habits is
an example of such a feedback system. When the preys happen to grow
in number, the population of predators increases and this has a
consequence on the prey, themselves. This action of the population
of preys on itself is the main feature of feedback systems and is
called a feedback loop. For similar reasons, the "stack" of an
item with the "number of items ordered" at fixed interval of time
are two variables which as a cystitis can be regarded as a feedback
system. In fact, a change in the order induces a change in the
stock which, in turn, as a feedback effect, brings about an
adjustment of the next order. The variables of a feedback system
and their relations are basically represented by a causal diagram
such as the ones we have used to illustre the two examples provided
so far.

m

Cfigure
1:

ecological system
consisting of a population
of cats and one of mice.

S I-
igure 2:

system formed by a stock and
the regular order of the items

As the diagrams show ( namely the "+" sign towards the end of the
arrow), an increase in the amount of mice will induce an increase
in the population of cats, while an increase in the amount of cats
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(predator) will bring about a reduction in the population of mice
(see the "-" sign). Similarly, a change in the stock of an item
will involve the order to adjure and consequently will bring about
a change in the stock itself.

Modeling and interpretation

One can envisage any feedback sputum as a met of mathematically
defined relations between the variables. They can generally be
expressed as a set of differential or difference equations which
determine a model Such a model determines a class of
possible interactions between the variables. Mathematically
speaking, we can say that there remain some parameters that are
left to be fixed and which will define a particular instanae of
the model. For instance, particular values given to the

populations' size at time to will define a particularized model. In

other words, a model in which the parameters have been determined
defines a precise system. However, a particularized model will
slaver behave like a real world system since it is impossible to
take into account all the factors determining the evolution of such

a system. A first step into the understanding of feedback
systems involves shoving mastery of the process of

molds/log which requires manipulating the abstract concepts of the

model while keeping in mind the moaning of the relation provided by

the context. This is a form of abstraction quite comparable to the

one characterizing the process of interpretation of cartesian

graphs as described in Janvier(1980).
Along this line of thought, it most be painted out that even

though concrete objects are sometimes involved in such systems,

they remain basically abstract in the sense that the individuals

are always considered as parts of a population and, as a

consequence, the relations between the populations are essentially

statistical in nature. Moreover, the measures that are used are

often very complex such birth rates, fluctuations of the inflation

rate...

.tiderstanding feedback systems: a first approach.

Even though a set of equations defines totally the relations

between the variables, they are meaningless in practical terms

because the interactions are more vividly expressed in term' of

the isolations of these equations which are explicitly represented

by a cartesian graph. We feel well-founded to take the stand that

setting up the equations of a system does not-necessarily involve

understanding it. In other words, we believe that understanding

feedback systems goes far beyond establishing the relations on the

causal diagram.
Apart from the difficulties related to the process of

modeling, it then follows that understanding feedback 'rases
involves using efficiently the different represmatatione

of particularized models in order to supply

chernaterizations of the evolution of the system.

In fact, an it has just been mentioned, a particularized

system is more adequately described by a set of curves showing

the evolution of each variables on the same cartesian graph which
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we call a multi -nurse diagram (see figure 3). On the other hand,
the relations illustrated by the causal diagram is in no ray
contained in a multi-curve diagram. As it is shown in Janvier(1978)
and Preece(1983), the relations between variables of ecological
systems illustrated only by °artesian graph are difficult to
interpret. A first attempt to help students' interpretations would
consist of providing them with an adequate causal diagram as a sort
of support for their reasoning. We are then led to define in a
first approximation maderetaadiag feedback systems as a form of
coordination between the causal diagram and the
corresponding (multi-nerve) °artesian graph in view of
being able to supply a characterization of the evolutioe
gf the eyettn.

Some difficulties.

spp t000 1500
Time (DAYS)

PryLed. 3.

With this notion of understanding in mind, we shall examine the
structure of such systems in order to determine the difficulties
which one meet in dealing efficiently with them.

The basic component is the feedback loop and we shall
examine its internal complexity."Didactically speaking",one can
distinguish two irreducible kinds of feedback loops.
The first kind is a loop in which one of the elements is introduced
in order to control the level of a variable. Such systeme are
simple in the sense that the value of the controlled variable tends
to pre-determined objectives that are attained through well known
patterns. Examples are the temperature of a room with its
thermostat, the speed of a steam machine together a Watt
centrifugal controller. The system shown if figure 3 is another
example.

In the second type, two populations interact 'lane they obey some
internal growth lawn. the system described by figure 2 would then
be more adequately represented by figure 2'(next page) which shows
clearly why the characterization of the evolution of the system is
more difficult to achieved.

Feedback loops involve variables who's changes induce an
inlrease or a decrease in the other variables. Now, Rene de Cotret
(1985), Jim Ponte(1983), Kerslake(1977) and Janvier(1978) have
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shown that for a single variable students have trouble going beyond
a linear relation. They also shoved how difficult it is for them to
dissociate a rate of change from the actual value of the variable
at one instant. For example, the tide is said to rise feat when it
is high. Rena de Cotret appears to have reduced this sort of
difficulty with a teaching method based on meaningfulful
experimental work. However, feedback loops are more exacting in the
sense that they involve two variables and their respective rates of
change. Understanding feedback consequently require. being
able to coordinate the interaction of two variables and
their rate of change within a curtain class of
inter-actions

Reprocluct.o,

figure 2'

Reproduct or,

Another kind of difficulty an understanding of feedback

systems must take into account is a new kind of relations
between variables due to the fact that feedback loops describe a
process which is basically dynamic. More explicitly, the first
phenomena that are introduced to students in their science courses
are such that one variable determines another one and vice versa.
For example, the temperature will determine the length of a rod;
the density of a particular liquid, the rate of a certain chemical
reaction... The analytical scientific method presupposes that

experiments can be carried out in which we examine the effect of
one variable on another, while the other ones are being kept fixed.
This is not possible for feedback loops. No variable can be
assumed to be in a way controllable nor can they be considered
independent. In feedback systole, there are no independent
variables (except time possibly!). This fact constitutes a
major obstacle.

Toward. th inttoduation of the phase diagrams.

Since understanding can be regarded as as a form of coordination
between two forma of external representations, it seems

pedagogically sound that it would be developed through a simulation
that would facilitate the coordination of representations when some
control of the system can be achieved through liter-active

features. There exist on the market to-day several computer

programs which simulate a particularized model directly from the
definition of the relations established with only the help of the
causal diagram. However, we dismiss the fact that this kind of
simulation can be beneficial because it does not allow real

experimentation with the system. In other word., when the relations
between the variables are fixed and the population determined, the
simulation is carried out and illustrated by a multi-curve diagram,
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and no change), can be made when the simulation is under way. An
experimentation is needed that would allow the students to
modify the conditioaa or the relation of the system at any
time and examine the aommerpimaceno of each modifications on
the system. Clearly, the coordination between °artesian graphs and
causal diagrams is not sufficient because the changes induced on
the curves are complex and very confusing.

As we look for a more refined representation, a more profound
trouble with the coordination of cartesian graph with the causal
diagram can be singled out. The relation suggested by the causal
diagram contradicts what is revealed on the multi-curve one. When
one looks at the behavior of the populations (see figure 3) around
day 800, an increase in the number of the mice takes place at the
same time as a reduction in the number of cats which contradicts
the relation "tho MGM prays, the Acre prodatore. In order to
remove ambiguity, the relation could be reformulated the following
way: "an increase in the number of preys will magnify the envisaged
increase of the population of predators or will slow down a
reduction of the population of predators which would be underway.
However, this makes the resulting causal diagram pretty awkward.

Understanding feedback systems: a more refined approach.

Inspired by several fundamental studies in the field Schaefer
(1967) and Braunschweig(1985)we think it is necessary to introduce
in our analysis phase &agrees that work well for 2 variables.
It consists of a curve in a cartesian plane (see figure 4) whose
points (two co-ordinates) represent respectively the size of two
populations at one time. The evolution of both populations is then
represented by this continuous curve in the plane. The main
shortcoming of such diagram is that time as a variable is not
represented as in the °artesian graph. Temporal reference must be
added now and then according to the needs as we have done with the
T1, T2, T2,... A system of three variables would require using the

apace. The evolution of the system would then be a three-
dimensipnal path.

30

20

lo

I-<

;to IAMB MICE

figure 4: Phase diagram corresponding
to the °artesian diagram of figure 3.

Phase diagrams are very efficient for representing a series of
rarticularized models because their genuine cyclic evolution gives
rise to closed curves in the phase diagram. This is shown in figure

figure 5:
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5. Heedless to say, we simplify things here since in pertain models
the populations may spiral it or out. In other words, the

evolution of systems involving any combination of two populations
would be modelized (under rather general conditions) by one of the
path shown in figure 5. Changing one population during the

evolution of a system would mean going from one curve another one.

Figure 6 shows what is the consequence in terms of evolutions to
reduce the number of mice.

rizom c: TO C3
tr

figure 6 Mica figure 7

Consequently, when understanding feedback systems is

amaiated with coordinating efficiently clausal,

multi-curve and phase diagrams, it involves them not only
being able to supply characterizations of the evolution of
a system but also predicting OW effect of a abonge of cue
ROsnlietioect.....atemettleitt its evolution.

Clearly all the previous difficulties stay the same. Hammer more
is required.Phase diagrams show clearly the contradiction mentioned

and reveals a lot about the dynamical structure of feedback

systeme.Figure 7 shows the dramatic consequence of killing too many
insects.Birds disappear and insects come back ma foram

Testing understanding.

We plan to oonduot three experiments all related in a special

manner to the notion of understanding of feedback systems defined

above. The three are intimately linked with a computer program that

is now in production. It consists of a game in which the student

play the role of a piscioulturist who exploits a fishing reserve

(pisciculture entreprise), Two kinds of fish are involved :

predator (blue) and prey (yellow). They are symbolically mixed in

a rectangular "lake" in the center of the screen. They do not
appear individually but only in a homogeneous mixture. According to

thoir ;ratio, the green color of the "lake" may be more bluish or

more yqllovish. A column on each side of the rectangle represents

anyhow the size of each population permanently. The piaciculturist

cam allow fishing and be paid; or he can stack the lake with blue

or yellow fish and pay for it. There is on the screen a "bank

account" that varies along with the transactions. The winner is the

one who makes the best performance at controlling the system and

makes more money with it while "keeping the lake in good shape".

The program will be used in another version in which a phase
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diagram appearing in the corner of the screen will exhibit the
state of the system at each instant.
1.- We vill test the offiulency of the two versions. This amountsto verifying how effective is the use of a phase diagram for
controlling the system. It may happen that the regular change of
the green color of the "lake" is sufficient to detect the right
strategy allowing a rational exploitation of the piscicultureentrsprise. In much a case, we shall have shown that certainunderstandings of feedback systems do not fit our theoritiaalframework.
2.- N. will verify whether the knonledge derives from playing with
the computer program enriched with the phase diagram can betransferod to more complex systems such as the sardine -seal-
fishermen ecological system of the St-Lawrence Gulf. In fact, there
exists a film describing technically the relations between these
variables. We wish to check how the computer program would prepare
the student to better interpret the content of the film.
3.- Preece (1986) has created interesting tasks involving
ecological systems that are perturbed and come back to their
equilibrium position. We envisage tasting the influence of the
computer program on the! students' responses to these taroks.
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DIENES REVISITED: MULTIPLE EMBODIMENTS IN COMPUTER
ENVIRONMENTS

Dr. Richard Lesh and lean Herre
MCAT

ABSTRACT

This paper will describe significant ways that computer-based instruction
can encourage teachers and students to make greater use of activities with
concrete materials, while at the same time providing a useful context for
implementing some of the best instructional strategies associated with
mathematics laboratories including some strategies, which before, have
never worked well using concrete materials. There is not enough space in
this paper to present research results concerning the success of the
computer-based activities used to illustrate Dienes' instructional principles;
however, our presentation will focus on these results, pat ticularly as they
apply to higher order thinking.

DIENES' MULTIPLE EMBODIMENT PRINCIPLE

Past RN, PR, and AMPS publications (e.g., Lesh, Landau, & Hamilton,

1980; and Behr, Lesh, Post, & Silver, 1984) have identified five distinct
representation systems that occur in mathematics learning and problem solving.

These are (a) "scripts" in which knowledge is organized around "real world" events

that serve as models for interpreting and solving other kinds of problem situations;

(b) manipulative models (such as Cuisenaire rods, arithmetic blocks, fraction bars,

number lines, etc.) in which the "elements" in the system have little meaning per se,

but the "built-in" relationships and operations fit many everyday situations; (c)

pictures which, like manipulative models, can be internalized as "images"; (d)

spoken languages, including specialized sub-languages (e.g., logic, etc.); and (5)

written symbols which, like spoken languages, can involve specialized sentences
and phrases, such as: (x + 3 = 7, A' u B' = (A c) B)') as well as normal English

sentences and phrases.
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Not only are the translation processes between models in different
representational systems important components of understanding a given idea,
they also correspond to some of the most important "modeling" processes needed

to use this idea in everyday situations. Essential features of modeling include (1)

simplifying the original situation by ignoring irrelevant characteristics in order to
focus on more relevant factors, (2) establishing a mapping between the original

situation and the "model," (3) investigating the properties of the model in order to
generate predictions about the original situation, (4) translating (or mapping) the

predictions back into the original situation, and (5) checking to see whether the
translated prediction is useful.

Here is an example where the preceding steps are used to solve a standard
algebra weed problem:

Al has an after-school job. He earns $6 per hour if he works 15 hours per
week. If he works more than 15 hours, he gets paid "time and a half" for

overtime. How many hours must Al work to earn $135 during one week?

To solve this problem, students may begin by paraphrasing the given
"English sentence" into their own words, perhaps accompanied by a diagram or
picture of the situation. Next, the description of the problem can be translated into
an "algebraic sentence": (6 x 15) + 9(x - 15) 135. 'Then, a series of algebraic
transformations can be used to convert this algebraic model into an arithmetic
sentence that is sufficient with which to find the answer. The final transformed
description is:

x 151 +15
9

Finally, by using a series of arithmetic simplifications, this arithmetic sentence can

be reduced to: x 20.

So, beyond the paraphrasing and diagramming, the entire solution process

involves three significant translations: (1) from an English sentence to an algebraic

sentence, (2) from an algebraic sentence to an arithmetic sentence, and (3) from an

arithmetic sentence back into the original problem situation.
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Notice that the algebraic sentence that most naturally describes the

preceding problem situation does not immediately fit an arithmetic computation

procedure. This possibility of "first describing, and then calculating" is oneof the

key features that makes algebra different from arithmetic.

As the preceding problem illustrates, problem solving often occurs by (1)

translating from the "given situation" to a mathematical model, (2) translating the

model-based result back into the original problem situation to see if it is useful.

However, the modeling process usually is not this simple. Instead, in modeling

students frequently use several representation systems (or models), in series or in

parallel, with each depicting only a portion of the given problem situation.

We found that for realistic textbook word problems, good problem solvers

are flexible in their use of various relevant representational systemsthey

instinctively switch to the most efficient representation at any given point in the

solution process.

DIENES' CONSTRUCTIVE PRINCIPLE AND PERCEPTUALVARIABILITY

Helping students construct a system of mathematical relationships is

similar to helping students coordinate systems of overt activities like those

involved in playing tennis or riding bicycles; that is, the student begins in

situations in which the complexity of the system and the degree ofcoordination arc

minimal (e.g., all of the balls come waist high on the forehand side just within

arm's reach) and gradually progresses to situations that require more complex and

well-coordinated systems (e.g., where "getting in position" is important).

In general, building more complex systems involves: (1) integration e.g.,

simple systems are linked together to build more complex systems, as when a tennis

serve is built up by gradually linking together the toss, the hit, the follow-through,

etc.; (2) differentiation--e.g., a single system is differentiated to produce two or

more distinct variations, as when a forehand volley is varied slightly to produce top

spin or backspin.
Poorly integrated mathematical systems are similar to poorly coordinated

systems because (1) the student will not "read out" all of the available

informatione.g., when first learning to ride a bicycle or hit tennis balls, a great

deal of relevant information is not noticed; (2) the student "reads in" interpretations
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that are not objectively givene.g., when first learning to ride a bicycle or hit tennis
balls, the student's description of an activity is often distorted and biased.

Both of these factors also appear when, for example, an "eye witness" to an
accident interprets given information in a way that is biased (because only selected

pieces of information art noticed) and distorted (because what "made sense" and
what was "expected" influenced the interpretation of what actually happened).

Similar biased and distorted interpretations also influence students' mathematical

judgements in graphics - related problems like the examples in this section.

Next, an example will be given to show how the basic approach of "taking

apart" and "reassembling" mathematical ideas can be extended to basic algebraic

concepts. We will focus on "unpacking" the systems of operations, relations, and

transformations that underly the basic concepts of linear equations and simple
polynomials.

The activities that follow are based on a symbol-manipulator/function-

plotter called SAM that WICAT developed to enable students to write, graph,

transform, and solve algebraic expressions and equations. In lessons, SAM helps

students learn some of the most important basic ideas in algebi i or calculus, and

the algebra ideas can make SAM more useful for problem-solving situations that

students want to address. However, SAM is more than a calculator; it has the
following characteristics:

1. SAM can serve as an expression checker. We don't have to wait untill

students give final answers to know whether they are proceeding along

correct solution paths. We can, for example, assess whether they "set up"

the equations correctly.

2. SAM is LISP-based, so it not only generates answers, it can produce

solution path "traces" that create many instructional capabilities. For

example, it allows us to: (a) generate hints by gradually revealing

solution steps one at a time, (b) monitor individual steps in students'

solution paths, (c) let siudtnts examine processes as well as products

of solution attempts, and (d) give students the capability to build/edit/

store equation-solving routines (like the quadratic formula) in a LOGO-

like fashion.
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3. SAM's symbol manipulation capabilities interact with its function plotter

to produce graphic interpretations of transformations leading to solutions.

This gives students ways to visualize symbol transformations, and (in yet

another way) to focus on processes as well as "answers" dining solution

attempts.

4. SAM can reduce answer-giving phases of problem solving so that

attention can be focused on "nonanswcr- giving" phases (e.g.,

problem formulation, trial solution evaluation, the quantification of

qualitative information, the examination of alternative possibilities, etc.)

where "second order" (i.e., thinking about thinking) monitoring and

assessing functions often are especially important. So, SAM is not

simply an answer-giver, it can help students to go beyond thinking

to think about thinking.

For polynomials, it is easy for students to use SAM to carry out the

following kinds of investigations:

1. Pick a value for n, between -10 and 10, and investigate the changes that

this value produces in the graph of the linear expression: nx.

2. Plot the graph of the squared term, x2; then plot the graph of the linear

term, nx (as in step 1 above); and finally, plot the graph of the polyno-

mial, x2 + nx. Notice that the polynomial crosses the x-axis at the points

zero end -n.

For example, Figure I shows the graph of x2 and 4x. Figure 2 shows

the graph of the polynomial x2 + 4x.

1/
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After repeating step 2 for a series of different values for n, is is easy for students
to notice that the effect of adding x2 and nx is to "slide the graph of x2 downhill
along the line nx." Furthermore, it is easy for students to notice that the amount
of the slide is just enough to make the polynomial's graph pass through the
points zero and -n.

3. Polynomials from step 2 can be factored into the form x(x + b), and each
of the linear factors can be graphed as shown in Figure 3. Then notice
that the two lines pass through the points zero and -a.

II. Ita.414
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Flaunt 3

Step 3 shows why we can solve polynomials by factoring, setting each of
the linear factors equal to zero, and then solving these linear equations.
The linear terms are equal to zero at exactly the same places as the original
polynomial.

In this example, the two models involved are (a) written symbols which (although
they arc on a computer screen) are like those mathematics teachers write on
blackboards, and (b) computer graphics, consisting of graphs of equations in a
rectangular coordinate system. Nonetheless, the computer-based activities using
direct applications of Dienes' instructional principles can be created. For example:

The constructive principk is involved when we "take apart and then reassemble"
complex mathematical systems related to polynomials.

The multiple embodiment principle is involved when we focus on mappings

between two given models (i.e., written symbols and graphs of equations).
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The dynamic principle can be used to show how transformations performed on

algebraic equations are reflected in changes in the graphs of the equations at each

step. For example, in the next section, we will show how a slight variation on

the preceding sequence of activities can be used to show why the "completing the

square" process works in the derivation of the quadratic equation.

Even though the "materials" used in the example are computer-based
graphics rather than "concrete materials" in the usual sense of this word, the
activities can indeed involve overt actions that students can apply to "objects" that

they can see and manipulate; and for the first time Dienes' instructional principles

can be applied to content areas like "polynomials" which did not seem to lend

themselves to a "mathematics laboratory" form of instruction.

DIENES' DYNAMIC PRINCIPLE

Models like coordinate graphs or systems of linear equations can be considered

"conceptual amplifiers" because when they are used, they help students use their

ideas more effectively. They are not simply inert systems that have no meanings;

once students learn to meaningfully embed mathematical systems (ideas and

principles) or problem situations within them, students are able to "read out'

additional meanings.
A dynamic representation system, once constructed, actually helps students

to generate significant new questions and to generate sophisticated solutions related

to two of the most fundamental ideas in algebra; that is, our students have used

informal language to describe rather deep principles related to (1) invariance under

mappings among isomorphic systems, and (2) invariance under transformations

within a given system.
The following example illustrates how computer environments.= well-

suited to Dienes' dynamic principle. Whether we are dealing with linear equations

and graphs, fraction diagrams and simple proportional reasoning questions, or

with polynomials, computers make it easy for the student to manipulate one model

and immediately see corresponding transformations in one or more other models.
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This example has to do with the process of "completing the square," which
can be used (prior to using the quadratic formula) to find the mots or factors of
quadratic equations like x2 + 2x - 3 =0. Figure 4 shows the graph of x2 + 2x - 3 =
y and y = O. Figure 5 shows the graph of x2 + 2.: = y and y = 3. Then, Figure 6
shows the graph of x2 + 2x + I = y and y = 4. Notice that the tip of the parabola
just touches the x-axis. (Is this significant? Would it happen for other quadratic
equations? Which kinds?) Figure 7 shows the graphs of x + I = y and y = ± 2.
Notice that the diagonal line goes through the x-axis at the same point where the
parabola had touched. (Is this significant?) Figure 8 moves the graphs in Figure 7
so that the diagonal line goes through the origin of the graph. (Is this significant?)
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CONCLUSIONS

In general, we are in sympathy with those LEGO BEFORE LOGO

proponents who believe that children's mathematical abstractions should be built of a

firm foundation of experiences with real manipulable models and realistic problem-

solving situations. However, we also know that even real concrete objects often arc

used only in very abstract ways and that very few teachers successfully use concrete

activities as a significant instructional tool. On the other hand, we have seen that

when students use the kind of computer-based activities described in this paper

(many of which are electronic versions of the kinds of concrete models that we really

hope students will have the opportunity to explore), their teachers actually become

more likely to use "mathematics laboratory" activities with real concrete materials.

This increased use of real concrete activities seems to occur because computer-based

simulations of mathematics laboratories tend to minimize the reason why teachers

rarely use concrete mathematics laboratory principles.
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USING MICROCOMPUTER-ASSISTED PROBLEM SOLVING TO

EXPLORE THE CONCEPT OF LITERAL SYMBOLS-

A FOLLOW-UP STUDY

Gary T. Nelson

Kennesaw College

This paper reports on a follow-up to a 1985 study
which used computer-oriented problem solving as a
vehicle for investigating the development of the
concept of literal symbol. The objectives of this
study were: i) to determine ways in which the sub-
jects currently perceive and use literal symbols;
ii) to investigate the subjects' concept of literal
symbol in light of instructional intervention over
the past two years; iii) to determine whether
computer-oriented problem solving can have long-
term effect on the concept of literal symbols.

In 1985, the author conducted a study using the microcompu-

ter as a tool in investigating concept development (Nelson,

1985; 1986). The study's purpose was to investigate ways

that computer-oriented problem-solving activities influenced

the learning of the concept of literal symbols and their use

in certain noncomputer contexts. A secondary purpose was to

investigate the subjects' perceptions of literal symbols in

LOGO procedures.

The four subjects were average-ability fourth-grade students

with no previous experience in the use of LOGO. They were

taught to use LOGO to solve problems involving number sen-

tences, rectangles, and recursion. The following sample pro-

cedures, taken from the subjects' work disks, illustrate

such uses.
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1. TO DT 2. TO FRED

IF 12 = 5 + :BOX [PR :BOX STOP] FD 20

MAKE "BOX :BOX + 1 LT 90

DT FD :X

END LT 90

FD 20

LT 90

3. TO DT. FD :X

PR :C END

IF :C = 1 [STOP]

MAKE "C :C 1

DT.

END

The first procedure uses a recursive technique to solve the

sentence 12 = 5 + x. The second one draws a rectangle whose

width is assigned by the user. The third procedure generates

a sequence of numbers from C to 1, where the value of C is

assigned by the user.

Each subject was interviewed before and after the instruct-

ional and problem-solving sessions. There were six sets of

tasks in the initial interview. Task set 1, which included

items such as 8 + 7 = 19, was used to investigate the con-

cept of equivalence. Task sets 2 and 3, which included items

such as 9 - 16 and x + 8 = 19, respectively, were used

to examine the subjects' perceptions of non-literal and lit-

eral symbols in number sentences. Items in sets 4, 5, and 6,

which all related to rectangles, were designed to explore

the subjects' knowledge of rectangles and area. The tasks in

the final interview included six sets of tasks similar to

those used in the initial interview, as well as tasks which

required the use of LOGO.

During the winter of 1987, the author conducted individual

interviews with three of the subjects, Alex, Josh, and Dick.
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Beth could not be interviewed since she had moved the previ-

ous year. Each child was presented with tasks similar to

those given during the final interview in 1985. The inter-

views were videotaped and transcribed for use as data. The

objectives of the study were:

1) to determine ways in which the subjects currently

perceive and use literal symbols as compared to

1985;

2) to investigate the subjects' concept of literal

symbols in light of instructional intervention

over the past two years;

3) to determine whether computer-oriented problem

solving can have long-term effect on the concept

of literal symbols.

THE SUBJECTS

812.4

When presented with the task 14 + 4 = 20, Alex indicated

that the x was "like a box" and represented a number. He

also stated that replacing x with a different letter did not

affect the missing value. His percepticm and use of literal

symbols in equations were consistent with his behaviors

during the final interview in 1985.

Alex could compute the area of a rectangle when given the

length and width and was able to write an expression for the

area when one dimension was missing. Given a 7 by x rec-

tangle, Alex indicated that the area was 7 times x. He knew

that the area could be computed only when 4 was given a

value. During the final Interview in 1985, Alex could write

expressions for area, but he always tried to estimate a

value for any missing dimension.
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He remembered the LOGO commands FORWARD, LEFT, and RIGHT.

Alex also remembered that, in the statement FD :D, the let-

ter la represented a missing number. However, he had forgot-
ten how to use the MAKE command to assign a value to a.

Alex was also shown procedures which found a missing number,
or generated sequences of numbers. He was aware that the lit-
eral symbols represented numbers, that a symbol could repre-
sent any of a set of numbers, and that changing the letter
did not affect the output.

Alex had not worked with LOGO since the 1985 study, yet he
recalled all of the basic LOGO commands and could interpret

some procedures. Through discussions with the interviewer,

he demonstrated the ability to analyze procedures which used
literal symbols to count or solve simple equations.

Dick

In 1985, Dick initially attempted to solve sentences such as
+ 9 = 24 by using a one-to-one correspondence between the

positive integers and the letters of the alphabet. During
the final interview, he correctly solved all equations,
indicating that the letters represented a number and that

changing the letter did not affect the value. In the follow-

up study, Dick's concept of literal symbols appeared un-
changed since he still solved sentences correctly and indi-

cated the same understanding of the symbols and their use in
the context of equations.

Dick could also write expressions for area using letters, al-

though he attempted to estimate the length when given a 4 by

n rectangle. He soon corrected himself, stating that the ex-

pression "4 times a" represented the area and that the n
stood for a missing number.

Dick recognized the LOGO commands FORWARD, LEFT, and RIGHT;

he stated that "RT 90" told the TURTLE to turn right 90 de-
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grees. He remembered that letters in LOGO procedures repre-

sented numbers in memory, but he was unable to use MAKE to

assign values. When prompted by the researcher, Dick could

analyze LOGO procedures involving recursion or solutions of

equations. He could discuss the role of literal symbols, but

did not recall the LOGO commands. This is not surprising,

since Dick had not written or used any LOGO procedures in

two years.

Isiah

At the end of the 1985 study, Josh was able to solve equa-

tions correctly, even though he had initially used an alpha-

betic correspondence to find missing numbers. He was aware

that literal symbols could be "anything you want" and that

using different letters did not change an answer.

Given the sentence 14 + A = 20, Josh found the answer by sub-

tracting 14 from 20. He still knew that the letter was used

"to put something in." It appeared that his concept of liter-

al symbols in this context had not changed.

During the discussion of a 4 by a rectangle, Josh wrote

"4 x a" for the area, stating that the a stood for the

width. He then stated that, instead of representing any num-

ber, a was the number "that would fit for the length." Josh

could interpret and discuss the use of literal symbols in

counting procedures and in procedures that solved equa-

tions, although he did not recall all of the LOGO commands.

Josh, like the others, had not been exposed to any LOGO

since the 1985 study.

INSTRUCTIONAL INTERVENTION

The researcher interviewed teachers and examined textbooks

to determine the role of instructional intervention in the

subjects' perceptions of literal symbols. All subjects
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attended the same elementary school during the fifth grade,

where they were each placed in average-ability groups. They

used the text Heath Mathematics-Level 5 (1979), which did

not address literal symbols.

Alex and Dick went to different middle schools, where they

were again placed in average-ability groups. The adopted

text for the sixth grade is Growth in Mathematics, (1978).

According to Dick's teacher, letters will be covered at the

end of this school year, as an enrichment activity. Alex's

class had studied equations in the two weeks immediately

prior to this study. The teacher explained that the letters

represented "missing numbers," and taught the students to

solve simple equations, such as y. + 35 = 45 and

21a + 49 ... 63. She recalled that Alex, as well as most of the

class, scored well on the unit quiz.

Josh is currently attending a private middle school which

uses the text Arithmetic 6 (Howe, 1981). The unit on equa-

tions will be covered in a few weeks; consequently, Josh had

not received instruction on literal symbols before the

follow-up study.

RESULTS AND CONCLUSIONS

Although none of the subjects had used LOGO since the 1985

study, they were all able to recall and use the basic com-

mands, such as FORWARD, LEFT, and RIGHT. They were also able

to interpret literal symbols in LOGO procedures. This sug-

gests that the manipulative nature of LOGO, which allows one

to model literal symbols in a semi-concrete manner, contri-

butes to the remembering of both the language and its rela-

tionships to literal symbols.

All subjects behaved similarly when responding to tasks

which involved literal symbols in equations. This is signifi-
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cant since Alex, who had received instruction in this topic

only a week earlier, did not appear to use literal symbols

any differently than the other two subjects. Furthermore,

all three were able to use literal symbols to represent

missing dimensions of rectangles when writing expressions

for area.

Based on the above facts, it is the conclusion of the author

that, at least for the three subjects and in the given con-

texts, microcomputer-oriented problem solving has a long-

term effect on the concept of literal symbols. The results

suggest that the computer can be a powerful tool in the de-

velopment of mathematical concepts and that it can provide

concrete models of literal symbols.
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Am:Immo:I DUN LANGAGE GRAPHIQUE DE CODAGE PAR LA

MODEUSATION EN TEMPS REEL DES DONNEES D'EXPERIENCES.

PIERRE NONNON

UNIVERSFTE DE MONTREAL

Scion Piagot (1979),'ta liaison tondamentale constitutive de touts connalssance

West pas une simple auociation entre objets car cello notion neglige de lax ractivite due

aux sujets , mais den Yeasimilation dos objets A des shames de ce suffer. L'acquisition des

representations est vue id comme Mara associee au developpement intellectual, elle

permet A l'elitve, par la manipulation it texperimentation directe do son environnement,

de se constwire un systeme de representations Wales. Cette construction, laissee aux

Mess de la vie ou A Fimaginaire sera la base de representations plus cukurelies, plus

scientiliques. Le passage entre cos deux types de representations Initiates et

sclentiliques, nest pas aka; dui robstacitt apishimologique (Bachelarci 1967) qui serait

(ranch' par l'assimkation ou Is remplacemeM des Wellies representations par des

representations plus scientklues.

Salon Pelvic) (1979) nous utiliscrions deux systemes symboliques de codage de

l'information un systeme de representation verbale qui precede de maniere abstraite et un

systems de representation irnagee qui precede A pant( crexperiences concretes. SI la

fonction algebrique du premier degre A cause de son caractere abstrail pout etre assocIde

au premier systems de codage, la representation graphique de cells memo fonction, A

cause de son caractere figuratk, pourraft etre associee au second systems de codage si

Ion est capable de permettre son apprehension A panic d'experiences concretes et non

plus a pat* dune representation aigebrique abstraite. Nous devrions Mors panic de la

manipulation et de ['experimentation concretes dans le but de permettre une construction

progressive de la representation graphique (codage visual), avant de nous servir de cette

representation, Olaboree au contact de la realite, comme support pour comprendre et

assimiler ('interaction entre variables en physique.
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OBJECTIFS

Les (neves d'initiation aux sciences ort de Iadifficult( a se represents( rinteraction

entre variables de maniere Oconomique it eflicace. La representation graphique de cetto

interaction est certalnernent routil le plus adequat pour prendre en cornpte ('ensemble de

ces Interactions a la condition qua celui-ei sok maitrise it significant pour relay.). Or II

semblerait quo memo lorsque cot outil est mattrise on mathOmatique, II ne devient pas

automatiquement disponible 8 roleye pour resouctre des problomes de physique . Les

Melees en mathematique sore capables do dedulre une valour de y en lonction de x, is

partir du graphique ou de Ia fonction algebrique. Its peuvent memo litre capables de

determiner une lonction algebrique du premier *WI a partir de ce graphique en isolant

deux points sur celui-cl. Par contre,tres peu sent capables de ruttliser efficacement on

dehors des mathilmatiques pour par exempie prbdire ou expNciter une Interaction entre

variables.

En physique Ia connection entre le phenomena it sa representation graphique

n'est pas meilleure pulsqu'il s'eflectue a posteriori, lorsque rexperimentation est terminee.

La representation graphique sort Wore a syntheilser lee resultats experimenfaux en silent

du tableau des mesures au graphique, at I'OIOve pour comprendre of se representer

rinteraction des variables dolt reconstkuer mentalement le phenomene physique on

memo temps gull varifie son evolution sur le graphique. Cotta tacon de tetra apprendre

l'interaction des variables avec un graphique ou raction it la representation sent

temporellement sepanies est difficile iti apprehender pour l'Oleve. Nowt voulons Ici

proposer une method° 0 caractere technologique qui permettrak de presenter ('action of

Ia representation de celle-ci en slmultaneke. Pour evaluer le benefice de cette methods,

nous allons Ia tester avec des oieves n'ayant pas encore etudie ralgebre et la fonction du

premier degre.

Cette representation graphique initiate serait alors prealable A l'etude de la fonction

algebrique du premier degre it devralt permettre 0 roleve de mleux assimiler cello

representation au phenornene physique quit etude. Nous serums constants quo cane

pedagogle de la representation graphique, acquise au soul contact de la reads, semble

utopique sans to support algebrique traditionnellernent utilise. II n'existe pas a noire

connaissance de recherche qui permettrail d'appuyer empiriquernere cede ides, aussi

allons nous construire un system° d'apprentissage de la representation graphique

originate pour permenre O retudiant d'acquerir cells -el au contact direct it sensible de la

realite, par Ia rnodelisation en temps reel de donnees d'expdriences en laboratoire.
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Ensuitt, nom' mettrcns Is prototype de ce systerba crapprentissage l'essai avec

le double obleaW:

1) dick naior lee bAnefices potentials de ante kW a penis des Interpretations des

Neves en situaior. d'apprantissace

2) de vt dile( xi cane acquisition de la representation graphique au contact de la

realite permet t, l'eleve de predire i part* de ca graphique les interactions entre les

variables, vitesso, distarca it temps en cinernatique.

Pour conclure 110418 presenterons quelques pistes de recherche sous forme

d ,Iypothese albs de valider cede bee.

klETHOOOLOGlE

Cetto recherche comports une grand. part de developpement, la modelksation en

temps reel dos donhoes d'experiences Mate effectuee par un ordlnateur qui travaillera

-imullanement on mode conversatbnnel, en controls de provide et en mode graphique.

slous avons done e,fectuti ce developpement, concretise par un prototype permettant

aux &Ayes de provoquer at conceptualises des interactions de variables en cinematIque

paa la manipulatkm Id Is contrdle via un micro-ordinateur d'un train Otectrique {reset. Ces

eleves peuvent Mors planIfler des experiences, en commander l'executIon et

simultanement au deplacament du train , visualiser la representation graphlque de ce

deplacement en tonctlon du temps. (voir NONNON, 1986).

La source des donnies

Les donmies de cede experience provionnent de deux sources ditlerentes, un

ensemble traditionnel de tests comprenant un test de pairequis, un pretest et un postest,

(un exemple de question est donne en appendice) et une analyse du cheminemer4 de

redeye eftectueo a par* de ses diverses manipulations quo nous avons conservees dans

un Itchier.

Carecterlstiques des *Wets

Los subts de cells experience sont des sieves de 5Ieme at 6Ierne annees du

primaire . Le pretest a et( administrit en classe sur quarante -trots Otudiants.

De ces (tudlants, 14 turent selectionnes pour l'experimentation salon trots

criteres: 1) une note au moins (male A la moyenne au test de connaissances proatables

(notions de temps, de longueur, de mesure constants, 2) une note (male Oil inferieure A la

moyenne au pretest, 3) une disponibilite pour se rendre 3 ft* de suite au laboratoire

l'Universite.
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Shams experimental

Chaque grieve recevak to consign at une demonstration sur roperation du

systeme experimental par un olive expert. 11 manipulait ensuite durant 20 minutes par

seance at realisak 3 seances 3 raison dune par Jour, au 3ieme jour, k etait soumis au

post-test pour les 6 premiers sieves, la manipulation disk laissee a leur fantaisle alors qua

pour les 8 demiers, nous our demandions avert la 2i4me séance de faire des predictions

sur les mouvements suocessils du train.

LES RESULTATS

Les differences entre le pretest at le postest pour les six premiers Sieves n'a

montre aucune amelioration passant de 36.4 a 39.4 %. En analysant is cheminement de

cheque slave, nous avons compte les manipulations (efficaces) qui impiiqualent un

nouveau couple de parametre non encore experiment.. Nous swoons exists avec les

parametres vitesse, distance at temps . Trois couples possibles (distance on fonction du

temps, vitesse en fonction de Ia distance at vitesse en fonction du temps). Ce qui

correspond a une sequence de 6 manipulations simples pour 'Mink entierement

!Interaction de cos trots variables. 'indice qua nous avons ukase sera donc de rximbre (6)

de manipulations optimums divise par is mantra de manipulations Males effecturies par

releve.

SI nous effectuons une correlation entre les resultats obtenus par cheque Mays a

cat indice crefficacite at sa performance tells qua mesuree par les differences post-test

-pre-test, nous obtenors une correlation de + 0.814 (r- 2.803, dh4, p<0.05).

Pour les premiers sujets, une correlation significative entre Ia performance tette qua

mesuree au test et rindice de cheminement de relive nous perrnet d'envisager rutilisation

de cat indica corm* alters de performance pour relive.

Pour les huit clarifiers sujets, is fait de les obliger a prodire is resullat avant memo

de commander lour train sembie benelique puisque cheque Cave a augments sa

moyenne entre to post-test at to pre-test, Ia moyenne generate passant te 45 Y. au

pro-test a 84 % au post-test.

Ces mises a reseal empiriques nous ont penis d'analyser noire prototype at ses

conditions d'utilisation. Avec les huit deniers sujets, nous avons pu verifier qua sous

6tudlants avaient amellore lour performance dam Ia prediction ou rinterpoltation J

interaction entre les trois variables en faux; les moyennes passant de 45% au pretest a

84% au postest.
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CONCLUSION

Nous avons concu un systeme d'apprentissasge de ('abstraction par
representation graphique. Ce systerne laboratoire qui presente en simultanoite ('action et

sa representation permet A releve d'acquerir un langage graphique de codage. Ce

langage A composante visuelle, qui constitue une abstraction des interactions de variables

au laboratoire est acquis au soul contact de Ia [tate, sans support verbal. II s'agit bel et

bien dun 'engage, dun outil cognitif A la disposition de Mem puisque c'est A travers Iui,

par une syntaxe irnplicite (de Ia correspondence, de ('interpolation, de ('extrapolation, de la

variation de pente) que reieve ()Mira ou interpretera tous les deplacements de son train

en fonction dune quelconque combinaison des variables. Nos premiers resultats sont

encourageants, mais nous avons encore beaucoup A faire pour comprendre et maTtriser

ce nouvel outil. Nous allons maintenant, pour terminer vous presenter sous forme

d'hypotheses un ensemble de recherches que nous sommes en train de planifier pour en

assurer une validation.

HYPOTHESE 1

La presentation concomitante de ('action et de sa representation graphique

tavorise ('acquisition d'un Langage graphique, disponib4e pour Ia resolution de problernes.

RatIonnolila matrise de ce 'engage graphique pourrait se verifier de differentes

acons, par exempla en demandant A releve de predire une interaction non encore

experimentee. Un resultal po.. itil indiquerait icl que l'eleve apprehende to mouvoment du

train A ('aide de la fonction graphique, incluanl implicitement les concepts d'interpolation et

ces concepts n'etant pas encore formalises verbalement chez lul. Cet

ap, sage de ('abstraction serail encore plus significatif, le langage graphique aurait

plus de coherence, si ron pouvail verifier rutilisation spontenee par releve de ce 'engage

pour apprehender un nouveau champ de connaissances. On constaterail alors quo releve

a bien integre cat instrument conceptuel et gull lui est significatif en lui tacilitant Ia

production d'hypotheses, Ia planification des schemes experimentaux et 'Interpretation

des resultats.

HYPOTHESE 2

L'acquisition dune lonction (graphique) du premier degre, telle que decrite dans

noire modele d'enseignement, est plus etlicace et transferable que rapprentissage de Ia

fonction (algebrique) du premier degre telle qu'enseignee traditionnellement.

Rationnel: mis en presence du phonomene concret et de son substitut

graphique, tous les deux en evolution coniuguee, releve devrait acquerir rhabilete A

operer des transformations reversibles du concret A l'abstrait.
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En outre, ('acquisition de cette fonction graphique du premier degre se faisant

dans un contexte de laboratoire, la transferabilite de set outil cognitit clans d'autres

domaines d'applicetion concrete, devralt etre superieure A ce qu'on retrouve pour la

notion de tonction enseignee dans une legon de mathernatiquee.

HYPOTHESE 3

Un systems qui permet de planifier et realiser deux experiences simultantles est

plus etticace pour apprifiherider !Interaction des variables qu'un systeme qui impose des

experiences de maniere successive.

RATIONNEL: la difticutte pour l'eleve de planifier et d'executer un scheme de

contr6le dos variables est Nee au wasters sequential de la demarche qui exige au moins

deux experiences sucessives pour decrire une Interaction. La perception directe et

simultanee des resultats de ces deux experiences devrait conduire raleve A mieux en

apprehender les differences essentielles, qua s'il avait A reproduire de memoirs les

conditions et resultats de la premifere experience pour les comparer A ceux de la

deuxieme. Les arguments d'encombrement minimum de la memoire de travail. d'oubli

dans le temps des conditions et resultats passes,ou do lour oubli par interference avec

l'activite presents de la memoirs de travail. vont clans to seas de cette hypothese.
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EXEMPLE DE QUESTION

Le train No.1 route A une vitesse constante pendant 1 heure 25 minutes: it parcourt 123

kilometres.

Le train No:2 route i1 une vitesse constants pendant 4 heures 16 minutes; it parcourt 203

kitornetres.

Duel est le train qui route to plus vita T

Distance

en

kilometres ZA

100

1

Terms (hares)

Encercle la bonne raponse.

3

A) Le train No:1 route A la merne vitesse que le train No:2

B) Le train No:2 roule plus vile que to train No:1

C) Le train No:1 route plus vile que le train Not

D) Le train No:1 route moms vice que le train No:2

2 6 1

4
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THE REPRESENTATION OF FUNCTION IN THE ALGEBRAIC PROPOSER

Judah L. Schwartz

Massachusetts Institute of Technology

Harvard Graduate School of Education

ABSTRACT

Building algebraic functions of adjectival quantity pre

gents the opportunity to represent
functions in a variety

of ways, at least one of which is both novel and illuni

noting. The variety of function representations employed

by THE ALGEBRAIC PROPOSER, a software environment for

algebraic modeling and analysia, is presented and dis

cussed.

P 6 t



-236-

If one constructs algebraic functions using quantities tl-st have
explicit referents in some external world that one is modeling, then
it is possible to represent the functions so generated in vase novel
and interesting ways. This paper will deal with the variety of
representations for functions that are used in THE ALGEBRAIC PROPOSER,
a microcomputer based environment for algebraic modeling and probles
solving.

Perhaps the easiest way to exhibit the several representations is
to work through a 'sample problem, building and representing functions
as we go. Let us consider the following probles.

Working by himself, person 1 can mow the lawn in 2 hr.

Person 1 and person 2, working together, can sow the lawn in
.75 hr.

How long does it take person 2, working by herself, to sow
the lawn?

The probles refers to several quantities by value and one quantity
by nese. These are (1, lawn), (2, hr.), (.75, hr.) and (t, hr.),
respectively, where we have used the symbol t to denote the magnitude
of the unknown tine required for the two persons working together to
sow the lawn.

Figure 1 is a prose representation of these quantities (entries
A-D) as well as a representation of four other quantities (entries
E-H) that are entailed by the original quantities and thus can be
thought of as functions of the original quantities. The reader will
note that in order to solve the probles, one must constrain the
quantity H to be equal to the quantity D.

NOTES

A the job to be done

B mowing time of person 1

C mowing time of person 2

D time for 1 II 2 to mow lawn

E mowing rate of person 1

F mowing rate of person 2

G combined rate of persons 1 A 2

H combined time as function of t

X

L

N
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This prose representation is, in some respects, closest to the

ways in which people think about situations to be modeled, i.e. in

language. While it is richly evocative of the quantities involved, it

represents rather poorly, and in some instances, not at all, the

relationships among these quantities.

Figure 2 shows the prose representation along with a symbolic

representation of the quantities A through H. This representation is,

aside from its insistence on the inclusion

quantities involved the usual symbolic representation

HON MANY MAT

of the referents of the
of algebra.

NOTES

A 1 l A the job to be done

B 2 hawnr B mowing time of person 1

C t hr C mowing time of person 2

D ,75 hr D time for 1 i 2 to mow lawn

E .5 lawn/hr A/B E mowing rate of person 1

F 1/t lawn/hr A/C F mowing rate of person 2

G .5+11/t1 lawn/hr Di' G combined rate of persons 1 & 2

H 1/1,5+11/tll hr A/C H combined time as function of t

1

J J
X X

L L

M N

N
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The preservation of the referents of the quantities in the repro
sentation makes salient the fact that the referent of a function need
not be the same as the referents of either the variable or the fixed
quantities froa which it is composed.

The symbolic representation tends to make the referent quantities
less salient while incremaing the salience of the relationships among
them. Further it represents the relationships with a degree of
precision that is totally unavailable to the prose representation.

Figure 3 shows both the graphical and the tabular representations
of the quantity H that THE ALGEBRAIC PROPOSER provides. It is in no
way remarkable and is presented here only for completeness.

hr

( ) ordinates

S change scale

+ - change step size

RETURN

268

8 ( t( 3 hr

8 ( VERTICAL ( 2 hr

8 undefined

,24
. .214

.48 387

.72 .529

.96 .649

1.2 .75

1.44 .83?

t FUNCTION
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Figure 4 shows the prose representation of the both the original

and the entailed quantities along with a network representation of the

computational dependencies esong the quantities. This composite prose

and network representation is
generated by the software from the

user's prose and symbolic representations.

PLAN NOTES

A the Job to be done

B mowing time of person 1

C mowing time of person 2

D time for 1 i 2 to AN lam

E nowing rate of person 1

F mowiig rate of person 2

C combined rate of persons 1 & 2

H combined time as function of t

J

H
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In particular the representation shows the fact that the quanti
ties A, B, C and D are the original quantities, with A, B and D
referred to by value end C referred to by name. It further shows that
the quantity E is computed from the quantities A end B, The quantity G
is computed from the quantities E and F, etc.

The7e are several observations to be made about this represents
Lion. First of ell, it makes salient the ways in which each of the
quantities depend on the others. Although it does not represent the
binary operations implied by the nodes of the network explicitly, (it
could do so at the price of complicating the 9iatial complexity of the
network), these may be inferred, often with little difficulty from the
sesantics of the referents in the associated prose representation.

Second, the network as it stands represents a set of functions.
The reader will notice that the network has two "loosc ends". These
are the quantities H end D. Constraining the network by requiring
that those two quantities be equal to one another forces the network
to have solution set. This is a general property of well-posed
problems in this representation, i.e. that the equation(s) or
inequality() that model the problem are formed by constraining the
loose ends of the prose-network representation.

Third, the prose-network representation contains no reference to
any of the quantities, either original or computed, by value. Thus
thin representation represents the semantics of the modeled situation
without the confounding offered by the particular values. In this
sense one may say that the prose-network representation represents in
ensemble of problem* that have the same structure. This is an attrac
tive notion because it makes possible a discussion of problem types
end similarity of problems beyond the surface features normally used
to classify problems.
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A STUDY OF THE USE AND UNDERSTANDING OF ALGEBRA RELATED CONCEPTS

WITHIN A LOGO ENVIRONMENT.

Rosamund Sutherland
University of London Institute of Education

This paper will present the preliminary results of a three year kagitudinal case study

of pupils' use and understanding of verlebie in a Logo programming context. The pupils

(aged 11 -14) worked in pairs at the computer during their "normal* mathematics

lessons. The date consisted predominantly of video reardings of the pupils LOX work

and their spoken language. One aim of the research was to relate the pupil's

understanding of variable In Logo to their understanding in 'paper and 'pencil algebra,

and develop end test out materials designed tohelp pupils make links between these two

contexts. Analysts of the data Indicates that most pupils do not naturally choose to use

variable In their 1.003progremmIng, although with
teacher intervention it is possible to

find motivating problems which provoke pupils to use variable. Whether or not pupils

can make the links between variable in Logo and variable In algebra appears to depend

more on the nature end extent of their Low experience then on any other factor.

Vergnaud has pointed out that "algebra Is a detour: students must give up

the temptation of calculating the unknown as quickly as possible, they

must accept operating on symbols without paying attention to the meaning

of these operations In the context referred to (Vergnaud 1986). He quite

rightly says that we must find problems which provoke the use of algebra.

This Is not an easy task in 'traditional' school mathematics. The computer

programming context however does provide problem situations in which

variable Is a meaningful problem solving tool. It seems appropriate

therefore to consider the ways in which the computer can enhance the

learning of mathematics, and in particular, as far as this stwiy is

concerned, the learning of algebra. We have been investigating, as part of

the Logo Maths Project (Sutherland, Hoyles 1987) the hypothesis that

certain programming experiences In Logo will provide pupils with a

conceptual basis of variable which will enhance their work with 'paper

and pencil' algebra.

Ethnographic research methodology was chosen as being the only one

possible in an area where technology, pedagogy and the approach to

mathematical content were all innovatory. Longitudinal case studies were

undertaken for four pairs of pupils (aged 11-14) programming In Logo

during their 'normal' mathematics lesson throughout the three years of the

project. As researchers we acted as participant observers in the

classroom. Pairs where chosen to take Into account the spread of

mathematical attainment and the teachers' opinions on constructive

working partnerships. The data included recordings of the pupils' Logo

work, all the language spoken by the pupils (a video recorder was

connected between the computer and the monitor), the researchers
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interventions and a record of all other mathematical work undertaken by
the pupils. The video recordings were transcribed and these were
combined with researcher observations and teacher and pupil interviews
to provide the basis for the research.

At the beginning of the research period, pupils were given the freedom to
devise their own goals In order to build up self confidence and autonomy.
Our aim was to make Interventions related to the idea of variable when
appropriate. Analysis of the transcript data at the end of the first year of
the research indicated that most pupils did not naturally choose projects
for which variable was a functional problem solving tool. It was decided
therefore to develop teacher devised tasks which provoked the pupils to
use variable. Throughout the second and third year of the research pupils
were given a range of teacher devised tasks. One particular task, which
used the idea of changing a fixed procedure to a general procedure by
scaling distance commands, provided an important starting point.

One atm of the research was to develop materials to help pupils make the
links between variable in Logo and variable in 'paper and pencil' algebra. It
was decided to base these materials on the similarity between using
variable to define a function in Logo and using variable to define a function
In algebra (for a fuller discussion of this see Sutherland, 1987). For
example the Logo representation:

FUNC :x is equivalent to the algebra representation FUNC(x) x +4
OUTPUT :x*4 or x x +4
END

The pupils were Introduced to these Ideas in the form of a game which
involved one pupil defining a function and the other pupil predicting the
function by trying out a range of Inputs, The "guesser" had to define the
same function when she was convinced that her prediction was correct.
The pupils then had to establish that both functions were identical in
structure although the function and variable names used might be different
(pupils were encouraged to use a range of variable names including single
letter names). It has been reported by Wagner (1981) that In algebra pupils
often have the misconception that changing a literal symbol implies
changing what the symbol refers to. In this Logo task we were specifically
building In the experience that this is not the case.

Categories of variable use were derived from the transcript data and these
provided a framework for analysis. (Sutherland, 1987) An overview of the
pupils' use of variable analysed according to these categories throughout
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the three years of the project Is presented In Table 1.

Table 1 OVERVIEW OF GENERAL PROCEDURES WRITTEN BY CASE STUDY

PUPILS.

CATEGORY Pupil I Pupil 2
OF USE SALLY ASIM

Pupil 3 Pupil 1 Pupil 5 Pupil 6 Pupil 7 Pupil 8
OEOROE JANET JUDE RAVI LINDA SliANIDUR

( I) One Input 4 2 2 4 3 0 3 1

(S) Input as
Scale Factor 3 3 3 3 3 3 6 7

(N) More than
One Input 3 2 2 3 0 0 2 0

(0) Input
Operated on 6 5 5 6 0 0 0 0

(0) Input to Omer&
Superprocodure
with Variable
Subpracedura

3 3 3 3 2 0 3 0

(F) Input to
Mathematical
Function

2 2 2 4 I 2 3 2

(C) Input used In
Conditional
Expression

0 2 2 0 0 0 0 0

All the pupils used input to a Logo function (category F) as part of the

Logo/algebra linking materials presented to the pupils in the eighth term

of the project. Apart from this Ravi and Shahldurs use of variable was

entirely restricted to category 5 (scaling-a distance command). In this

context they realised that the variable used affected the size of the

object on the screen but they were not necessarily, aware of the variable

processes within their procedure. Pupils have been ranked (pupil I pupil

6) according to attainment on their school mathematics scheme. Ravi Jude

and Shahidurs more limited use of variable was a consequence of them a)

being case study pupils for a shorter length of time than the other pupils

b) having a higher absence rate than the other pupils and the teacher being

consequently more reluctant for them to spend time on Logo work. In

choosing to carry out research In a 'normal" classroom over a period of

three years we had to accept that for reasons beyond our control the pupils
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were not always available for a "planned" session. However the nature of
the transcript data Is such that It Is possible to reconstruct, for all the
case study pupils, the nature of their Logo experience In terms of pupil
collaboration, teacher Intervention, and computer input and output.

In order to probe the case study pupils' understanding of variable In both
Logo and algebra they were all given Individual structured interviews at
the end of the the three year period of research. They were asked to:

Make a generalisation and formalise it in an algebra context.
Make a generalisation and formalise it in a Logo context.
Answer algebra questions related to the meaning of letters taken
from the C.S.M.S I project.
Answer Logo questions related to the meaning of variable names.
Represent a function in both Logo and algebra.

In addition pupils visited the University laboratories to carry out
individually tasks devised to probe their understanding of variable in Logo.

For the purposes of this paper the pupils' understanding of variable in
Logo and algebra will be categorised In the following way:

Acceptance of the 'idea of variable.
Understanding that a variable name represents a range
of numbers.

Understanding that different variable names could represent the
same value.

Acceptance of lack of closure' In an expression.
Ability to establish a second-order relationship
between variables.
Ability to use variable to formalise a generalised method.

Evidence for the pupils understanding of variable in Logo was derived from
the structured Interview Items, the transcript data and the University day
tasks, while the understanding of variable in algebra was derived from the
structured interview data only.

Acceptance of the Idea of variable was deemed present If the pupils were
willing to begin to attempt the structured interview questions. All the
case study pupils accepted the Idea of variable in Logo. None of the pupils
had had any experience of algebra before using variable in Logo. Throughout
the project the pupils followed their "normal" mathematics curriculum
and the type and amount of algebra work carried out by the pupils was not
in the control of the researchers. However we know that four of the
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pupils, Linda, Jude, Shahldur and Ravi, did not carry out any formal algebra
work during the period of research. Six out of the eight case study pupils
accepted the idea of variable In algebra. The two pupils, Jude and Ravi,
who did not respond positively to any of the algebra related categories
have both had a very limited experience of variable In Logo (Table I).

All the pupils accepted the idea that a variable name in Logo represents a
range of numbers. Again all except for Ravi and Jude have carried this
understanding to the algebra context which contrasts with previous
research findings that pupils often regard a letter In algebra as
representing an object or a specific unknown. (Booth 1984, Ktichemann
1981).

What is the area of this shape?
A

Fig I

Pert of this figure Is
not drawn. There ere

n sides altogether
all of them length 2.

What is the perimeterof this shape? p=

Fig 2

Jude attemptea to use his Logo understanding of variable In the algebra
context when answering a C.S.M.S item (fig 1) but his idea of 'any number"
soon became confused with "anything" as the following example
Illustrates.

Jude "Does /1 mean any number miss?"
Researcher "/T is any number and N is any number"
Jude "So / can just put anything / want"

Shahldur had some difficulty with the C.S.M.S Item "If John hes J marbles and
Peter has P marbles what could you write for the number of marbles they have altogether?"

and his response indicates the transitional nature of his understanding.
Writing down 9 as the solution he gave the explanation:

Shahldur "Cos John begins with J and there's four letters in John
and Peter begins with P and five letters in Peter"

Researcher Why did you think P stands for 5 ?"
Shahldur "Because / was wondering why they should put J and P."

Researcher "What if they were called 0 and R?"

With this suggestion he immediately wrote down 0 + R. Shahldur Is not an

algebra experienced pupil and his mathematical ttainment is very low.
Under these circumstances his responses to the CSMS questions are quite
extraordinary. When presented with the perimeter question (1 Ig 2) he
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wrote down 2 x n's as a solution. When asked to explain his solution he
said "Cos there's the size of them are 2.... and thereare n's of them ... so
2 times n will be the answer'.

in order to test the pupils' understanding of whether or not a different
variable name can represent the same value they were given the following
Logo and algebra questions(not consecutively)(fig 3).

When is the following true ? When do these Loco commends
draw the same length line?

L+11=N=L+P+N TO LINES "L "M "N "P
FD FD .M FD .N
RT 90
FD :L FD :P FD :N
END

Always. Never. Sometimes:when Always. Never. Somettmes,when

Fig 3

Only Sally responded positively to both items but four out of the eight
responded positively to the Logo item. When we relate these pupils'
understanding to their use of variable In Logo we find that all four have
used more than one input to a procedure and have in this context given
different variable names the same value. This contrasts with the four
pupils who did not respond positively to the Logo item and who had never
used more than one input to a procedure.

All of the case study pupils accepted lack of closure in a Logo expression
All apart from Jude, Ravi and Linda accepted the idea in algebra. Previous
research Indicates that this Is often a problem for pupils learning algebra
(Booth 1984). The case study pupils had used 'unclosed' Logo expressions
involving variable In their function machine work.

None of the case study pupils could answer either the C.S.M.S algebra
question "Which is the larger 2n or n+2? Explain " or the Logo related
question correctly. KUchemann maintains that "An important feature of
these relationships is that their elements are themselves relationships,
so they can be called 'second order' relationships" (Kirchemann 1981) tie
maintains that It is only when pupils have grasped this notion that they
have fully understood the idea of variable. Analysis of the data Indicates
that none of the pupils had carried out any Logo tasks related to this idea.
Although the C.S.M.S question Itself can be criticized this result does
suggest that further Logo tasks related to this idea need to be devised and
that more adequate test Items also need to be developed.

Evidence from algebra research suggests that pupils often use use
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Informal methods which cannot easily be generalised and formalised.
However in this project pupils were able to interact with the computer
and negotiate with their peers so that their intuitive understanding of

pattern and structure was developed to the point where they could make a
generalisation and formalise this generalisation in Logo. All the case
study pupils could formalise a method generalised by them in Logo.
However the non-algebra experienced pupils were not able to use algebraic
notation to formalise a method generalised by them In the algebra context.

This paper has highlighted the extent to which the pupil's understanding of

variable in algebra is related to their use of variable in Logo. The
evidence suggests that pupils can use their Logo derived understanding In

an algebra context. Possibly one of the most important aspects of the
function machine material in helping the pupils to make links was that it
provoked the pupils to use a range of variable names, including single

letter names.

Footnote I
As part of the research programme "Concepts in Secondary Mathematics and Science" "just ender

1000 secondary pupils aged 14 + were tested on their understanding of algebra (generalised

arithmetic) (Kuchemann 1981).
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COMPUTER PRESENTATIONS OF STRUCTURE IN ALGEBRA

Patrick W. Thompson

Alba G. Thompson

Illinois State University

Many errors committed by students of algebra appear to be a result of their long-term
inattention to structure of expressions and equations. A special computer program was
developed that enabled students to manipulate expressions, but which constrained them to
acting on expressions only through their structure. Eight leaving-seventh graders used the

program for eight days. An analysis of their actions indicated that errors due to inattention
to structure occurred largely while they were first learning a field property or identity, and
that afterwards such errors were infrequent.

Typical errors found in previous studies of students' errors in algebra suggest that
students studying algebra frequently fail to realize that formulas to mathematical symbol
systems have an intrinsic structure (Lewis, 1981; Matz, 1982; Sleeman, 1982, 1984,
1985). In algebra, expressions are structured explicitly by the use of parentheses, and
Implicitly by assuming conventions for the order in which we perform arithmetic opera-
tions. It is hypothesized that many of students' errors in manipulating an algebraic ex-
pression are due to their inattention to the expression's structure.

To test this hypothesis, we
File Windows Options

built a program, called EXPRES-

SIONS, that presents expressions

and equations in two formats: in
usual (sentential) form and in the
form of an expression tree. The fig-

ure to the right shows the screen
after having entered the equation
4x-6=2(x--3) and then multiplied

Egvemboth sides by The equation's ex- `or'
pressions are shown in sentential

notation at the top of the screen. The tree representation of the equation is shown directly

below the sentential notation.

To change an expression by the use of a field property or other transformation,

students put the mouse pointer on tap of one of the buttons along the right side of the

screen and then click the mouse to select that action. Then they put the pointer on top of

the operation in the tree representation of the expression which defines the expression or

I/2(4A61.112(2(13))
ASSOCL1 ASSOCR
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subexpression to be transformed, and click the mouse again. The action is performed on

the selected expression or subexpression, and the sentential notation and expression tree

are changed accordingly.
To transform an expression by the use of an identity, students put the mouse

pointer on top of the ID button, click the button, and then click the operation sign within

the tree which defines the expression to which the identity is to be applied. The computer

will apply one of the identities a-b = a+ -b, -= x*
Y
- -x = -1*x, or x = 1*x to the

chosen expression or subexpression, then update theexpression tree and sentential dis-

play accordingly.

Sample

The sample consisted of eight leaving-seventh graderssix males and two fe-

malesfrom the 1SU elementary laboratory school and who volunteered to participate in

the study. Their mean age was 13 years I month; their mean cumulative mathematics

score on the Iowa Test of Basic Skills was 74.6. In the last quarter of seventh grade

mathematics, five students recei Fed an A, one received a B, and two received a C.

Method

The study took place over nine consecutive weekdays in June of 1986. The first

session was devoted to administering a pretest; eight sessions (50 minutes each) were

given to direct instruction and pra;tice. The pretest involved assessing students' knowl-

edge of the conventions for order of operations (evaluating numeric expressions), their

knowledge of field properties, and their knowledge of variables.

Instruction took place in a classroom at ISU, where the instructor used a

Macintosh runt, rig EXPRESSIONS. The Macintosh was connected to a projector which

created a 6' x 6' image of the screen. All instruction was videotaped.

For practice sessions, students were grouped in pairs by matching their cumula-

tive mathematics score on the Iowa Test of Basic Skills. Practice sessions took place with

students in two locations: in a computer room and in the classroom, with two students per

computer. Students using the classroom computer were videotaped. Each pair of students

was videotaped once. A set of booklets containing examples and practice problems were

provided to each student. All students used a version of the program that stored their

keystrokes and mouse-clicks in a data file which could be "played back" for later analy-

sis.
Instruction proceeded in this order: order of operations in arithmetical expres-

sions; field properties as transformations of arithmetical expressions; identities and

derivations. An outline of the eight days of instruction is given in Table 1.
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Qat In Class
2 Order of operations; Evaluaung expressions

3 Parentheses: Expression trees

4 Discuss Worksheet 2: Commutativity;

Associativity; Example from Worksheet 3

5

6 Review commutauvity; associativity;

introduce distributing and collecung

7

8 Review field properties; introduce identities

9

In Grout
Worksheet I (Parts I & 2)

Worksheet I (Part 3); Worksheet 2

Worksheet 3 (Pan 1)

Worksheet 3 (Pan 2)

Worksheet 3 (Part 2); Worksheet 4

Worksheet 5

Table 1. Summary of instruction

The worksheets comprised an integral part of instruction. Table 2 shows the nu-

meric-transformation problems students worked in sessions 6 and 7. Table 3 shows the

identity derivation problems students worked in session 9.

Start With Change It To.

N1. 5*(4+3) 3*5 + 4*5

N2. 5*((4+3)+2) (5*4)+((2+3)*5)

N3. (7 +3) *(6 +5) (7*6+7*5)+(3*6+3*5)
N4. (6+-5)*(6+5) (6*6) + (-5*5)
NS. 3*(8+4) + 9*(4+8) (9+31*(8+4)

N6. 3*(6/9) + (6/9)*7 10*(6/9)

N7. -5*3 + (2+3)*5 0 + 10

N8. (5+9)*(5+9) 5*5 + 90 +9*9

Table 2. Numeric transformation problems.

Results

Start with Change It To

11. (z q)*u z*u - q*u

12. r*(s/t) (r*s)/t

13. -(p + q) -p + -q

14. (a + b)/c a/c + b/c

15. 6x + x 7x

16. 5x - x 4x

17. x + x 2x

Table 3. Identity derivation problems

Pretest

Six of the eight students processed numeric expressions from left to right, ignor-

ing conventions for order of operations (e.g., 8 6 + 5 * 3 evaluates to 21), when
grouping was not given explicitly. All eight were familiar with commutativity. Seven

..ere familiar with associativity in its simplest form. None was familiar with distributivi-

ty. Six differentiated among expressions and equations on the basis of superficial charac-

teristics (e.g. "y+2=5 is different from x-2=5 and x+2---5 because it uses y and the others

use x.")
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An Iysisof comp er ,c
EXPRESSIONS was modified to store all interactions. The stored files were then

later rerun for analysis. Students' actions were categorized according to the following

scheme:

A Appropriate transformation applied at an appropriate place in the expres-

sion, given the current and goal expressions.

IA Inappropriate transformation, e.g. trying to use the distributive property

on (a*b)+c.

AWP Appropriate action, but applied in a wrong place. This was inferred if a

student tried the same transformation twice in a row, first trying it at an

inappropriate place in the expression and then applying it appropriately.

CD Confused direction. An action was placed in this category if a directional

transformation was appropriate (such as using the associative property of

multiplication to change the grouping from being on the left to being on

the right) but the student chose the wrong direction.

TransimmingNlimuiclEPLCIIi2111
Table 4 shows the percents of students' actions falling within each category while

working the numeric transformation problems (Table 2). Table 5 shows the percents of

students' actions falling within each category while working the identity derivation prob-

lems (Table 3).

Problem

IA AWP

Ni 87 0 0 13

N2 75 25 0 0

N3 69 9 17 6

N4 60 31 8 1

N5 82 0 18 0

N6 88 0 0 12

N7 56 39 5 0

N8 89 11 0 0

Table 4. Numeric transformations:
Percent per category of all a>
tions. All students completed all
problems.

In many cases, the majority of inappropriate actions occurred early in a problem,

suggesting that students were exploring the effects of the available tramformations upon

expressions. To eliminate the effects of exploratory errors upon the percents inTables 4

and 5, the data were reanalyzed by the same categorization scheme as previously, but

with this exception: All actions prior to two consecutive appropriate actions werediscard-

Problem

Q2

11 41 48 6 6

12 * * *

13 * *

14 69 23 0 8

15 56 38 6 0

16 81 12 6 0

17 80 20 0 0

Table 5. Identity derivations: Percent per
category of all actions; "" indicates
incomplete data .
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ed. Tables 6 and 7 show the percents of "non-exploratory" actions falling within each of

the categories.

The differences between Tables 4 and 6 and between Tables 5 and 7 suggest that

students' errors were due to initial play involved in understanding the problems, under-

standing the available transformations, and making connections between the two. Once

students internalized the transformations' structural constraints, they were less likely to

commit errors and were more efficient in their solution strategies.

A AWP

Problem

N1 100 0 0 0

N2 95 5 0 0

N3 85 7 4 4

N4 92 4 0 4

N5 82 0 18 0

N6 88 0 0 12

N7 100 0 0 0

N8 94 6 0 0

CD

Problem

58 39 3 0

12 * * *

13 * * *

14 86 0 0 14

15 100 0 0 0

16 100 0 0 0

17 100 0

Table 6. Numeric transformations: Percent ;able 7. Identity derivations: Percent per
per category of non-exploratory ac- category of non-expioratory ac-
tions. tans; "*" indicates incomplete data

Exploratory errors were commonly either irrelevant to the problem being solved

(e.g., "what does this button do?") or were attempts at doing something that might take

an expression closer to its goal state. For example, one error was to try to use associativ-

ity to change (a+b)*c into a+(bc), to which the computer "responded" by doing noth-

ing. The students wanted b to be multiplied by c, and apparently concluded that the asso-

ciative property would do that regrouping for them. Also, it was common for students to

repeat an errorful action. It appeared that repeating an action supported students in their

attempts to reflect on the reasoning they used in first choosing the action, and supported

them in understanding the reason that the chosen transformation did not accomplish
whatever they had in mind.

Discussion

Previous studies of students' errorful manipulation of expressions and equations

proposed that their errors are due to mal-formed rulesperturbations of correct rules.
This study asked whether or not such errors were due to students' inattention to structural

features of expressions and transformations thereupon. The results suggest that mal-rules

need not be a natural occurrence when students operate in an environment thr.t supports

explicit attention to expressions' strictures, and where structure also imposes constraints
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on students' actions. We cannot say from the results presented here that errors reported in

previous studies were due to students' inattention to structure, but these results indicate

that attention to structture is an important consideration.

Students could attempt eaten] transformations of expressions while using the

computer, but the computer would not carry them out. It appeared that they interpreted

this context as one where experimentation became natural and beneficial. We would like

to think that students disposition to experimentation was a result of the software and the

use made of it. However, it also could have been a result of the instructor's style of in-

struction, or it could have been that this particular group of students was predisposed to

experimentation and reflection.
A limitation of the study is that students were not assessed outside of the comput-

er environment. It is quite conceivable that had these students been left to their own de-

vices, they would have committed errors on paper and pencil that they learned not to

make while using the computer. The issue of transfer from computer to noncomputer en-

vironments requires extensive research.
Another limitation of the study is that we do not know the depth of commitment

that these students had when they "proved" that two expressions were equivalent, or

when they derived an identity. Did students think of an identity as a theorem that could be

applied in other contexts? We do not know.

A feature of structure which we could not address here with data, but which was

addressed explicitly in the study, was that of variable. Many problems (all of those in

Tables 2 and 3) were designed so that students would have to treat a subexpression as a

unit. When applying field properties and identities to expressions, students regularly

needed to substitute a subexpression in an expression for a letter in the canonical state-

ment of a property or identity. They became quite adept at this. Also, students felt no dis-

comfort when letters were first introduced in to-be-transformed expressions. Apparently,

by having them transform numerical expressions, they became used to the idea that ex-

pressions could be manipulated regardless of their constituent elements. Thus, when let-

ters were introduced, students saw no obstacle in continuing what they had already

learned to do with numerical expressions. The approach wherein manipulating algebraic

expressions is presented as a natural extension of manipulating numerical expressions

deserves further research.
The use of expression trees as one of the representational systems within the

computer program proved to be a positive feature of instruction. Students found expres-

sion trees to be quite intuitive. When doing Worksheet 1, which focused upon evaluating

expressions given in sentential form, students used EXPRESSIONS only to check their an-

swers. They were told only that they needed to click SIMP and then click the top of the

tree to evaluate an expression. We found four students who constructed expression trees

for complex expressions as an aid to evaluating them, even though there had been no dis-
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elusion about how expression trees are constructed, and these students had never before

seen an expression tree.

Finally, it should be noted that in eight days of instruction these leaving-seventh

grade students went from essentially no working knowledge of order of operations to de-

riving algebraic identities, and did so with some depth of understanding. Even with the

limitations stated earlier in this discussion, the fact that such coverage is possible makes

us question assumptions that are built into traditional junior high school pre-algebra and

algebra curricula about what one can expect of junior high school students in the United

States.
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THE EFFECTS OF MICROCOMPUTER SOFTWARE ON INTUITIVE
UNDERSTANDING OF GRAPHS OF QUANTITATIVE RELATIONSHIPS

N. Zehavi, R. Gonen, S. Omer & N. Taizi
The Weizmann Institute of Science

ABSTRACT

In this paper we describe a software which we designed to

help develop intuitive readiness for the encounter with graphs

of linear relations. A study was conducted to evaluate the
effects of the software on 7th grade pupils (experimental

group n=78, control group n=67). Pupils demonstrated intuiti-

ve understanding of graphical solutions of linear equations

and inequalities. Eight months later a retention follow-up
study was applied to the same pupils (now in the 8th grade),

just before they started the study of graphs of linear

equations. Although the software seems to have been only

moderately effective, retention of what was learnt was good.

Whereas most junior high school students successfully read and plot points,

they have difficulties in understanding the relations between the two co-

ordinates of points. For example, Hart (1980) found that the relation

between straight lines and their equations was understood by only 5-30% of

students (depending on age). Some of the difficulties that junior high

school students experience in the study of graphs of quantitative relat-

ionships, may be due to the necessity for a higher degree of generalizat-

ion and abstraction than that they have met previously. Butler (1970)

maintains that the difficulty may decrease if we teach in such a way that

learning activities become intuitive ingredients of future concepts and

relations.

The role intuition plays in developing a true understanding of mathematics

is emphasized by Kline (1971), Fischbein (1978) and many others. Kieran

(1981) investigated how students intuitively extend their existing know-

ledge in relation to algebraic notions and Dreyfus & Eisenberg assessed

the intuitive background of junior high school students as they developed

the concept of function. They agree with others that enlarging the base

of intuition is a primary goal of education.

The Science Teaching Department at the Weizmann Institute maintains a

curriculum project in mathematics for the junior high school. In our

program, as in others, we observed
students' difficulties with the concepts

of graphs of truth sets which are dealt with in Grade 8. It seems that

reading and plotting points in Grade 7 gives some familiarity with the
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coordinate system, but it does not prepare the students for the encounter

with the more abstract concepts in Grade 8. The idea was to lead pupils

to intuitive understanding of relations between the two coordinates of a

point, as a part of the introduction to the coordinate system. We felt

that the microcomputer could be more efficient than other media in achiev-
ing this aim. Green Globs by Sharon Dugdale (1984) is an exemplary piece
of software. In a gaming environment students develop good sense of the

relation between the algebraic and graphical representations of functions.

In this paper we shall describe another software, Dots and Rules, which

we designed to help develop intuitions on graphs of linear relations.

DOTS AND RULES

Dots and Rules offers activities which teach the two-way transfer skill:

point -b.. rule. The pupil has to identify which points fit a given rule

or which rule fits a given point. All rules are linear and when the

student finds among the given points, all those satisfying a particular

rule. the picture of the straight line on which these points lie clearly

emerges. Visual elements like shapes and colors are used to illustrate

the relation between the rules and linearity (see Figure 1, without the

colors...).

HI

DOTS AND RULES

PART ONE

SCOREBOARD

41000
0

O 0 0 0 0O 0 0 0 0O 0 0 0 0

RULE 1: SUN OF COORDINATES IS 3. m
RULE 2: ROTH COORDINATES ARE EQUAL. :4

RULE 3' SUM OF COORDINATES IS 8.

CHOOSE RULE WHICH FLASHING DOT OBEYS:

Figure 1
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The tasks are imbedded into various activities, from a tutorial on the

basic tasks to a competitive gaae for two players (see Figure 2).

CAME FOR THO= FOUR IN A RON."..--**\

I.

"
11 " " PLAYER 1 0

T. . CHOOSE RULE
II kl

" PLAYER 2 0

PRESS O IF HO DOT FITS ANY RULES
RULE I: X AHD Y ARE EQUAL.
RULE 2: YCOORDINATE IS 3.
RULE 3' Y IS LESS THAN X BY 4.

Figure 2

If player 2 chooses rule 3 and identifies the point (3, -1), he completes

two "fours" and scores 2 points. While playing, the pupils realize that

the point (3, -1), for example, can be caught by other rules as well (e.g.

y - coordinate is -1; the sum of the coordinates is 2). The software is

not intended to teach the explicit relation between straight lines and

their equations, rather its aim is to create some rule-based orientation

in the coordinate system, which will provide the intuitive preparation

for the introduction of graphs of linear open sentences.

The use of a microcomputer has some didactic advantages; it enables the

student to practice different rules with the same pattern, for which thv

points appear In various parts of the coordinate system. There are, of

course, pedagogical advantages like challenge, motivation and feedback in

the use of the microcomputer.

In the following we describe the method and results of a study that

investigated the effects of Dots and Rules in terms of its aims.
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METHOD

Two junior high schools were involved in the study. The schools are

located in neighboring urban suburbs having similar socio-economic popula-

tions. But schools are of about the same size and use similar criteria

for streaming their pupils. Three grade 7 classes with average ability

students, from each school participated in the study. The classes in one

school formed the experimental group and the others were the control group.

A three part questionnaire was prepared, some of the items were in a

multiple choice form and others more open.

The first part contained 6 items which test familiarity with the coordina-

te system. In addition to items on reading and plotting of points, we

asked for some generalization; e.g., to identify a property of points on

the x or y axes.

The second part contained 7 items and tested the transfer skill:

point which was explicitly dealt with by the software. For

example in item 10 we asked the pupils to identify rules satisfied by the

origin (U,0), from the following list of rules:

(a) the coordinates are equal

(b) x is greater than y by 3

(c) the sum of the coordinates is 3

(d) y - coordinate is 4

(e) y is twice x.

The third part contained 13 items which go beyond the scope of the explicit

activities of the software and test intuitive rule-based orientation in

the coordinate system. For example, in item 20 we asked the pupils to

identify all grid points which have the two properties: (a) the coordinates

are equal, and (b) the sum of the coordinates is 2. The Kuder-Richardson

reliability index for the whole questionnaire is 0.91, for subl - 0.67,

for sub2 - 0.79 and for sub3 - 0.87.

In March 1986 the software was used by the experimental classes in paral-

lel with the regular introduction to the coordinate system. Treatment of

the transfer skill point -- rule was given to the control group without

the computer. Then, the questionnaire was given to both experimental and

control groups, and the results compared. Eight months later (November

1986) the questionnaire was applied again to the same classes (now in the

8th grade), just before they started the study of graphs of linear

equations and inequalities. The results were compared for the experiment-

al and control groups and also with the; previous results.
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RESULTS AND DISCUSSION

The mean scores (maximum 100) for the whole questionnaire and for the

three subquestionnaires are given in Table 1.

Experimental group

post treatment retention
(n = 78) (n = 67)

Control group

post treatment retention

(n = 77) (n = 74)

Total 76 77 71 63

Subl 82 85 85 76

Sub2 83 82 67 58

Sub3 71 69 66 59

Table 1.

The results are about the same for the two groups on Subl at the first

application, indicating that average ability is about the same. Although

a significant drop in retention occured for the control group we hesitate

to draw conclusions since there were only 6 items in Subl. As anticipated

there are significant differences in favor of the experimental group on

Sub2. However, the most important finding is in the results of Sub3

which tests the main goal of the software. Although the software seems

to have been only moderately effective, retention of what was learnt was

good.

To illustrate difficulties which were only partly overcome by the soft-

ware, we bring the findings for item 10 of Sub2 mentioned above. More

than 95% knew that (0, 0) fits the rule "x=y", in both groups and both

applications. But only 44% of the experimental group realized that it

also fits "y=2x" in the post-treatment test, and 50% in the retention

test. As for the control group, only 8% (I) responded correctly in the

first testing and 30% in the second. The "improvement" can be due either

to the fact that we used the same test, or to students' experience with

graphical presentation of practical situations at the end of Grade 7.

To illustrate the development of some intuitive rule-based orientation,

we bring here the results for three items of Sub3.
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Item 20 (see above):

A response was considered correct if the point (1, 1) was identified in the

the graph.

Correct responses (%):

Experimental group (grade 7) - 64

Control group (grade 7) - 42

At the second application,

Experimental group (grade 8) - 75

Control group (grade 8) - 55

The increase in correct responses from grade 7 to grade 8 is due to the

use of some algebra by the latter.

Item 18:

State two properties

of the marked point.

(a)

(b)

The results were about the same in the two applications of the test. with

a clear advantage to the experimental group. In the control group more

than 25% gave only one rule; the common first rule was "x=-2"and the

second was "y.1". In the experimental group less than 10% gave only one

rule. The above responses were given by about 30%, and the rest stated

more "interesting" rules. The most popular were "the sum of the coordi-

nates is -1", and "y is greater than x by 3".

xi

Item 25:

In each quadrant in which it is possible, mark a grid point for which the

sum of the coordinates is greater than 5.

The given coordinate system was 8x8 (with the origin at the center) and

a response was considered correct if correct points were marked in

quadrants I, II and IV.

Correct responses (%):

Experimental group (grade 7) - 75

Control group (grade 7) 61

At the second application,

Experimental group (grade 8) - 73

Control group (grade 8) 57

In addition, about one fifth of the experimental students attempted, with-

out being asked, to give a full graphical solution to the given inequality.
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CONCLUSION

The results indicate that software of this kind can be effective in

achieving its main goal - creating intuitive readiness for future

concepts. Students related a point to several rules, they "saw" lines

and illustrated graphical solutions of quantitative relationships. More

software with similar goals for other topics in algebra nas been

developed. It is likely that the increased use of this media will affect

approaches, teaching strategies and the organization of the course.
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Algebra in a Computee_Environmertt

David Tall

Warwick University

'Ibis reaction has been commissioned by the PME XI organising commitee to consider the
contribution of each paper grouped under this heading, to seek common threads, to
formulate major questions that still need to be answered and to look for indications in the
papers as to how these questions might be tackled. The task is a daunting one. It is rather
like attempting to put together a jigsaw puzzle whose pieces were not created to fit together
in a master plan, each with a life of its own. It is a problem-solving activity and I shall
approach it in a problem-solving spirit. In doing so I should El.e to acknowledge the help
given me by Michael Thomas in formulating this reaction.

lahrsautibuthLafahrpautxuaihLisaearskarga

The papers grouped under "algebra in a computer environment" range widely from initial
ideas in the subject to the graphical representation of algebraic functions, and some expand
the domain to more general functions and analytic relationships between variables and their
rate of change in "feed-back systems". Although these would not all be classified
mathematically within algebra, they cognitively embrace algebra concepts, beginning with
the translation from real world problems to algebraic notation, with its surface syntax and
underlying semantic structure, linking with relationships to other representational systems.

'the papers also represent very different stages in the research process which are fruitfully
considered from a problem-solving viewpoint, passing through various phasesafter the
style discussed by Mason etal. (1982). An initial entry phase gathers together what is
known, what one wants to know, and what tools one might assemble in preparation for the

attack phase where the empirical work is done. This may result in an impasse or a

significant gain, when it becomes appropriate to review and refine what has been

achieved before either re-erering the problem for a different attack, or extending the
work in new areas through a new a spiral of entry, attack and review.

Some of the papers have completed a full research cycle, others describe only part of a

longer span, for instance, the entry phase to new research, reviewing the literature from

earlier phases, proposing theories and setting out plans of attack.

Boileau et al, are beginning a new phase of attack in "La Pensee Algorithmique dans

'Initiation I l'algebra". They propose to start the study of algebra with activities that

are "both significant and motivating to the student", "coding problems ... relating to the

students' prior experience" by providing a "tailor-made programming language which will
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serve as an intermediate representation ... between the problem to be solve and the final

coding." They formulate some characteristics of the environment but stop short at giving

information as to the state of the development of the system or any empirical testing. Their

distinction between thesyntactic, internal semantic and external semantic aspects of

algebra is one which may prove a useful link with other papers.

In "Believing is seeing: how preconceptions influence the perception of
graphs", Goldenberg begins an entry phase, based on experiences using computer

software and preliminary observations with two "bright, successful, second year algebra

students". l le leads into a discussion of "how perceptual illusions and shifts of attention

from one feature to another obscure some of what educational use of graphs is supposed to

illucidate", particularly where the representation lacks familiar perceptual clues, thus

raising some concern as to the efficacy of certain aspects of multiple linked representions.

Thompson & Thompson introduce some significant new software in "computer
representations of structure in algebra", linking an algebraic expression of its tree

structure allowing free mixing of numbers and letters. They have made an intial empirical

attack with a week's instruction/exploration of the software with eight seventh-grade

students. They report that the students "felt no discomfort when letters were first
introduced in to-be-transformed expressions" and that, after an initial period of
experimentation, errors due to inattention to structure were infrequent.

Judah Schwartz also has a reputation for producing innovative software and his paper on

"the representation of function in the algebraic proposer" is no exception in
this respect. The original proposal had hoped to include empirical research with 12 college

freshmen, but, in the event, the paper is restricted to a presentation and discussion of the

software only, giving a tantalizing glimpse of the possibilities of providing a word problem

an algebraic description and interrelating it with graphical and numerical representations.

Dreyfus and Eisenberg present a complete research cycle "on the deep structure of

functions", entering with a theoretical framework for analysing aspects of the function

concept, empirical knowledge of student misconceptions, and a constructivist approach to

abstraction using computer microworlds. They hypothesise that the understanding of the

relationship between the algebraic and graphical representation of a function is facilitated

by using a specific piece of software and that this can be improved by providing structured

activities for the students. One group of eight students worked in a highly structured

teaching environment whilst a second group were allowed to explore freely. A pre- and

post-test revealed a significant improvement by both groups on "non-standard" questions,

relating to shifting and stretching transformations on graphs, but the difference between

groups was not significant.

In "Dienes revisited: multiple embodiments in computer environments", Lesh
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& Hcrre report part of a major on-going project of research and curriculum development
which reveals "significant ways that computer-based instruction can encourage teachers
and students to make greater use of activities with concrete materials... at the same time ...
implementing some of the best instructional strategies associated with mathematics
laboratories". They discuss a symbol-manipulator/function plotter called SAM which
provides direct links between algebraic manipulation on equations and the graphical
representations of the functions on each side of the equals sign. The general questions
raised are broad and important but the page restriction regrettably leaves no room to report
empirical results.

Zehavi et al cover a complete research cycle in "the effects of microcomputer
software on intuitive understanding of graphs and quantitative
relationships". They describes a new piece of software, "Dots and Rules", designed to
help intuitions on graphs of linear relationships, tested using pupils of "average ability", in
three experimental classes compared with three control classes, selected from similar

schools. Tests were given immediately after the treatment and eight months later and
showed that "although the software seems to have been only moderately effective,
retention of what was learnt was good". "The results indicate that software of this kind can

be effective in achieving its main goal - creating intuitive readiness for future concepts."

Two papers look at the role of programming in Logo and its relationship to 'paper and

pencil' algebra. Sutherland outlines the preliminary results of a three year case study on
"... the use and understanding of algebra-related concepts within a Logo
environment". She reports that "analysis of the data indicates that most pupils do not
naturally choose to use variable in their Logo programming, although with teacher
intervention it is possible to find motivating problems which provoke pupils to use
variables". Under these circumstances there is evidence that "pupils can use their Logo

derived understanding in an algebra context".

In "using micro-computer assisted problem-solving to explore the concept
of literal symbols - a follow-up study", Nelson interviewed three "average ability
students" a year after a study in which they had been "taught to use Logo to solve
problems involving number sentences, rectangles and recursion". They remembered most

of the Logo commands used a year before, though none recalled the MAKE command for

variables and "were able to use literal symbols to represent missing dimensions of
rectangles when writing expressions for area". The author concludes that "microcomputer-

oriented problem solving has a long-term effect on the concept of literal symbols".

Two other papers beginning new entry phases of research pass beyond algebra into

concepts linking variables and their rates of change. In "Un systeme d'apprentissage

de ('abstraction par representation graphique" , Nonnon describes software
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allowing young pupils to control the motion of an electric train, and simultaneously to see

its position graphed as a function of time, to enable them to acquire a graphical coding

language to predict the interaction between the variables for distance, speed and time. The

prototype software has been trialled, using pre-test and post-test to show a significant

improvement in predicting and interpreting relationships between the three variables.

Garancon & lanvier report the entry stage into new research in "the understanding of

feedback systems with micro-computer software". They formulate the general

notion of a feed-back system as "a set of mathematically defined relations between

variables" which can "generally be expressed as a set of differential or difference

equations". They envisage the understanding of the system as a form of coordination of

three representations of the system: an iconic representation of the feed-back loop relating

the variables, the superimposition of the canesian graphs of the variables as functions of

time, and the phase plane diagram representing the implicit relationship between the

variables. Current mathematical research into dynamical systems shows just how complex

these systems can be and one looks forward with interest to the results of research into

students' understanding of the specific systems designed for the research program.

2. Common Links in the naperS

It will already be apparent that the papers cover a wide range of activities. A closer

inspection also shows that no two papers cite a common reference. (As a humorous aside,

I found it pleasant to see that I am not the only author who refers to my own papers more

than anyone else...) Despite the apparent anarchy that this may imply, there are certain

underlying trends that can be seen.

LI Multiple Linked Representations.

More than half the papers use software that links algebraic notation to a graphical

representation, one links a real-world situation with a graph, one links the algebraic

representation of an expression to its binary tree structure.

Kaput (1987) has suggested four sources of meaning in mathematics:

1. By transformations within, and operations on, a particular representational

system,
2. By translation across mathematical representation systems,

3. By translation between mathematical and non-mathematical representations

(such as natural language, visual images, etc.).

4. (Reflective abstraction] By the consolidation and reification of actions,

procedures and concepts into phenomenological objects which can then

serve as the basis of hew actions procedures and concepts at a higher level.

It is helpful to review the papers within this framework to see their span over a range of

activities. For instance, Nonnon links a graphical interpretation to the real world which
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"permet h l'eleve d'acquerir un langage graphiquc de codage acquis au seulcontact de Is ria'ite, sans support verbal."

Boileau et al also wish to link the pupils' experience with mathematical concepts, this time
through programming, whilst other papers concentrate more en translation between
systems. When one of those systems is graphical, it is often seen as a more "intuitive"
system". Far example, Zehavi et al. comment that the main goal of their software is
"creating intuitive readiness for futureconcepts".

'Yet Goldenberg warns of difficulties with multi-representational software:

"Common-sense supports the notion that the use of more than one
representation of a function will help learners understand what remains less
clear when only one representation is used. Presented thoughtfully, multiple
linked representations Increase redundancy and thus can reduce ambiguities
that might be inherent in any single representation ... taken together, multiple
representations should improve the fidelity of the whole message. The
theoretical arguments ... are reasonable enough, but they may not be valid."

His case questioning validity is based on his two subjects' misconceptions of the nature of
graphs. Other research supports this concern. For example, Nachmias & Linn (1987)
show that a computer-generated graphical representation of a cooling curve of liquid in
real-time was misinterpreted by 30% of the children involved, because the large pixels
on-screen gave the impression that the liquid remained at a constant temperature for a time
and tbln suddenly dropped a little (to the next pixel level). These students believe in the
absolute veracity of the computer. My own observations using computer graphs with older
children students suggest that it is possible to discuss such limitations meaningfully, but
there are clear indications of conceptual obstacles that need to be researched.

Lesh & Ilene suggest that

"Good problem-solvers arc flexible in their use of various representational
systems - they instinctively switch to the most efficient representationat any
given point in the solution process".

Although preliminary empirical data shows the value of multiple linked representations,
more data of how students of differing ability and experiencecope will be of great value.

2,2Alisziuthls...andlhgRukstiktiesslur

The vision of Papert was that, by giving children access to rich microworlds, such as
programming in Logo, they would develop "powerful ideas". The reality of this vision is
that they may not ,.evelop the powerful ideas that may be deemed desirable. For example,

the children in the Sutherland study "did not naturally choose to use variables in their Logo

programming" and teacher intervention was necessary to provoke suitable activities.

Dreyfus and Eisenberg comment on the "partial success" of several experiments using
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microworlds in "achieving a process of abstraction on the part of the student" and question

"whether the framework needs to be revised". They conclude that "this does not seem to be

appropriate" as the studies were "rather short term" and "extremely high level activities are

required for the processes involved in abstraction in general". They hope that "longer and

more systematic exposure to dual and triple representations of mathematical objects will

achieve a clearer effect ... but at present this is simply speculation".

'Ishe__Nuttle.
A noticeable feature of the papers is the variety of different meanings given to a variable.

The pupils in Sutherland's study all used (local) variables as inputs to procedures whilst

those in Nelson's used global variables with the command MAKE (which they

subsequently forgot). Neither paper refers to the difference between a variable in algebra

and in programming. (For instance, a Logo variable has a name "X and a value :X.)

Although Boileau et al consider elementary algebra as "minimalement l'algebre des

polyninnes en utte indeterminee, mais aussi les fonctions Pneares, quadratiques,

trigonomitriques, exponentielles et logarithmiques", they later speak of

"des fonctions (toujours algorithmiquement calculables) definies sur des
ensembles de nombres, eventuallement representees par des tableaux de
valeurs, des graphes cart6siens, ou des algoritlunes de mica's

which suggests the possibility of more general procedures. Interestingly, no paper

mentions procedural functions even though , when "Al ... earns S6 por hour if he works

15 hours .... rand] gets paid time and a half for overtime" (in Lesh & Herre), his actual

wage, for any number of hours, can be calculated in Logo as

TO WAGE "HOURS
IF 11OURS<I5 10P 6 :HOURS] tOP (6 * 15) + 9 * ( :HOURS - 15) 1

END

or in structured BASIC as

DEF FNwage(x): IF x < 15 THEN :=6*x ELSE := 615+9*(x- 15).

Either of these will easily generate a full table of values for his wage against the number of

hours worked (normal and overtime), giving a more interesting and realistic function than

the algebraic expression for overtime only.

In Thompson's Expressions Microworid, letters have a more abstract use, standing either

for numbers or other expressions, whilst, in some other papers, variables are parts of

formulae related to graphical representations. Only Lesh & Herre and Thompson &

Thompson concern themselves with the manipulation of expressions. Lesh & Herre make

the important observation that "the possibility of first describing, then calculating is

one of the key features that distinguishes algebra from arithmetic". It is telling to note that
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Sutherland's Logo pupils without algebra experience use variables only to store numbers,
not to nuiniptdate them.

Of the eleven papers presented, only two have a traditional experimental v. control
methodology, two use pre- and post-tests with the experimental students only whilst others
used observational techniques or clinical interviews. Sutherland chose ethnographic
methodology "as being the only one possible in.=area where technology, pedagogy and
the approach to mathematical content were all innovatory ". Perhaps different techniques are
required in different phases of research, with ethnographic methods more suited to the
entry phase and a traditional methodology more suited to review, though this division is
clearly not hard and fast.

1.1dalur...thicilignatlialMalieraLtzle_Anawtxrdl

3.1Alsr.limizuguauderEngrannzat

First and foremost we must begin to address ourselves to the role of algebra in a future
computer-oriented paradigm. Most of the research presented here is concerned with the
manner in which traditional algebra may be enhanced by the computer with little emphasis

on a modern procedural approach. Many interesting functions such as the price of a
postage stamp as a function of weight, are given procedurally rather than as a simple
formula. Modem computer programs, such as the modelling program Stella (1986), allow
functions to be typed in as formulae, as logical expressions, or even as piecewise straight

graphs specified using an on-screen pointer under the control of a mouse. The new
I lewlett Packard HP 28C symbolic calculator allover, variables to have values including
complex numbers, vectors, matrices and lists; thus a list of information such as the details

required for drawing a graph (ranges, independent variable, number of points etc) can be
stored as a variable and recalled when required.

An important global question framing all our research should therefore be

blow can we direct our use of the computer in mathematics
education to the concentrate on the algebra of the future, in
addition to the algebra of the past and present?

In particular we should spend a little time thinking about the role of symbolic manipulators.

My own hunch in using them is that they (at present) offer a powerful way of handling the

syntax, but the user needs to have a coherent understanding of the semantics.

It is important also to address ourselves to the question of the needs of different user

populations. Several of the research papers talk about pupils of "average ability" (a term

which is sometimes a little difficult to interpret). Twenty years ago (in Britain at any rate)
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pupils of average ability did not study algebra. Leitzel & Dcmana (1987) suggest an
arithmetic approach to algebra. May we sometimes be wasting our time looking at the
difficulties of sections of the population for which formal algebra may be of no relevance?

Should all children study the same kind of algebra, or do we need different types of
algebra for different populations?

ajaluLdult _Linked. ReRresentaliona

Given the high profile of dynamically linked representations, it is clearly important to

obtain far more empirical evidence of :heir use. In particular we should ask:

to what ways do students, of differing ages, abilities and
experience, use dynamically linked representations in different
curriculum contexts, and how do they conceptualize the
relationships between the representations? What cognitive
obstacles are likely to occur in their use?

What is a suitable theory (or theories) underlying the provision
of suitable developmental sequences?

In what ways can multiple linked representations be integrated
into the curriculum for learning, teaching, problem-solving, and
assessment?

flue we note that the links between representations can take differing forms, for example,

Garancon & Janvier view the understanding of feed-back systems as a coordination of

three distinct representations, one of which is the statement of the problem (the feed-hack
loop) and others are solutions. Other systems simply translate,say, symbolic information
into graphical form.

For a given system, are there simple translations between two
representations, or does the relationship involve some kind of
solution process?

Does the "understanding" of the relationship between two
representations involve a direct logical relationship, or is it 61111

intuitive one, or perhaps combination of the Iwo?

It would be useful to debate the interplay between syntax and semantics, in terms of the

classification proposed by Kaput, the notions of syntax and internal/external semantics of

Boileau eta! and the new evaluation of Dienes' principles as described by Lesh & Herm.

1.3Er4grammilit

Two clearly distinct threads arise in the papers, one proposing specially designed software

to enhance learning, the other to encourage constructive acts through programming. These

may be seen as totally separate methods of approach, or as being complementary, fulfilling
two different, but essential, roles. We ask:

2
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In what way are programming and the use of prepared software
complementary, and what constitutes an optimum combination of
the two in terms of understanding and efficiency (time on task)?

Boileau et al speak of a new 1,-,, ;gunge for learning algebra, whilst other papers use Logo. It

is important to discuss what kind of computer language is appropriate, not just for doing

algebra, but also for developing a growing awareness of algebraic structure during the

learning process.

3,4_The Role of the TeaghtE

Lash & Ilerre suggest that the use of certain software will encourage teachers to take a

"mathematics laboratory" approach to teaming and teaching, but Boileau et al remark that

"En ddpit de ces progrts theoriques, les enseignants en mathematiques soot
reletivement depourvus quand it s'agit d'aider les eleves rt se representer les
'elation' des pmblemes algebriques muffs."

I suggest that teachers are not convinced by theoretical research, but by ideas and materials

that work, for Mom in the classroom. The role of the teacher should surely be an

explicit part of our theories of mathematics education. With the complexity of the

representational systems and the need for teachers to embrace computer technology, we

must ask:

flow can we encourage teachers to participate actively in our
work zlo that our research Is both relevant and suitable for
implemontation?

15..ArlIfidaLlatilluntm

Few of the papers mention the use of tutoring systems, though the Expressions
Microworld and the symbol manipulator/function potter SAM are both written in Lisp,

which gives them the possibility of being used in a more diagnostic/predictive mode. The

Expressions Microworld has been explicitly written to do nothing if it is given an

inappropriate command by the user, thus encouraging users to think about the

consequences of their own actions. SAM can produce solution path "traces" to create many

instructional capabilities and do other things that are intended to "help students go beyond

thinking to think ear thinking", One view is that it is the teacher and the pupil who

provide the intelligence, in a way that cannot be provided by the machine, another uses the

machine to infer action from a database of knowledge.

Particularly in the case of algebra, which has both a syntactic and a semantic role to play in

mathematics, we should ask:

In what ways can computer environments be designed and used
to provide intelligent support to the learning process?

0
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3.6 Constructivism

This conference has constructivism as a major theme, and it is implicit in several of the

articles, if not always explicit. My own belief is that learning is facilitated by the intelligent

action of the pupil, with the teacher acting as a guide and mentor, and I have been struck

by the power of the computer to provide a cybernetic environment that acts in a reasonable

and predictive way to enable the pupil to build and test new concepts represented

dynamically by the software. But do we all share this belief?

Davis (1986) poses the fundamental question:

Every educational use of computers is based upon someone's
specific philosophy of what, exactly, is to be learned, and upon
someone's philosophy of effective pedagogy. These
"foundations" are, at present, extremely insecure.

In the present case, exactly how do we want our students to
think about algebra?

To this one must add:

flow can we use computers to encourage students' active
participation to develop this algebraic thinking and to think
about thinking

IsligMayAlicad

I am aware that although some of the questions I have highlighted arc phrased as research

questions, others are not. Our discussion must include an attempt to focus on specific

research hypotheses. It was part of my brief to seek indications from the papers as tohow

to tackle the highlighted problems. As most of the authors concentrate on putting over their

own message in a limited seven page span, it would not be fair to expect the papers to be

addressed explicitly to questions formulated after the papers were written, however, I am

confident that the collective wisdom and experience of the authors may be brought to bear

in the discussion at P.M.E.
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CONCEPTUAL OBSTACLES TO THE DEVELOPMENT OF ALGEBRAIC THINKING

George Booker
Brisbane College of Advanced Education

Australia

Children who have not been taught any formal algebra

nonetheless bring notions both well-formed and partly-

formed to this study from their earlier work in

arithmetic. Yet they are often unaware of the

conflicts between earlier views and those needed to

simplify expressions and solve equations. The initial

concepts brought from arithmetic are bound to number

experiences and are imprecise because they are

explicable in terms of this experience. Algebraic

concepts are more abstract, not readily related to

experience. They involve notions of the elements being

operated upon, the operations that are performed, the

way these operations are indicated and carried out,

and the way the statements symbolisfns them are

interpreted. Difficulties in making the transition to

this abstract view derive from a lack of appreciation

of a need for algebraic symbols as much as from

procedural difficulties with their manipulation.

The teaching of Algebra may be perceived by student!, as an

initiation into rules and procedures which, though very powerful

(and therefore attractive to teachers), are often seer, by students

as meaningless.

K. Hart (1981)

Children's procedural difficulties with algebra are well known.

Most relate to the introduction of symbolic values and the

extension of the numbers to which they refer but there are also

changes in the meaning of the concepts and operations. In

arithmetic the equals sign is predominately used to connect a

problem with its numerical result and used in a manner that

signifies equivalence or equality interchangeably. In Algebra

equivalence and equals have very separate meanings and uses but

this may not be apparent when an equals sign is used to signify

both. Further, initial work in simplifying expressions and in
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transforming equations mr.y even lead children to interpret the

equals

1981).

sign as a means

The introduction

the verb "is" or "are"

of signifying a transformation (Kieran.

of the equals symbol as a substitute for

also leads to an implicit assumption that

equations are always read from left to right. Yet many equations

are more readily solved if the unknown term is grouped on the

right, leading to right to left working. Attempts to avoid this

often introduce negative numbers. creating at least as many

difficulties as they solve.

The operations also undergo changes which need clarification.

While addition was initially introduced as a binary operation, in

algebra the use in essentially unary; the sign is attached to the

number or unknown whether its use is as an operation or to

indicate a positive value. Subtraction is also used in a unary

sense and these new conceptions are essential when numbers and

terms are collected together either by adding and subtracting like

values or by using the

side of an equation to

students simply ignore

inverse operation in transferring from one

the other. Without this realisation, many

the unknown value and collect the numbers

first, using a left-to-right order of operating rather than

combining each addition or subtraction symbol with the number or

letter it precedes. A further reason for these difficulties is

that the teaching of arithmetic has emphasised the notion that

subtraction is the inverse of addition far more strongly than the

reverse case that addition is the inverse of subtraction, This

underlies some of the tendency of children to successfully "change

the sign" when transposing values with an attached addition symbol

but not doing so with values that have an associated subtraction

sign.

Multiplication or division in a number situation almost always

involve multiplying or dividing with the number in question; in

algebra it invariably means using only one or some of the factors.

While it is also possible to multiply and divide numbers by using

factors, this aspect is not stressed in arithmetic despite the

attention given to writing numbers as products of their prime

factors. Multiplying and dividing by factors composed of unknowns

and numbers adds further complexities ato algebra. Indeed, what is
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really happening is that children are called on to suspend the

operation in algebra rather than express the result as they did in

arithmetic (Matz, 1981). As Collis (1974) has shown, the ability

to accept this lack of closure of an operation does not develop

until the child is in a concrete operational level in mathematics,

a level which may not occur until after this aspect of algebra has

been introduced.

However, it is with the use of letters to represent unknowns,

variables and general processes that children's difficulties are

most apparent, particularly as they attempt to generalise

procedures, conventions and use of language from arithmetic to

algebra. In many instances letters in algebra behave like numbers;

they represent a single value, and the operations to determine

them are just the familiar operations of arithmetic operating on

the other numbers in an equation. At the same time, the initial

use of letters as abbreviations may introduce the thinking that

they behave like words rather than numters, as a placeholder

analogous to the use of pronouns in ordinary language. It is this

contradictory use that while many different values are possible

for a letter in an algebraic expression, when the same letter is

used more than once it must have the same value(s) that causes

students so much conflict (Wagner , 1983). Further conflicts occur

as the notion of variable is extended to include other unknowns

when a series of algebraic identities is created to help in

factorising expressions.

In many ways our knowledge of children's procedural difficulties

in algebra parallels the understanding we have of children's

computational difficulties in arithmetic. When computational

difficulties were largely viewed as mechanical breakdowns, little

progress was made in overcoming them; efforts were made to repair

malfunctioning algorithms but these efforts were not particularly

productive. In recent times, the analysis of computational

difficulties has gone a lot further and brought out the crucial

role of children's understanding of number itself in providing for

skills and understanding in calculation. While children arrive at

school with a fairly well developed sense of number based on

counting, this knowledge by itself is insufficient. They need to
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build a broader understanding in terms of grouping and place value

by using concrete materials if the computational procedures are to

be mastered.

A similar transformation is needed of the base on which algebraic

ideas and procedures is to be built. Usually the use of letters as

pronumerals is introduced with little ol no context as "letters to

stand for unknown numbers". While the use of materials to

represent these values appears attractive by analogy with the

number situation, in reality the material does not serve as a

forerunner to the use of letters; rather letters label the

material which is manipulated. It also leaves the question of why

these letters should themselves be the object of mathematical

manipulation unanswered. Algebra evolved through a need for the

concise representation of general relationships and procedures.

Such a representation may then enable a wide range of problems to

be solved and allow new relationships and procedures to be derived

by logical manipulation of the old (Booth, 1986). Excessive

attention to this last aspect has led children to view algebra as

little more than a set of arbitrary manipulative techniques with

little, if any purpose. Rather than focus on this procedural

side of algebra from the outset, it would be more appropriate to

build up an awareness of the need for a concise representation of

relationships and, indeed , to focus on the determination of these

general relationships. Arithmetic has taught children to expect

answers and that each problem has its own answer. Algebra involves

the extension of general pattern finding activities in mathematics

to the identification of classes of problems which have

essentially the same result.

A sequence of experiences which lead from concrete arithmetic

situations to algebraic generalisations must establish that the

use of letters is a useful means to express such results. A first

use is simply as labels to identify the objects being examined and

thus grows naturally out of words used to describe them in a
manner analogous to the use of letters in measurement. When this

has been established and accepted, relationships between the
objects which have been identified and labelled can also be

expressed using the letters that have provided the labels. The use
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of tables of values to show these relationships can then in turn

suggest more concise ways of expressing the results by means of

the number which identifies a particular entry. In this way, the

use of letters to express relationships occurs somewhat naturally

and lays the wa for using the letters themselves to find and

verify patterns. Only when the development of a generalised

arithmetic has established the need for and power of algebraic

symbols can algebra be extended to a topic in its own right and

meaningful procedures for manipulating the symbols be considered.

While the difficulties that students experience with algebra

reveal themselves in the use of symbols and the rules that govern

their use, it is a lack of acceptance of the symbols as legitimate

mathematical entitles in the first place that is the fundamental

problem. So much is known about the procedural difficulties that

it is nossible to provide the means to avoid or overcome them; but

since the use of symbols has little or no meaning for the students

who have to manipulate them there is no basis for overcoming the

difficulties.

The changes that need to be made to student's earlier knowledge

from arithmetic are usually overlooked in the development of

algebraic procedures. In particular it is the change from the

manipulation of numbers to solve for an unknown to the

manipulation of the unknowns themselves, labelled a "didactial

turning point" by filloy (1985), that marks the entry into algebra

proper. To introduce students to the fuller algebraic meanings of

the notions they met and mastered earlier in arithmetic demands

the building in of conceptual conflicts when the algebraic

extensions are introduced. There is also a need for the

broadening of topics traditionally covered in school arithmetic so

that all future needs are considered when initial concepts are

introduced in arithmetic, when computational rules and procedures

are established and when problem situations are constructed.
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But most of all, there i.. a need to establish the usefulness of

algebraic symbolism to express relationships and eventually to

find and verify the patterns on which these relationships are

based. When the need for the objects of algebra is built up, both

student and teacher will work together to avoid and overcome the

procedural difficulties that arc most obviously the problem in

mastering algebra, for the need for such manipulations will no

longer be in dispute.
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EQUATIONS REVISITED

losek, Usk)' R.

School of Education

James Cook University of North Queensland

Abstract: The idea that children can be guided to construct meaning
for formal mathematical procedures from suitably structured concrete
experiences underlies much of mathematics teaching. Despite this
approach, however, many children do not acquire the desired levels of
understanding. Possible reasons for this were investi$ated within the
context of learning to solve linear equations, by interviewing a sample
of six 11-12 year old children before, during, immediately after and
three months after a concrete -based teaching program aimed at
developing a formal equation-solving procedure based on the
application of equivalent and inverse operations. Findings suggested
that children's lack of prerequisite concepts, and the use of 'concrete'
situations which do not appropriately mirror the formal procedure
taught, together with the existence of informal 'child-methods', may
all contribute to the lack of success of the formal teaching.

In many countries, considerable emphasis is placed upon the development of
concrete or experiential approaches to the learning of mathematics. The rationale
underlying these approaches is that by providing children with appropriately
structured concrete experiences, the children will be guided to develop referential
meaning for the formal symbolic procedures or models which are the actual goal of

instruction.

However, despite such approaches, it seems that many children do not acquire the
desired level of understanding of the taught models and procedures. These children

resort either to instrumentally (Skemp, 1976) operating within the formal symbol
system of mathematics, often making syntactic errors or inventing 'malrules' (ef
Matz, 1980), or they adhere to 'child-methods' (Booth, 1981; Hart, 1984) which
they construct from their experiences within or outside the mathematics classroom.

This lack of success in helping children develop referentially meaningful symbolic
procedures has been suggested to derive from an inadequate relating of concrete and
symbolic representations (e.g. Hart. 1987). This in turn may derive from:
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(a) insufficient attention to the kinds of methods or models which children may have

available prior to instruction (Boom. 1981);

(b) The use of concrete situations which do not appropriately mirror the formal

model or procedure (Booth, 1976; Hart, 1986); and

(c) inattention prior to or during teaching to the prerequisite concepts or skills upon

which the procedure being taught depends (cf Hail, 1986).

The present study examines these possibilities within the context of solving linear

equations in one unknown.' The equation-solving procedures which children used

were examined prior to. during, and after a 'concrete-based' teaching program

designed to help children develop a formai equation-solving procedure based on the

application of equivalent and inverse operations. The children's understanding of

these latter concepts was therefore also investigated at the same time, together with

other notions thought important to an understanding of the formal procedure, such as

the meaning of letters and the expression of numerical and algebraic relationships.

METHOD

One class of 11-12 year olds from the 4th year of a middle school in England was

involved in the study.2 The teaching approach adopted was the approach normally

used by the class teacher, and involved the use of a 'balance' model and the

ideographic representation of equations as states of equilibrium between

configurations of 'boxes of apples' and 'loose apples', the unknown being

conceptualised as the number of apples contained in a 'box' (see Task 5(b), Table I).

The formal equation-solving procedure to be developed was based on the application

of equivalent and inverse operations, and was intended to be directly modelled by,

and hence have its meaning derived from, the procedures used to handle the

equations as represented ideographieslly.

The investigation was conducted by interviewing a total of six children, comprising

two each identified by the teacher as above average, average, and below average in

mathematical attainment. The interview tasks (Table 1) were selected to give

information on the children's equation-solving methods, and their understanding of

equivalent and inverse operations and the conventions for repntsenting mathematical

relationships, including the use of ktters to represent unknown values. The children

were interviewed immediately before, during, immediately after, and three months

after the teaching program in question.
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TABLE I: EXAMPLES OF INTERVIEW TASKS

TASK INTERVIEWER'S QUESTIONS
totwootat

Mathematical Representation
17 I think of a nuMber, mul 17,

and the answer is 31.

2. x+y6

1(a) Can you write down the problem some way. so
help you work it out?

(b) How would you work It out?
2. What can you say about and y?

3. .ttivakisce

a) "RI :+16

b) E.g.
11:0*+ 6 w 16

4,
Remove

10 w
c) 10 + 6 w 16

3,x (10 + 6) w 16

a) Say I choose these cards and place them like this (see
diagram).
Whet cards could you choose to note the sentence
true? Why?
Could you choose any others?

b) Let's use this sentence you have made (10+6w16).
Now suppose I remove the IT from my side.
What have you gm to do to your side to make the
sentence true again? (Show by choosing and placing
the appropriate cards,)

c) Now suppose I Hart with your sentence again, only
this time I'm solos to multiply the whole of my side
by 3.
What have you got to do to your side to make the
sentence true again?

4. Inverse rations
a) -t or1:1

b) n 6 ? -p

a) Here I've started with a mystery number (Li). You
don't know whim number It is. But I'll tell you I've
oddest 3 to It. Now it's your turn. What have you
got to put in the gap (?) If we want to gel back to the
some mystery number we started with as our answer?
(Chortle and place appropriate cards to show.)

b) Now I've Marled with a mystery number again. but
this time I've multiplied it by 6. What should you
put In the gap if we want to gel bock to the JIM
mystery number we mined with as our answer?

5. Solvint Equations Presented:
a) Algebraically:
I) le + a w 47
Ii) 14 w 32
III) 3p + 5 w 14
Iv) 2x + 8 4x + 2
v) + Sx w 20

b) In ideographic form. e g

Ugg

I) What are we trying to find here? Show ate how yos
would work It out.

II) What does the letter (naming the letter In question)
mean? What does '3", (for example) mean?

ill) Can you write an equation to match the diagram?
(Note: this ideosrophk form was the form used In the
teaching program.)
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FINDINGS

Solutions of equations: After the teaching program, only one of the six students

had adopted the formal equation-solving procedure taught. One other adopted a

procedure which was pan-formal and part- constructive ((he inverse operation being

used to 'undo' addition/subtraction, but not multiplication which was handled

constructively as 7x540 (similarly for 7x521, which was consequently left

unanswered)). The remaining four students used a constructive procedure for

equations of the form '18+(ca7', but trial-and-error for 'harder' equations such as

12x+8wi4.4+2° or '7+ 5x 4.20'. Both these methods had been demonstrated by these

students prior to the teaching.

When presented with an ideographic representation, only the first two students

described above spontaneously saw any connection between the algebraic and

ideographic forms, and these were the only students able to supply a correct

algebraic equation to match a given ideographic example. In both cases, however,

the ideographic version was solved using a 'matching' procedure (cfCollis, quoted in

Galvin & Bell, 1977), and only the 'formal equation solver' was able to match the

procedure used on the diagram by a correct sequence of algebraic statements. Of the

remaining students, one was unable to proceed with a solution, and the other three

used the 'matching' procedure. Two of these latter students wrote algebraic forms

for the ideographic representation which used 'b' to represent 'boxes' and introduced

represent 'apples' thereby producing an equation containing two letters, which

the students could not solve. The other two students were unable to write any

algebraic representation. All four of these students interpreted '36' as '3 boxes' in

this context, and also showed confusion In an 'abstract algebra' context between '36'

as '36's' and '3+b', Prior to the (codling, however, three of these four had

interpreted '3b' correctly as '3 times , where b was Interpreted as a number.

Equivalence and inverse operations: In the ease of addition or subtraction, it is

extremely difficult to tell whether children maintain equivalence or apply inverse

operations on the grounds of logic or empiricism. In the case of multiplication,

however the distinction is clearer. Thus in the equivalence task '3)010+6)=167',

only two of the six students recognised from the beginning that the equivalence could

be maintained by likewise multiplying the RHS by 3. remaining four students

achieved equivalence by evaluating the LHS of the expression, and then adding an

appropriate amount to the RI4S. These respective behaviours were maintained

throughout and after the teaching of equation-solving. Similarly, where the inverse

operations task for multiplication was concerned (i.e. 0x67=0), none of the

313



- 286 -

students was initially able to solve this, except by assuming a particular value for the

unknown and then nitaroia8 an appropriate quantity in order to arrive back at the
given 'unknown' value. During the teaching, the same two students who had
recognised equivalence for the multiplication task, came to recognise that division
necessarily undid the effect achieved by multiplying. The remaining four students,

however, continued with their empirical subtractive approach, except for one student

who came to recognise that subtraction was not suitable, since the amount subtracted

would vary according to the value of the 'unknown', but was unable to suggest any

alternative. The two students who attained recognition of both 'equivalence' arid

'inverse operations' in these tasks were the same two students who were more
successful in learning the equation-solving procedures taught.

Mathematical representation: The algebraic representation of equations presented

in ideographic form has already been discussed. Of additional interest was students'

written representations of the 'I think of a number' task. On the initial interview,
none of the children interviewed wrote equations involving placeholders or letters.

Instead, each student wrote either a verbal or numerical expression. All the
numerical expressions were incorrect, although the students were able to proceed to a

correct solution. The common error was to ignore the bidirectional nature of the

equals sign, thus producing expressions which, although joined by an equals sign,

were not equivalent, but rather represented a procedural statement of how the
problem was solved, e.g. '174.3 w204- 10b230+1 =31' (ef Vergnaud et al, quoted in
Kieran, 1981). By the third interview (immediately after the teaching program),
three of the six students wrote an equation for this task, but interestingly used
plareholders rather than letters (the teaching unit had begun with placeholders, but
quickly moved to using letters). In working tinough the equation thus produced,

however, only one student (the same one who used the formal equation-solving

procedure) maintained equivalence in each successive statement.

Other findings: Also of interest were the findings, supporting results obtained
elsewhere, that (a) in the example A -y=6, . could not have the same value as y (3

out of 6 children), and only integers formed the replacement set (5 out of 6) (e.g.
Kiichmann, 1981; Booth, 1984); (h) expressions such as '214' and '412' were
regarded as equivalent (3 out of 6 students) (Booth, ibid; Kerslake, 1986); and (c)

students did not necessarily view the same letter as having the same value on two

different sides of the same equation (3 out of 6 students) (cf Kieran, 1986).
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DISCUSSION

The picture emerging from this study is that students' formal (in the sense of

logically rather than empirically necessary) recognition of what constitutes equivalent

or inverse operations within a numerical context is not to be relied upon (see also

Filloy & Rojano, 1986). The students in this study who did not show a formal

recognition of equivalent and inverse operations in a numerical context did not show

such recognition in an algebraic context, nor did they learn a formal equation-solving

procedure based upon these understandings. In addition, 'concrete' or ideographic

approaches, though designed to help children gait in understanding of the formal

procedures, may be unsuccessful in doing so if children never see the connection

between the two. In the present study, the only students who saw and were able to

make use of the relationship between the ideographic and algebraic representations

were the two 'above average' students who perhapi had least need of the ideographic

approach in the first place. In choosing a concrete or other representation of a

formal model or procedure, attention needs to. be given to the precise nature of the

concept or procedure thereby instantiated. Where the particular representation used

evokes a concept or method which is not directly analogous to the formal model or

procedure at issue, the use of that representation may in fact hinder development of

the formal procedure required. Furthermore, unless great care is taken, the use of

the concrete model may result in inappropriate 'concrete' interpretations of terms

and concepts being made, perhaps resulting in later error. This is not to say that

concrete models or alternative representations should not be used in teaching

mathematical procedures, but rather that careful thought needs to be given to the

kind of model used, to the ways in which the model is related to the formal

procedure, and to the limitations and misleading notions that might be inherent in

the particular models adopted. Finally, attention is drawn yet again to students' use

of informal methods and 'alternative conventions' concerning mathematical

representation, and to the fact that important relationships in mathematics which

students are assumed to know from arithmetic may either be not recognised by them

at all, or alternatively are apprehended only on an empirical (as opposed to formal)

basis, with consequent implications for their subsequent mathematical understanding

(Booth. in preparation).

Note I: The work described in this paper was conducted as part of the 'Children's
Mathematical Frameworks' (CMF) Project funded by the ESRC and conducted

at Chelsea (now KQC) College from 1983 to 1985.

Note 2: The other teaching studies will be described in the report on the CMF project

(in preparation).
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MANIPULATING EQUIVALENCES IN THE MARKET AND IN MATHS

Terezinha Nunes Carraher 1. Analdcia Dias Schliemann

Mestrado em Psicologia
Universidade Federal de Pernambuco - Recife, Brazil

This study analyzes the cognitive model developed through the

use of two-plate weighing scales among market vendors. Thirty

subjects were observed at work and then asked to solve

two sets of transfer tasks, one regarding volumes and the

other involving more complex problems with scales. Results

suggest that this work experience promotes the acquisition of

skills which surpass the work routine. Almost one third of

subjects were able to either learn very quickly or

spontaneously develop problem solving methods which allowed

for the solution of problems with two-unknown, which do not

emerge in their daily activity.

Studies of working intelligence have shown that mathematical

concepts and abilities can be developed at work generating efficient

problem solving behavior. However, the status of this knowledge is

unclear and must be examined in detail. The cognitive model used by

the problem solver may be based upon the acquisition of specific work

routines or un the understanding of mathematical models.

This study analyzes the abilities underlying the use of two-plate

weighing scales. These traditional scales are used in street markets in

small towns in the Northeast of Brazil, where the technology of digital

scales has not been introduced. One plate holds the weight; the other,

the merchandise. Each scale has a set of weights with the values

appropriate for the merchandise at hand. For instance, merchandise

sold in larger amounts, such as
flour and corn, is weighed by comparison

to weights of 50, 100, 200, 500, 1,000, 2,000, and 5,000 grams. 14 a

customer asks for 350 grams, three weights, 50, 100, and 200 grams, are

placed on one plate and the merchandise in the other; this constitutes

an additive solution. An alternative subtractive solution can be

obtained by placing 500 grams on one plate and 150 grams on the other

plate with the merchandise. This situation affords practice with

number operations and an underlying notion of equivalence. Different

cognitive skills may develop as a result of such practice. On one

hand, subjects say learn a simple routine for weighing because there are

few variations in practice. On the other hand, subjects may learn a
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mathematical model of equivalences, which can be transfered to other
situations. Two types of models could underly this knowledge. One
would be a simple understanding of equivalences, which can be transfered
to other measures, such as litres, and different basic values. The
other would be a deeper understanding of equivalences and cancelations,
which can be applyed to the solution of equations, such as Filloy
tr Rojano and Vergnaud have use in teaching situations. If this more

powerful understanding is gained, market vendors would be able to either

solve problems of some complexity with unknowns on their own or learn

how to solve these problems through cancelation with relative ease.

METHOD

This study was carried out in Gravata, a town of approximately

70,000 people in the Northeast of Brazil and a commercial center for

the surrounding area. Subjects were located in the street fair or

markets during working hours. Subjects were approached after the

examiners observed that they worked with two-plate scales. There were

no attempts to select participant's by sex, age, or level of schooling.

The study was carried out in two phases. First, subjects were

asked in the natural setting to weigh 400 or 900 grams of any product

they sold--a request which was often justified by the experimenters

because the quantities are unusual for certain items. All but one

vendor (who had just started working at the fair) succeeded in obtaining

the desired amount by subtraction. After buying one or more items from

the prospective subject, the experimenters introduced themselves as

researchers interested in daily mathematics and asked for permission to

present new problems. Three refusals were observed; 28 subjects (6

females and 22 males with levels of schooling varying between illiterate

and secondary school) were willing to participate.

In the second, more formal part of the study, two transfer tasks

were administered. The Volumes Task was a simple transfer task, which

consisted of changing the variable in the problems from weight to

volume and maintaing the overall structure of the problems unchanged.

Subjects were asked to obtain five desired total volumes (3, 6.5, 4, 9

and 9.5 litres) by using cups which allowed them to measure exactly

1/2, 1, 2, 5 and 10 litres, Two questions allowed for additive

solutions; the problems which required subtraction were parallel to

those with subtractive solutions when scales are used (i.e., 40, 400,
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90, 900, 95 and 950 grams are all obtained by subtraction). Because

there was no reason to exprct differences in item difficulty

amongst subtractive solutions, a fixed order of presentation was

used to allow for the analysis of practice effects on the task.

The Scales Task consisted of presenting the subjects with pictures

of two plate scales on which some weights and packages had been placed.

The subjects task was to figure out the weight of the indicated

packages. Three types of problems were used* (11 two items with one

unkown on one plate (e.g., 2x + 800 g 1,000 g), the purpose of which

was to obtain the subject's adaptation to the formal task situation; (21

two items with two unkownse one of which the subject did not have to

solve for and could cancel out, obtaining a simplified problem which

could be worked out as a one-unkown problem !e.g., x y 900 g y +

1,000 g)i and (31 three items with unkowns on both sides of the equation

(e.g., 3x + 250 g 2x + 500 gl, the purpose of which was to test for

the development of a more general model used in the manipulation of

equivalences. The adaptation items were always presented first. The

other items were randomly organized into a list, which was presented to

alternated subjects in direct (A to E1 or inverse (E to Al order to

control for order effects. When subjects had already solved or failed

on the third and fourth problems, the experimenters demonstrated the use

of a general method (termed below 'manipulating equivalences') in order

to test how easily it would be learned by those who did not

spontaneously use it. Figure 1 presents a sample problem.

Figure 1

Order of formal tasks was varied across subjects, Soso subjects

answered both tasks on the same day. Others were tested on different

days at most one week apart. Three subjects were not located for the
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Scale Task after having solved the Volumes Task' two others were not

located far the Volumes Task after having solved the Scales Task.

RESULTS AND DISCUSSION

In the Volumes Task, all addition problems were solved correctly

by all subjects. However, observations indicate that a single subject

had probably learned from his experience with scales simply a work

routine which. allowed him to obtain the desired weights on the scale;

this subject solved the additive problems but did not solve any of the

subtraction problems. Because order of presentation of problems was

fixed, different results were obtained for 4, 9 and 9.5 litres. Of

the total of 26 subjects, the 4litres question yielded 7.8% wrong

answers, 46.1 immediate correct responses and 46.1 correct responses

after the experimenters either suggested the analogy with weighing 400 g

or that the subject could start with the 5 litres cup. The two other

questions, 9 and 9.5 litres showed clear effects of practice and

adaptation to the task. For the 9 litres question, 88.5% of the

subjects gave immediate correct responses, 7.7 % only produced a

correct response after the suggestion of analogy to the previous item

and 3.8% did not solve the problem. The 9.5 litres question was

correctly solved immediately by 96.4% subjects. While the immediate

correct responses in this task could be quite independent of practice

with two-plate scales, the fact that a suggestion to solve the 4 litres

problem by analogy to weighing 400 g was helpful, can be interpreted as

indication of transfer from one task to the other.

The Scales Task showed an easy adaptation of subjects to the first

set of items* 100% solved the first Item correctly and 96% solved both

items correctly. This result can be taken as indicative that subjects

recognized the formal Scales Task as similar to their daily occupation.

Questions in which packages of unkown value appeared on both sides of

the scale varied in difficulty according to the need to solve for both

unkowns (type 3 items) or not (type 2), with the latter type being

slightly easier (72.9% of correct answers against 65.3%1.

Three basic approaches to these questions could be identified, all

of which can be seen as transfer from the working situation but refer to

transfering different sorts of conceptions. A higher level conception,

which we will term manipulation of equivalences, consisted of treating

the situation as one in which equivalences are being mantoulated, i.e.,

subjects were able to understand spontaneously or after suggestion that
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the equivalences would be preserved if packages with equal even though

unknown weights were removed from both sides of the scale. This

strategy was used at least in one problem by Fi subjects 14 spontaneously

and 4 after suggestion from the examiner/ and led to a quick solution

of any problem. Subjects who spontaneously worked by manipulating

equivalences did so consistently on all items! those who used the method

after the experimenters' demonstration tended to generalize it to all

following problems. A second type of conception consisted of treating

the situation as one in which equivalences must be maintained but no

manipulations were performed. These subjects attempted to obtain

solution by testing several hypothesis through substitution of the

unkown by hypothetical values--a strategy that will be termed here

hypotheses testing. This method led to solution on several problems

but was slower than the previous one because it involved trial and

error. Eleven subjects used this method at least once. The third

approach involved attempts to work out the total weights on each side

of the scale fitting these values to usual purchases, such as I or 1/2

kilo. This strategy will be referred to as fitting_ values to a total,

and often involved a difficulty in accepting the task demand of making

all x's equal. Although this method is inappropriate for solving

problems in this particular task, it is consistent with demands of the

work experience, in which a customer either asks for a total weight or

finds goods which must be weighed! when the weight is only

approximately measurable, vendors will frequently offer some extra

amount 'in order to complete a kilo', for emote. This method was used

at least once by 10 subjects. Subjects resorting to the last two

methods showed less consistency than those who resorted to the

manipulation of equivalences! their choice of strategy was strongly

affected by the values In the task. Hypothesis testing was more

frequently used in those problems which contained two unknowns but the

subject only had to solve for one of them. Fitting values to a total,

on the other hand, was a more common ',tined when the values in the

problem involved a half and a quarter kilo and the total was actually

one kilo.

The differences in efficiency between strategies were rather clear

despite the possibility of correct solutions through methods

inappropriate for the task. When the manipulation of equivalences was

used, no errors were observed. Other methods resulted in 25% of

incorrect responses.
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Performance in the Scales Task improved with higher levels of

schooling. However, even illiterate subjects were able to learn the

method of manipulating equivalences.

CONCLUSIONS

The main significant findings are summarized below. First, it

seems unlikely that subjects working with scales learn only a routine

for weighing but appear to learn at least a simple equivalence of

measures. While it is not possible to attribute success in the Volumes

Task to a transfer from work experience, a simple reminder of the work

routine was sufficient to improve performance in this task. Second,

transfer,ence from the practical setting to a hypothetical one with

unknowns on only one side of the scale was observed in all cases. Third,

transference to situations with two unknowns is observed less frequently

and is not always obtained by means which are equivalent to the

mathematical model usually taught in school for solving algebra

problems; other methods which avoid the difficulties of two unknowns

emerged in this setting. Finally, it must be noted that while this work

e xperience cannot guarantee the understanding of the manipulation of

e quivalences in this type of problem, the percentage that learns to do

so, either spontaneously or after one or two teaching trials, may be

considered rather remarkable.
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MODELLING AND THE TEACHING OF ALGEBRA
Eugenio Fil loy Y.

Centro de InvestigaciOn y de Estudios Avanzados del I.P.N., Mexico

We present some results of recent Mexican works in the field of Algebra

teaching. An analysis is made within the theoretical framework of the expe
rimentation design, which is essentially that of the Pragmatics of Algebraic
Language and the Psychology of Information Processing, combined with the

acquisitions from Semiotics in the production of codes. The resulting

analyses are included as well as analyses of propositions from the beginning of

the century.

The study of theoretical problems presented by Algebra Teaching has been gather-

ing force in recent years. The National Council of Teachers of Mathematics of the

U.S.A in recognition of this organized, last March, a conference dedicated to analysing

the foundations on which theoretical research in this field should be built. The

Mexican works mentioned in the bibliography are presented and discussed here

indicating the continuous work that has already covered a span of more than five years.

In constrast with what happened then with studies in other parts of the world, as

much in the data-processing methodology as in the theoretical aspects, these Mexican

studies started out with the intention of moving experimental research closer to

teaching (planned and executed in the Mexican school system in the medium level

schools). These experiments start from the observation of the student's difficulties in

learning, given the strategies present in the traditional and innovatory teaching models,

used in today's secondary schools.

In a world context, theoretical analysis has been enriched by the problems

concentrating on the use of knowledge derived from research on Artificial Intelligence.

Also, related more to the psychological processes of the construction of mathematical

language signs in general, another group have actively participated with their theore-

tical works. In Mexico, in attempting establishment of particular mechanism of

algebraic language there has arisen the need for a theoricai framework that lies half

way between the Pragmatics of normal language, the theoretical acquisitions of

Semiotics t see 15) and the theory of information and codification. Thus concepts

such as semantics syntax, context and reading at one language level etc. have been

combined with concepts deriving from the psychology of information processing

such as memory, semantics, short term memory, inhibitory mechanisms process
unravelling mechanisms, analysis mechanisms, permanency in a semantic field etc.

The empirical evidence now accummulated permits us to foresee that an interpre-
tation of the learning processes, practice and communication with the algebraic

language (teaching strategies in particular) demands all of these theoretical instru

ments and that now is the most propitious moment for theoretical reflection on

new problems that would put these (theoretical models) to the test. This article

11-N
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concentrates on the description of some experimental data which in the light of an
analysis of recently. mentioned concepts, reflect a previously unsuspected depth of inter.
dependence.

CONCRETE MODELS VERSUS DRILL AND PRACTICE.

At the beginning of the twenties, in 1161, Thorndike ainlbd at including in his work
all that seemed pertinent to him for the advance of Algebra teaching in his time.
This monumental work still provides an essential programme for any theoretical and
experimental approach, setting aside perhaps some emphasis and preoccupations
singular to this theoretical perspective. What is still very relevant is his central motiva
tion which had already appeared in an earlier article 1 17 I , specifically in the last
paragraph: Algebraic computation, as we recognise it today is, without doubt,
an intellectual skill. It is not such an indication of intellect a-. problem-solving, in
part because it demands a lower-grade of abstraction, selection and original think
mg, and in part also because it only includes numbers and nonnumbers and words.

It is nevertheless very much superior what it is claimed to be a mechanical routine
that can be learnt and operated without the use of thought "

In the following sixty something years the research emphasis has varied enormously
until about the middle of the century when priority was given not to what Thorndike
called problem solving, but to the structural components of study material: Algebra
(in fact all mathematics). We have the case of the medium level French education
study programmes where right up to this date traditional teaching situations do not
appear in the subject called Algebra, since Algebra is considered a continuation of
Arithmetic 1 see 2 1. As a reaction to this there was a change of direction in the seven
ties towards the use of teaching models based on situations similar to, but more concre
to than, those proposed by Thorndike, mechanizing the handling of algebraic expres
wins and achieving a speedy use of the syntactic rules.

In 1 7 I there can be found examples of situations of concrete modelling which
give the following results:

Modelling has two fundamental components: one, that of translation, through
which it applies meanings in a more concrete context to the new objects and oper
ations being introduced, the same as appear in more abtstract situations. That is
through traslation these objects and operations are related to elements of a "concrete"
situation. This a state of affairs that represents, at the same time, a condition of
circumstances in the most abstract situation (in the case of a geometric model for
example, the equality between areas or magnitudes corresponds to an equality between
algebraic expressions) and from what we already know at the most "concrete" level
about the solution of such situations, operations are introduced that, although they
are carried out in the "concrete ", also attempt to function on the corresponding
objects at the most abstract level. It is thus necessary to have a translation of move
ment from one context to another to make feasible the identification of each oper
tion of the most abstract level with the corresponding one in the 'concrete" model.

3 I
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A second component of modelling is the separation of the new objects and opera-
tions with the most "concrete" meaning from that which they were introduced. That
is, the modelling attempts to detach itself from the semantics of the "concrete" model .
since what is requirred is not to solve a situation already known to be solvable, but

to find a means of solving more abstract situations through more abtstract operations.

This second component is a motor principle that orientates the function of the model

towards the construction of an extra model syntax.

The study shows that the predominance of the first of these components of the
model (traslation) can weaken or inhibit the development of the second. This is the

case with subjects that achieve a good handling of the "concrete" model, but that,
due to this, also develop a tendency to stay and progress within this context. This
anchoring to the model works against the other component that of abstraction of
the operations to a syntactic level, which presupposes a breaking with the semantics

of the concrete" model.

The aforementioned obstructions constitute a kind of essential insufficiency in

the sense that the model (left to the spontaneous development on the child s part)

on being strengthened in only one of its components, tends to hide precisely what

is intended to be taught, that they are new concepts and operations.

This kind of dialectic bewteen the processes corresponding to the two model

components should be taken into account in teaching, which should try to develop

harmoniously the two kinds of processes, so that one does not obstruct the other, and

viceversa. In fact, from the case analysis performed here, it is clear that this is a teach

mg task, given that this second aspect of the model, that of breaking with former ideas

and operations where the introduction of new skills is encouraged is a process that

consists of the negation of parts of the model's semantics. These partial negations take

place during the transference of the use of the model, from one situation of a problem

to another but, when this generalization in the model's use remains at the expense of

the spontaneous development on the part of the student, the partial negations can

occur in essential parts of this. It is because of this that it becomes essential to intervene

with instruction in the development of these processes ofdetachment and negation of

the model, in order to direct the student towards the instruction of the new notions.

SYNTACT IC MOD :LS

The idea of the concrete teaching model can tie extended to the strategies proposed

by Thorndike that will here be called syntactic models in contrast with those of

that we shall call semantic, since here thiy emphasize working with a semantic empha-

sis in all the signs and operations involved. In the syntactic model, in contrast. the

emphasis is placed on the general rule used to construct the habits leading to alge

graic operations.

With respect to these models, the empirical evidence (see 12 I indicates that apart

from generating private semantics (of the subject) that confer meaning on the terms
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proposed by the general rule and to the algebraic operations involved (they could be
called spontaneous connections to use Thorndike temenology) there also appears
the phenomenon of reading of the proposed situations, throu9ti selu.s that have beer)
previously conferred on the rules that have to unfold in order to perform the syntactic
task. For example, in 3 there appears the case of a subject that, on first confronting
equations of the type Ax B CIA, B, C > 0), always give B a positive value while
giving A the negative value, guided by the sense derived from the previous practices
that he had carried out with the equations of the type Ax + B C

In this respect the emphasis placed by Thorndike, not only on drill but also on its
preoccupation with practice and the consequences that this has on the times
of training that the learning experiences impose, has a new meaning, faced with the
need to rectify the spontaneous readings, generated here, not by semantics but by
syntax. This is a syntactic context that directs the ('natural') erroneous reading,
due to the anticipatory mechanisms of the subject, this theoretical unit is indispensable
also in the Pragmatics of Normal Language.

PROBLEM SOLVING AND SYNTAX

In 19 I and (1B I there is empirical evidence to show that the analytical prncess
in a typical problematical situation (expressed in the normal language) produces
reading phenomena of the situation which inhibit the development of equation
solving algorhythms that moments before were performed easily and correctly. Thus,
in the presence of a written expression in the normal algebraic language of a fist
grade equation, the subject is incapable of decoding as such and because of this,
he is unable to use brilliant operating skills which moments before he had exhibited
with the same equation. In the works mentioned at the beginning of this paragraph it
is possible to find more examples illustrating this phenomenon. More illustrative than
these however, there occur examples of problematic situations (in the parts where
translation of the normal language to algebraic language is made) that reveal the
ixistance of a tension between the interpretation of the algebraic expression, given by
a reading that comes from the context of the algebraic language itself, and the use of
drill in the operations,inhibiting the necessary reading given by the semantic interpreta
Lion which confers the concrete situation on the verbal problem. A syntactic reading
inhibits the reading of the concrete context where the problem is situated. It does rot
allow the aplication to this algebraic expression of an interpretation that would permit
it to continue with the correct solution strategy that would provide the solution and
including as one of its tactics this part of the translation.

It is at this moment of the discussion that some of Thorndike's theoretical pre-
occupations and their implication in teaching come into their own since the need
to automatize becomes urgent, not only some algebraic operations arising from the
decoding of a concrete problematic situation (problems of age, mixtures, alloys, money,
work, etc.) neither the sense of the necessary algorhythm nor the semantic interpre-
tation (in terms of the contexts of these algebraic operations were practised) nor the
anticipatory mechanisms (especially the inhibitory ones) should obstruct the unfol-
ding of a solution strategy. Besides, it is essential that, when this latter is placed in the
short term memory, the time that it will feasibly remain there should not negate

3 2 ;
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the possibility of considering all the necessary intermediary tactics for the proposed
solution. This should be the case provided that the concatenation of all the tactics,
without making all the steps essential for the obtaining of these partial goals, can be

carried out in this part of the memory (the short term) which it would be difficult

to maintain alert for such a lenght of time. One could say that the skill of storing
important quantities of information, in order to be able to move out from this memory
space to bring in new and important information, is not easily found among average

students. It demands large intellectual resources not proportioned uy normal teaching.

Because of this, drill, resulting from intense practise, allows the optimum use of

algebraic expressions and the normal operations in algebraic language and this breaks

with the anticipatory mechanisms inhibiting the unfolding of necessary solution

strategies.

BIBLIOGRAPHY

1 Eco, U. Tratado de Semititica General. Editorial Lumen, Espana, 1981.

2 Filloy E. History-Epistemology-Mathematical Didactics.
Paper presented at the Ninth Conference for the Psychology of Mathematics,

International Group. Noordwijkerhout, The Netherlands, 1985.

3 Fil loy, E. Teaching Strategies for Elementary Algebra and the Interrerlationship

between the Development of Syntactic and Semantic Abilities. Proceedings of the

Eighth Annual Meeting for the Psychology of Mathematics, North American

Chapter, East Lansing, Michigan, 1986, pp. 108-113.

4. Fil loy, E. and Rojano, T. La apariciOn del Lenguage Artirnetico Algebraico,
L'Educatione Matematica, anno V (3) Cagliari, Italia , 1984. no. 278.30o

5. Fi lloy, E. and Rojano, T. From and Arithmetical to an Algebraic thought (a

clinical study with 12.13 year olds).
Proceeding of the Sixth Annual Conference of the International Group for the

Psychology of Mathematics Education, North American Chapter. Madison,
Wisconsin, 1984, pp. 51.56,

6. Filloy, E. and Rojano, T. Obstructions to the Acquisition of Elemental Algebraic

Concepts and Teaching Strategies. Proceedings of the Ninth Conference for the

Psychology of Mathematics, International Group, Noordwikjerhout, The

Netherlands, 1985.

7. F1 lloy, E. and Rojano, T. Operating the Unknown and Models of Teaching (a

clinical study among children 12.13 with high proficiency in pre algebra).

Proceedings of the Seventh Conference for the Psychology of Mathematics,

North American Chapter, Columbus, Ohio, 1985, pp. 75-79.

8. Filloy, E.; Rosshandler, R. and Trujillo, M. Partial Report of the Project:PAdquisi-

clan del Lenguaje Algebraico: Diagnostic° sobre pre-algebra, 82-83. SecciOn de

Matematica Educative del CINVESTAV IPN, 1985.

327



- 300 -

0. Filloy, E. Sentido Sinttictic" y ResoluciOn de Problemas, Seccion de Mateinatica
Educativa del CINVESTAV del IPN, 1986.

10. Filloy, E. Teaching Strategies for Elementary Algebra and Development of Syntac
tic and Semantic abilities. Proceedings of the Eighth PME NA Meeting, East
Laming, 1986.

11. Matz, M Towards a process model for high school algebra errors. Intelligent Tut
toring Systems, D. Seeman and J.S. Brown, Academic Press, 1982, pp. 25 50

12. Rojano, T. De la aritmetica al algebra Iestudio cl Irmo con IliflOS de 12 a 13 alias
de edad) Doctoial Dissertation. Centro de Investigacion y de Estudios Avanzados
del IPN, 1985, Mexico,

13. Rojano, T. Learning and Usage of Algebraic Syntax: Its Semantic Aspects. Proceed
ings of the Eighth Annual Meeting for the Psychology of Mathematics North
American Chapter. East Lansing Michigan, 1986, 121126.

:4. Springer Series in Cognitive Development.

15. Springer Series in Language and Communication.

16. Thorndike, E. et al The Psychology of Algebra. The MacMillan Co., 1923.

17. Thorndike, E. The Abilities Involved in Algebraic Computation and in Problem
Solving. School and Society, Vol. 15, pp. 191 193.

18. Trujillo, M. Uso dsl Lenguaje Algebraico en la ResoluciCn de Problemas de Ap lica
ciOn. M in Sc. Thesis. Centro de Investigacion y de Estudios Avanzados del IPN.

328



301 -

COMMON DIFFICULTIES IN THE L EARNING OF ALGEBRA AMONG CHILDREN

DISPLAYING LOW AND MEDIUM PRE - ALGEBRAIC PROFICIENCY LEVELS

(A clinical study with children 12-13 years old).

Aurora Gallardo and Teresa Rojano
Centro de Investigacion y de Estudios Avanzados del I.P.N., Mexico.

Here we study the pre-algebraic behaviour and the phenomenon of transition from

arithmetical thinking to algebraic, in children of low academic achievement, those

belonging to the low level and some from the middle level. This student population

offers an amplified version of the difficulties confronted by their companions and, in

an essential way, questions the process of educational evaluation, indicating that the

classification by levels - high, middle and low- depends on the objective of the study

and not the subject itself. Through an analysis of video-taped interviews, we show

important skills and resources, acquired by these students, that are not reflected In the

didactic data. We also see areas of difficulty in algebra-learning that contributes to ex-

plain low academic achievement, and to reveal intrinsic problems in the study matter

an its teaching.

ANTECEDENTS AND PRESENTATION OF THE STUDY

This work is part of a general project on the "Evolution of Symbolization in a School

Population of 12-18 years of age ". developed in the Secci6n de Matematica Educative

del CINVESTAV and the Centro Educativo Hermanos Revueltas in Mexico City, since

1982. The methodology employed in the research project is developed in two directions:

1.- That of the field of historical development of mathematical ideas. 2.- That of the field

of educational research. In this latter we look at the research topic 'Operation of the lin.

known '11] where a transversal study is made of a population of students of 12 to 13 years

of age in a controlled teaching system. Previously the antecedents of the student popula

tion, in terms of various pre-algebra sub-themes, were determined. A resulting stratifica

tion for each sub-theme was developed and this resulted in three levels -high, middle and

low. It was discovered that the subjects, who were suited for the study of the phenomena

of transition from arithmetical to algebraic thought, were those belonging to the high level.

As a result the clinical study described in the research consists fundamentally of an analysis

of interviews of this level. The present work, however, studies the video-taped interviews

of children of low academic achievement. Their relevance can be seen from two points of

view: First, because they give an 'amplified version' of the difficulties confronted by the

rest of the students la and secondly, the process of educational evaluation is questioned

through the illustration that this classification by levels depends on the objective of the

study and not the subject itself, The clinical method illustrates the important skills and re-

sources that these students posses, not visible in didactic data. As a counterpart, it also

indicates areas of difficulties in the learning of algebra which partially explain the low

academic achievement in these students. The areas, detected by the clinical study are as

follows: 1).- Operations, 2).- The nature of numbers. 31.- Primitive methods, the strategy

of trial and error. 4).- The interaction between the semantics and the syntax of elemental

algebra, 5).- The didactic cut in the study of linear equations.

The analysis presented in these areas is restricted to an attempt to explain the data

observed by the clinical method. It does not attempt to be a study in depth, because of
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the complex problems which each one of these contains at a theoretical level. The im
portant thing to note is that the stunents' difficulties uncover intrinsic problems contained
in the material under study and in its teaching in this case in algebra. Nevertheless,
although it is not considered in this work, it is worth indicating the importance of ques-
tioning the following: which factors, apart from those intrinsic to the subject matter, have
a determining influence on whether a student has a low learning capacity or not. We can
not go into this problem here because of the limitations imposed by the methodology
applied.

THE CLINICAL INTERVIEW

The basic format of the interviews is of 5 series: The series E of Equations -of the
form x ± A = B, Ax = B, A x (x ± B) = C , and (xi B = C , where A, B, and C are
particular whole numbers distinct from zero. The series C, Cancellation: x ± A =8t A,

Ax ± B = x ± B; x ± 2.L=B± )Landx+x=A+x The series I (Operation of the
Unknown) that presenAt items such as Ax ± B = Cx and Ax ± B = Cx t D. Finally the
series Solution and Invention of Problems, that takes a further look at the equations pre-
sented in the previous series.

In the majority of high level cases we introduce a phase of instruction in the Series I
(which contains equations for which there has been no class teaching), after having
observed the spontaneous replies to the first equations of this series. This instruction did
not occur with the children from the low level but in some cases with the middle level
child.

AREAS OF DIFFICULTY ANALYSED (Description and Observations)

Next we present the description of the areas in question, with excmples of observed
difficulties with items taken from clinical interviews.

1. OPERATIONS

1.1 The Duality of the Operation, Letters do not constitute a very intuitive nota
tion for the symbolic values since they do not appear at first instance to refer to numbers.
Although the unknowns are frequently used in arithmetic through 'empty spaces', numeri-
cal sentences such as 3 + = 7, this concept is not generalized in a natural form to one
with symbolic value. The 'empty spaces' are not "worked" in the equations nor "defor-
med' by operations that alter their structure, but they have an inherent connotation of
"being filled". Since the "empty space" is not associated clearly with a letter, the
students do not notice. in principle, that the variables can be exemplified with numbers.
Thus, the students of this study, when faced with 2x normaly answer, "You cannot mut
trply by x because you don't know what x is". In fact, the arithmetical idea of 'perform-
ing an operation" such as multiplication is transformed into "how to write the result".
On the other hand, there is a tendency to reject an algebraic expression as a result, when
the signs x , ( )2 appear in the equations the student immediately works the
equation. Here lies the duality of the operation: the permanence of the action when
faced with an order of execution.
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1.2 The Reading of the Operation. Generally arithmetical operations are perform-

ed vertically. In Algebra, horizontal reading of the operation on the equations predomina.

tes I ..' I. These directions in readings, combined with the use of plus and minus considered

at the one time binary and unitary, lead to problems. For example, the item
x + 1 568 = 392 both readings were present. To solve the previous equation, one

student used a calculator and verbalized "1 take 1 568 away from 392. The result is

1 176". He read the expression horizontally. Nevertheless, when the interviewer asked

him to do the operation on paper he turned to incorrect vertical writing -1568
824

In the case of the symbolic signs of the values, he cannot be sure whether thesign is

explicit or if it is "contained" in the symbolic value. Thus in the item x + 1 5 68 = 392

another interviews states "the equation cannot be solved, since x is always positive. Su

that x could be negative. it should be written as -x". On the other hand, there is also some

confusion between the various operations, interpreting addition as substraction, substrac
tion as division, and taking the square root as making to a power and division at the same
time. For example, in the item x +03 = Vij the student asks if N/ 13 can be a de-
cimal. He is answered in the affirmative. He replies "In that case, the answer is 6.5
because 13 divided by 2 is 6.5". When this same student is presented with the equation

x N,P3- = 0 the following occurs:

Student: "It is 3, no it is 9". Interviewer: "Why?" Student: "Take 9 away from

9. The 13 is 9",

1.3 Inversion of Operations. We can frequently observe that the idea of inverse

operation is not consolidated in the student in the transition from arithmetic to algebra

On occasion this leads to the inversion of primitive rules which takes him to the correct so-
lution. These rules function in extra-school situations as in the case of the "reverse" rule.

Thus in the item 13x = 39 the interviewee states that, in order to find the value of x" one

has to divide 13 by 39". He obtains the value 0.333 and confirms that it is wrong. When

the interviewer asks him "What can have happened?" He answers "It has to be done in

reverse, we have to divide 39 by 13". One can note that this procedure is applied to
various daily situations and does not necessarily correspond to the inversion of operations.

1.4 The Nature of Equality. In arithmetic, the equal sign is used fundamentally to

relate a problem to its numerical answer, in algebra the equal sign has adual character; as

an operator (assymetric character of equality) and as anequivalence (symmetric character of

equality). When the idea of operator and not of equivalence is emphasized in the solution

of equations mistakes are made. Thus in the case interviews, the "Quasi-equality 13)

scheme is present. The student constructs the rule "it is not important where the opera
Lions arc performed, as long as they are performed once". Thus, 3x + 154 = 475 is con-

sidered equal to 3x = 475 4-154" since it is the same if you add before or after the equals

sign'. The preoccupation with operating immediately leads them to ignore the equals

sign.

In the series of Cancellation there are present different interpretation of equality I I

at this level: U.- Arithmetic Equality: x + A = 8 f A. That is, the student, before
giving any reply, "reads" the terms on the right hand side of the equation, as one single

number ('close the operation'). 21. Equality of the two sides x + A = A. Consider

each side as a unit. There unfolds a "visual reading" where, at times, the operation involv

ed in the expression is unknown. Thus, in x 4 5 = 5 + 2, the student replies: x is 2

because they are equivalent.
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2. THE NATURE OF NUMBERS.

2.1 Positive Whole Numbers. In the field of nositive whole numbers, the zero and
one stand out as special numbers 1.5 . These special numbers appears in the context of
the rule of identities, that is A 1 = A and A + 0 = A. Here, we should point out
that in 1. x = x they generally interpret 1x as x but do not mention that x is equal to 1.x.
On the other hand, when the solution of the equation is zero, there are students that do
not accept this solution as valid because they see the zero as "the absence of value" and
continue to look for another number that might satisfy the equation. Finally, the majori-
ty of cases interviewed show a preference for the positive whole numbers to the point that
they force the value of the x so that the equation does not contain fractionary expressions.

2.2. Negative Whole Numbers. As far as their teaching is concerned there exists
an assymetry between positive numbers and negatives. The positive numbers are more
concrete in the sense of their relation with measuring activities, and they can therefore be
operated. The negative numbers are secondary, Introduced as a result of the operations

I 7 . In the cases analysed in this work, it is shown through the interviews how difficult it
is for the student to understand and accept negatives. On the other hand, we have
already mentioned the problem of signs, unitary and binary, in the Area of Operations, and
also the lack of link between adding and substracting as inverse operations For example:
(I: Interviewer P: pupil). I: "How do you solve: x + 1568 = 392?" P: '.13y taking
392 from 1568, 1176 (note that he substracts the greater from the lesser number)". I: "Is
the answer correct?". P: "Yes". I: "How did you test it?" P: "I added 392 (quasi-
equality scheme) ". I: "How do you prove it?" P: "By adding 392, but it does not work
out because this is greater than this".

2.3 The Polysemy of the Unknown. It is shown in the following way: in an
equation, different readings of the same x are made. That is, it is interpreted as an un-

known or generalized number (that it has more than one value). Thus, in the items
x + 21(- = 6 + x + 5 = x + x of the Cancellation Series, the typical reply is "This

x (
" xx +:4 = 6 + is 6 and these(17.1- = 6 t14 I can be any number".

This x (x + 5 = x +:11x) is 5 and the + 5 = x + xl can be any value. In the item

2x + 8 = x + 8 many verbalize "This xrril + 8 = x+ 8) is 4 and this x 8= x +8) is
8". They state openly that the x in 2x must be half of the x in the second side so that the

value is the same on both sides. What the student tries for is that "the quantity is consery

ed" at all costs. Note that they still have not consolidated the idea of conditioned
equality, that of equation.

3. PRIMITIVE METHODS, THE STRATEGY OF TRIAL AND ERROR.

The majority of the students that, for various reasons, do not accept academic know

ledge immediately, attack the first algebraic problems with the same methods that have

been successful in arithmetic and that are familiar to them 8

Here we present two case interviews: The first resorts to the strategy of trial and
error. The second uses a systematized exploration. They are asked to solve the ittm
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6x = 37 436. The first student resorts to the calculator for his computations. He tries the

numbers, 175, 365, 465, 563, 633. The interviewer then presents him with the previous

equation as 6 x = 37 636, At this moment he tries 630 and 620. Note that the values

found by the student when multiplying by 6 lead to: 6 x 175 = 1050; 6 x 365 = 2190;

6 x 465 = 2790; 6 x 563 = 3378; 6 x 633 = 3798; 6 x 630 = 3780; 6 x 620 = 3720.

It is observed that these numbers do not reach the required order of magnitude.
Nevertheless, his computation becomes systematic from 633 on in that the first two num-

bers of the total on the right hand side, that is 37, tally with the first two numbers of the

total on the right hand side of the given equation. The second student sets about solving

the item 6x = 37 436 without using a calculator P: "6 by 6 100 this number could be 6

right?". I:"Let's see. Try it".

The student begins to divide on the paper. The interviewer suggests using the calcu-

lator and the student arrives at the correct result, 6 239. Note that, in this case, the

student suddenly grasps the order of magnitudes of the number he is looking for.

4. SEMANTICS AND SYNTAX OF ELEMENTAL ALGEBRA

In the case studies, the semantic interaction semantics-syntax is analyzed with respect

to the invention of a problem from a given equation.

Given the order, "Invent which problem is solved, for example, with the equation
x + 4 = 28", the student first finds the solution. The most pressing need is to under-

stand the meaning of the sign. That is, to find the unknown before becoming involved

in the construction of the problem. (Language obstruction reflex at a purely syntactic

level). On the other hand, we mentioned previously, in the area of Operations, the diffi-
culty of conceiving the algebraic equation as a condition of equality. This occurs on in

venting a problem to solve the equation, the student ommits the question, that is the

thing that converts the description of a situation to a problem.

Sometimes, the problem proposed by the students is foreign to the equation, for

example, in the following case: I: "Can you invent a problem solved by this equation

4(x + 11) = 527?". F': "A problem or just an Operation?" I: "A problem with marbles,

for example...". P: "A child had 5 marbles and won 2 and some were lost, but we don t
know how many...".

Note that when the student asks if a problem or only an operation is wanted, it can

be that he is trying to solve the equation. On the suggestion of the marbles, that is, a

semantic situation, he abandons the previous syntax (4(x +11)=52) and concentrates on
posing "another problem". Observe that the new data is foreing to the initial equation.

S. THE DIDACTIC CUT IN THE STUDY OF LINEAR EQUATIONS.

The work "Operation of the Unknown") 41 corroborates the existence and location

of a didactic cut in the evolutionary line from arithmetic to algebra. At a theoretical

level this cut arises when there is a need to operate the unknown in the solution of linear
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equations, with an occurrence of x on both sides of the equation. In the clinical study,
the didactic cut is perceived only by the children at the high level. One way of noting thisis
their verbal manifestation when they are faced with new equations that they cannot solve.
Some students even imagine the existence of a school-method of attack for these new
equations. on the other hand, the students of low academic achievement do not see any
difference between arithmetical equations Ax + B = C and the non-arithmetical
equations mentioned here. Fundamentally this is because they do not realise the change
of concept from arithmetic to algebra, remaining still in a purely arithmetic field They
even try to look for mechanisms that allow them to interpret new equations with two
occurrences of the unknown as equations where x appears only once. For example, in
the item 5x = 2x + 3 a student answers: " 5x is equal to 2 by 1, 2 plus 3 is 5". Thus, in
performing actions on one side only of the equation as in summing 2x 3 once the x has
a value assigned to it, he reduces the two occurrences of the unknown to one. It is im-
portant here to indicate that the explicit non-perception of a didactic cut is not a denial.
In this work, the existence of the areas of difficulty here mentioned, indicates that the
cut will not flourish at the low level. It will be necessary to solve these difficulties in pre-
algebra before studying the first algebraic equations. This information could not be
obtained from the high level children where they have automatized the actions that make
evident the explanations of the whys and wherefores of the pre-algebraic situations. That
is, children with a great academic achievement do not display the need to make explicit
the situation procedures which are completely rutinary to them.

CONCLUSIONS

The results of this study display important skills in the students of low academic
achievement. Some of these are 1). Systematized trial and error exploration. 2) The
tendency to generalization and simplification in the methods of equation solution.
3).- Extra-school resources such as the "reverse" rule and the 'quasi- equality scheme."
4).- The use of various languages in the invention and solution of problems. On the other
hand, the difficulties encountered by the students indicate some key points to be consi-
dered in algebra teaching. Thus, we should consider such questions as I) the duality of
the operations, ii) the symmetry or anti-symmetry of equality, iii) the non-indentification
between one operation and its inverse, iv) the existence of special numbers, v) the extreme
difficulty of the negatives.

BIBLIOGRAPHY

(1) E. Filloy & T. Rolano. Obstructions to the Acquisition of Elemental Algebraic
Concepts and Teaching Strategies. Proceedings of the Ninth Conference of the
Psychology of Mathematics Education, Holand , 1985.

(2) Hans Freudenthal. Didactical Phenomenology of Mathematical Structures
Chapters 5, 15, 16. P. Reid& Publishing, Co.

(3) Carolyn Kieran. The Learning of Algebra A teaching experiment. American Edu
cational Research Association. N.Y., 1982.

(4) T. Rolano. De la Aritmenca al Algebra (un estudio cl inico con nifios de 12 a 13
arios de edad) 1985. Doctoral Dissertation, Seccion de Matematica Educativa

334



307

Centro de Investigaciones y de Estudios Avanzados del IPN,.

(5) Marilyn Matz. Towards Computational Theory of Algebraic Competence Inte-

lligent Tutoring Systems D. Sleeman & J.S. Brown Academic Press, 1982.

Massachusetts Institute of Technology.

(6) G. Vergnaud; A. Cortes Introducing algebra to "low-level" eighth and ninth

graders. Proceedings of the Tenth International Conference of the Psychology of

Mathematics Education, 1986.

(7) G. Glaeser. Epistemologia de los numeros relativos. Preliminary Notes.

(8) Lesley Booth. Algebra: Children's strategies and errors. NF ERNE LSON 1984.

g)



- 308 -

THE MYTH ABOUT BINARY REPRFSENTATION IN ALGEBRA

David Kirshner

University of British Columbia

The parse of algebraic expressions is often indicated explictly by the use
of parentheses (e.g. (x + 1)') or else as artifacts of the positional features

of notation (c.g. x
2y

is interpreted as x(2y)).
In cases where such explicit

indicators are absent, syntax defaults to a conventional hierarchy of
operations (e.g. 3x' is interpreted as 3(x')). In usual treatments of syntax,
expressions are assigned a binary parse. For example, x + y + z is
assigned the parse (x + y) + z. Because of the associativity of addition,
however, we may legitimately ask if the psychological representation is not
x + (y + z), or indeed if x + y + z is assigned a parse at all.
This paper presents and supports the hypothesis that the syntactic rule
which underlies the mental representations for competent symbol users does
not provide for a binary parse. Since standard formal mathematical models
treat operations as binary, this amounts to an assault upon an implicit but
; :naive assumption that formal mathematical theories explain or underlie
the rules by which algebraic expressions are manipulated.

Before presenting and evaluating a detailed and somewhat technical hypothesis about

the psychological representation of algebraic operations (addition, subtraction,

multiplication, cu) it is useful to consider briefly the place (or rather lack of place)
of such a hypothesis within the context of current research in the psychology of

algebra. This report is atypical in that it is primarily about the fluent or competent

algebraist. The vast majority of studies which have been undertaken to date are

about the novice algebraist; the mistakes which he or she makes or the processes by

which new algebraic knowledge is acquired. Few reports (Carry, Lewis & Bernard,

1980, being a notable exception) attempt to specify a detailed account of algebraic

competence before plunging into the turbulent waters of knowledge acquisition or

knowledge deviation.
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At least part of the inattention to competent performance can be attributed to an

implicit belief that mathematical theory (in some sense) underlies or generates or

explains knowldege used to manipulate algebraic expressions. This belief is evidenced.

for example, in the distinction which Brown, Burton, Miller et al (1975) make between

the "abstract logical structure of the (algebraic] knowledge" and the "reorganimt

learner oriemed structuring of how he is to use the knowledge for solving algebra

problems" p. 84. Apparently they believe that some abstract structure (presumably a

formal mathematical model) underlies the psychological representations, however, they do

not provide a detailed account of the presumed connection, Whatever its direct value

for psychological or educational theory, the present paper also takes aim at the

presumed mathematical-theory/psychological-theory connection.

The present hypothesis resides within a linguistic theory of algebraic competence

(Kirshner, 1987). It is necessary to outline that theory briefly (see Kirshner, 1985, for

a more detailed outline) and to describe some parts of it in detail. In the linguistic

theory, a distinction is made between the surface form (SF) of ordinary algebraic

notation and a more abstract deep form (DF) in which the operations and parse of

each expression are explicitly displayed. For example the SF, 5(1 - x + r)
2y,

would

be represented in DF as 5MMISx]ArJE[2My]] where "M". "S", "A", and "F"

abbreviate operations, and brackets display the parse in the usual way.

DF's and SF's arc central psychological constructs of the theory. It is postulated that

in manipulating an algebraic expression the SF is decoded into its associated DF. It

is the DT' to which transformational rules are applied. Finally, the transformed DF is

encoded back into SF. As an example, (3x)' y' = (3x yX3x + y) is

accounted for as follows. The initial expression (3x)' - y' is translated to its DF,

[(3M4E2)S[yE2]. A "difference of squares" transformation is used to derive a new

DF, ([3M4Sy]M([3Mx]Ay]. Finally this DF is encoded into its associated SF,

(3x - yX3x y).

Major components of the linguistic theory are a Transformational Component, and a

Translation Component. The Transformational Component provides a list of the

transformational rules used in the manipulation of algebraic expressions. (See Kirshner,

1986, for a discussion of the problems encountered in constructing the Transformational

BEST COPY AVAILABLE
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Component.) It will be necessary to refer later to associative and commutative
transformations for addition and multiplication; to the expansion transformation used to
multiply together two polynomials of the form
(a + b + + cXx + Y + + z); and to the arithmetic transformation which
replaces a binary combination of two numbers by the appropriate result.

THE TRANSLATION COMPONENT

The hypothesis which is the topic of the present paper concerns (most directly) the
Translation Component Four stages are postulated in the translation between deep
and surface forms. For the present purposes, we will consider translation from SF to
DF although, as is clear from the above discussion, a comprehensive treatment of
symbol manipulation must account for both the encoding and decoding of SF's In
the original formulation (Kirshner, 1987) translation is directed from DF to SF, so to
maintain consistency with that version, the stages here are numbered in reverse.

Stage 4 cleans up such details of surface representation as the insertion of "" into
square root signs, and the replacement of parentheses and braces by brackets. Stage 3
inserts brackets where parsing cues are indicated only through physical artifacts of the
representation of operations. As an example, x 2Y

becomes x(2y) because being in the
exponent is a parsing cue. Stage 2 expresses operations in the capitalized abbreviated
notation of DF. Stage 1 effects the insertion of brackets according to a conventional
hierarchy where surface cues in Stage 3 have not already dictated the parse. For
example, 3MxE2 (3x') is parsed as 3M[xF2] because of the relative positions of
multiplication and exponentiation in this hierarchy. As an illustration of the
Translation Component, the SF, 5(1 - x + r)2Y, is translated to its DF,
5MU[1Sx]ArD12MY)), as follows: 5(1 - x + r)

21' --4> 511 x + r)
2 y

5[1 - x + rj Pr]
> SM[1SxAr)E[2Myj => 5M[[11Sx)Ar)E[2My)).

The conventional hierarachy of operations which governs parenthesis deletion in Stage 1

is given by Schwartzman (1977):
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Operation Hierarchy

are "A* (addition) and "S" (subtraction)
are "M" (multiplication) and "D" (division)

arc "E" (exponentiation) and "R" (radical)

(In this classification. Level 3 operations are said to be higher than

which in turn are higher than Level 1 operations.)

The process of parenthesis insertion (Stage 1) entails repeated

expression. At each step, tests are required to choose the most

from among those remaining for the appropriate insertion of b

[1987) argues that the syntactic structure is assigned from least

precedent by humans engaged in symbol manipulation, however,

irrelevant to the present concerns.) These tests are provided for in

Syntactic Rule

(a) Parentheses are inserted around the subexpression with the

operation.

(b) If adjacent operations are of equal level, then brackets

about the subexpression on the left.

(A technical definition of adjacency is not provided here.)

Stage 1 is accomplished in two steps:

because E is a higher level

Level 2 operations

passes over the

precedent operation

rackets. (Kirshner

precedent to most

that hypothesis is

the following rule:

highest level

are inserted

In the above example

SM[lSxArjE12My] --> SM[f1SxArjE(2Myjj

operation than M (part a); and

5Mff1SaArjEj2MyD > 5M[1.[ISx)Ar]E[2My]) because S and A are of equal level,

and S is to the left of A (part b).
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THE HYPOTHESIS

This version of the Syntactic Rule leads in a straightforward way to the usual binary

parse of expressions. For example. x + y + z is assigned the DF litAyjA2.. Due

to the associativity of addition. [xAy]Az and xA(yAz) represent equivalent values.

Thus it is legitimate to ask whether the DF representation of x + y + z is

(xAyjAz or itAbAc]. More radically, we may question whether x y + z receives

a binary parse at all. Perhaps the two additions are treated as equally precedent.

For associative operations, addition and multiplication, the non-binary hypothesis is

relatively straightforward. The suggestion of this paper, however, is more far-reaching.

It is proposed that the syntactic rule which underlies the parsing operation for the

competent symbol user does not assign a parse for any expression whose operations

are of equal level. The technical formulation of this hypothesis is accomplished by

the simple deletion of part (b) of the above Syntactic Rule.

This proposal is not as problematic as might appear at first glance. Almost all of

the non-associative operations (division, exponentiation and radical) have a binary

interpretation imposed at Stage 3 of translation. For example, concerns over the

intermediate form xDyMz do not materialize since the division operation would have

specified a parse at Stage 3. For each of the potential SF representations of aDyMz.

Yz
and -Z. the position of the symbols and extension of the vinculum determines an

unambiguous parse at Stage 3. Thus "xDyMz" will have already been assigned a

parse before arriving at Stage 1 of translation. Subtraction is the only non- associative

operation for which a binary interpretation is not imposed in SF. Thus according to

the present hypothesis, xSyAz would remain unparsed even though the binary

alternatives, [xSy]Az and xS(ykz] are nonequivalent This leads, for example, to the
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possibility of applying the commutative transfqrmation for addition to xSyAt, yielding

the nonequivalent DF, xStAy.

Despite this serious drawback, the hypothesis warrants further consideration. A

difficulty encountered in the Transformational Component of the linguistic theory

concerns the representation of subtraction/negation. The transformation delineating

polynomial multiplication could not be expressed in terms of subtracted terms. Instead

it was necessary to express subtraction as the sum of a negative term

(xSy > xA( Nyj ) prior to applying the expansion transformation, While it is

unlikely that subtraction is always so represented (for example it would be difficult to

ascribe psychological validity to the reinterpretation of the "Difference-of-Squares"

transformation as the "Sum- of-a-- Square- Plus- the- Negation-of-a-Square" transformation),

it appears to be impossible to operate upon subtractions directly in the context of

some polynomial transformations.

Some data which seem to inadvertantly bear on this problem were collected by the

author in investigating a quite different question (Kirshner, in press). A sample of

137 fourth year engineering students at the University of British Columbia were asked

to evaluate each of the following expressions for x = 2:

1) 5x + 7 = 2) 5x' = 3) 4(6 + x) = 4) 3 + 4x =

5) x' - 2 = 6) 2' - x + 1 = 7) 3 + 2x' =

8) 19 - 4x + 2 = 9) 3 + (7x - 2) = 10) 5 - x' + 1 =

Such problems are very simple for students at this educational level. Indeed only 14

students in the sample did not Score perfectly (a total of incorrect responses and



one °mingled response). Clearly tl.ese errors are a marginal phenomena, however.

they are not random. Twelve of the 15 errors (including the missing response)

occured with the trinomial expressions, #6, #8 and #10 (the lion's share going to

#8). In each of these cases the response given (if any) was compatible with the

incorrect parse of the expression; e.g. 19 - 4x + 2 = 19 - (4x + 2).

There arc many explanations possible for these errors. It could be that unlike their

peers whose syntactic representations are binary these students construct a non-binary

representation. (Of course it would still remain to explain that ten out of eleven of

these students got two of three similar questions correct.) Alternatively, it could be

that subtraction, which for their peers is represented as addition of a negative, for

these students is just subtraction. This, however, would seem to lead to the prediction

that these senior engineering undergraduates would be unable to correctly rearrange

terms to simple polynomials.

A third possibility does not require postulating such major deviation in the cognitive

structures of the erring students. Questions #6, #8, and #10 are nonstandard

problems in that usually only one or none of the terms in a polynomial is constant.

It could be that the evaluation of polynomials is governed by an ad hoc left-to-right

procedure. The need for initial focussing on a middle term (for substitution purposes)

embedded between two constants may have been just sufficiently distracting to override

this ad hoc constraint for a small minority of students. This explanation has the

advantage of leaving the syntactic structure of expressions and the representation of

subtraction homogeneous for the entire sample, entailing only a slight modification of

cognitive structures to explain the errant behaviour.

342



315

This third explanation is consistent with the hypothesis of non - binary representation.

A polynomial expression such as 3x' 4x1 - 2x + 1 is not assigned the complex

parse. {(13(x')1 - [4(0)] - (201 + 1, but the much simpler and more flexible

parse. [3( x3)] - (4(x')] - (2x) + 1. Ad hoc constraints then prevent the application

of transformational rules (e.g. Commutative and Arithmetic transformations) in ways

which would lead to errant results.

Clearly this issue is not finally resolved by the sketchy considerations and evidence

presented above, however, a case for the plausability of non-binary representations has

been made. Besides recommending the issue for further analysis and research this

report is also intended to bring into question the automatic practise of assuming some

explanatory link between formal mathematical models (in which operations are binary,

for example) and psychological models, and to emphasize the need for detailed and

rigorous formulations of the latter.
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THE STATUS AND UNDERSTANDING OF GENERALISED ALGEBRAIC

STATEMENTS BY HIGH SCHOOL STUDENTS

Lesley Lee, Concordia University

A brief review of the results of the first year of a research
project looking at grade 10 students' algebraic concepts is
followed by a specific look at their understanding of generalised
algebraic statements Attention is focussed on the work of one
student across three problems The first problem reveals that
students are fairly competent at producing generalised algebraic
statements once a usable pattern has been perceived. A lack of
flexibility in pattern perception seems to be the main stumbling
block. In the second problem we see that once generalised
statements are produced most students do not invest them with
any meaning or see any use for them other than as a condensation
of the problem statement. Only a minority of students seemed to
see their use in substantiating a generalisation. That few
students use algebra or appreciate its role in justifying a general
statement about numbers, is the conclusion of the third problem.

This paper focuses on one aspect of a research project conducted by David
Wheeler at Concordia University and funded by the Social Sciences and
Humanities Research Council of Canada in 1986. Algebraic Thinking in
high School Students. Their Conceptions of Generalisation and
)ust if ication. A full report of the first year's work is available.

A test instrument of 4 questions was administered to 350 grade 10
students in three Montreal schools at the end of February. Each student
responded to one question from each of four question groups involving a
bank of 12 questions in all. Twenty-five of the tested students were
subsequently interviewed for 30 minutes each while working on similar or
the same questions Analysis of the test results and interview protocols
supports the following general conclusions:

1. A majority of students do not appreciate the implicit generality of
algebraic statements involving variables.

2. For most students, numerical instances of generalisation carry
more conviction than an algebraic demonstration of the
generalisation.

3. Many students do not appreciate that a single numerical counter-
example is sufficient to disprove a hypothesised generalisation
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4 Students who can competent's; handle the forms and procedures of

algebra rarely turn spontaneously to algebra to solve a problem

even when other methods are more lengthy and less sure

The first two findings are compatible with results obtained by other
researchers (e g Bell, 1976, Fischbein and Kedem, 1982), though our data

is generally richer and covers a greater variety of algebraic situations
The last two findings have not, to our knowledge, emerged so clearly

before

In a paper presented at PME-NA in Septemper 1986 we looked at students'
conception of justification in algebra as revealed through the test and
interview performance of one student, Eve This paper is in some sense a

complement to that paper in that we will examine the other theme of our

research, generalisation,with particular attention to the work of a second

student, Yves. Yves is in many ways the complement of Eve Whereas Eve's

work was reasonably typical of that of the majority of students tested,
Yves' performance was quite unusual Judged by his regular teacher to be

one of the weaker students, Yves nevertheless appears resourceful and

comfortable with the language of algebra.

Students' ability to produce a generalised algebraic statement was tested

using a series of problems involving generalisation of dot and number
patterns We will examine here the dot triangle problem which was given

to 8 interview students

II

Suppose the above sequence of dot-triangles is continued according to the

same rule, how 1173/7y dots will there be in (/) the 5th tr/angle 01) the
1170th triangle OW thepth triangle7

A similar problem involving dot-rectangles was given to 176 students en

the test and another 8 interview students Although the rectangle pattern

seemed to be much easier for students, their work there does contribute to

our analysis of that done on the dot-triangle.

Yves, who was given the dot-triangle sequence, perceived a whole series

of patterns His first perception seemed to be a diagonal one. He drew the

fifth triangle from the fourth by adding a diagonal realizing that the
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number of dots across the top oqualed the number in the diagonal as well
as the number of the triangle At the same time he established the number
pattern for the total number of dots in the first six triangles While
thinking about the hundredth triangle he established the formula
"x+x-1..until x=1" which dissatisfied him because "it takes a long time".
Asked about the hundredth triangle he wrote 100 +99 +98 +..1 and said he
thought there might be a Key on the calculator which would shorten the
work At this point Yves switched to an entirely different pattern
perception He began studying the dot triangles again and relating them to
the total number of dots in each He began to see a pattern in the ratio
(number of dots in triangle) - (number of dots along side) "it seems to go
down by 5" He explained to the interviewer "I'm Just trying to get a
constant" Very engrossed in calculations he suddenly wrote
x.((x 0,5)+0,5), encircled it and declared "That's It"

Looking more closely at Yves' shifting perceptions of pattern here, we
might illustrate them as follows

1 Diagonal pattern each triangle is obtained from the previous one
by adding a diagonal of n dots For example the fifth is obtained
from the fourth by adding five dots

2 Equality pattern the number position okeach triangle in the
series equals the number of dots across the top as well as the
number of dots along the side Yves' expressed it this way
"dots across= of triangle dots down= of triangle"

3 Total number of dot pattern. students count the numbers of dots in
the first five or six triangles and then proceed to establish the
general term of the series 1, 3, 6, 10, 21, .. Most students, like
Yves, arrive at the general expression x+(x-1)+(x-2) ... 2+1.

4. Linking two number series here triangles are ignored and a
relationship is sought between the two number series (i) I, 2, 3,
4, 5, ... representing for Yves the number of dots along the side of
the triangles and (ii) I, 3, 6, 10, 15, ... the total number of dots in
the triangles. Dividing the terms of the second series by the first
Yves gets the series 1, 1.5, 2, 2.5, 3, .. which he realizes is going
up by 0.5 Letting x represent any number in the first series and
focussing particularly on the fifth and sixth triangles, Yves
creates the expression x(0.5)+0.5 which he then multiplies by x to
get his final response This can be seen to be another form of the
formula for the sum of the first n natural numbers.
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Students exhibited many other perceptions of pattern here Some were

more useful than others in suggesting a formula The key to success

however seemed to be flexibility of pattern perception such as we

witnessed in Yves' work Many students who had a single perception and
who, like Yves, arrived at the sum of the first n natural numbers blocked

there because they were unable to find a formula for this Interviewer
interventions were particularly confusing to students in these questions

because interviewers were constantly talking to their own pattern
perception which in many cases was not that of the student Two

pedagogical lessons can be learned here Firstly the importance of
teaching students flexibility in pattern perception and secondly the
importance as teachers of being aware of our own pattern perceptions and

sensitive to other possibilities.

Expressing the perceived pattern in algebraic language did not seem to be a

major problem for most students in these problems. Asked what the n th
element of the sequence would be, students had no choice but to produce an

algebraic generalisation The main stumbling block in producing a

generalised algebraic statement was the ability to perceive a usable
pattern Only one other student was able to solve the dot-triangle problem

and she, like Yves, showed great flexibility in pattern perception

A second question, given to 116 of the test students and 9 interview
students, involved both generalisation and justification

A girl multiplies a number by 5 and then ado's /2 She then subtracts hei
starting number and divides the result by 4 She notices that the eynswei

she gets is 3 more than the number she started with She says, 7 thinA

that would/149pm, whatever number / started with-
Is she right? Explain carefully why your answer is right.

This question was dealt with in considerable detail in the PME-NA '86

paper but with the accent on justification rather than generalisation In

that paper we looked particularly at the work of Eve whose work was
typical of that of a third of the students given this question. As I read

the problem I wrote down the formula That's what I always do." was

Eve's explanation of the correct algebraic identity written directly
underneath the test question. The status of Eve's generalised algebraic
statement became increasingly clear as the interview progressed. Eve

used the identity to set up her first numeric example and then abandoned

it Successive examples were created from the first example and her
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conclusion that the girl waz, not right was based on her four numeric
examples Eve's creation of a generalised algebraic statement seemed to
be automatic but entirely meaningless for her

Yves did not go into automatic algebra mode as Eve did and his progress
through this problem was a constant struggle to understand why the girl is
right After trying the particular cases of starting with 3 and with 6, he
said he thought she was right Asked how he knew, he referred to the fact
that "you can always divide it by 4 for some reason". Asked if it would
work starting with 5287, he reexamined his example starting with 6 and
eventually said, "I guess whenever you times the number by 5 and subtract
what you timesed it by, and you add 12, it's divisible by 4 ... Yeah You
always get, whenever you, uh, multiply something by 5 and you subtract by
what you multiplied it by, its always going to be a multiple of 4" Yves
checked another example "Why do you think that is?"

He now quite spontaneously generalised his observation and began checking
it out "I'm trying it Instead of using 5 I'm using the number below . and
it works. Like if you multiply by 4, if you multiply any number by 4 and
you subtract what you multiplied by, it's going to be a multiple of the
lower number, the one below (i e n" Asked why, he said "Maybe its just
the way numbers work", and invited to establish the property without
recourse to vague statements he wrote y x y mult x- I

On the evidence of this protocol, Yves is able to "see the general in the
particular" and to move confidently from particular examples to
generalisations and vice-versa When asked if 5287 would work as a
starting number, he goes back to his worked example of 6 to find an
answer, and he finds without prompting a generalisation of the structure
of 5x-x. Krutetskii talks of "seeing the general in the particular as a
characteristic marking off able students from the rest

. there is another way, in which able pupils, without comparing
the 'similar' .. independently generalise mathematical objects,
relations and operations 'on the spot', on the basis of the
analysis of just one phenomenon They recognise every specific
problem at once as the representative of a class of problems of a
single type . (Krutetskii, 1976)

It seems possible that this method of generalisation is not confined to
able students but is paradigmatic of everyone's generalising style. This
point, however, is not made in the psychological literature on
generalisation and may be difficult to establish
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The third and final problem we will examine here was one of a series of
three problems concerning the justification of statements about

consecutive numbers.

The product of two consecutive whole numbers is an even number
is this statement true'? Cal you explain how you know?

How does one Justify a general statement about numbers? Does algebra

have a role in this? In a test question where he was asked to choose the

best response to a similar problem concerning the sum of consecutive

numbers Yves, like 40% of students chose an algebraic demonstration over
a verbal one and a justification based entirely on 3 examples

Given the above problem Yves wrote the numbers from 1 to 10 with the
product of each consecutive pair underneath and decided the statement
was true He searched for an explanation why and repeated the problem
statement, suggesting that . an odd times . I think it cancels out, or
something, and the even wins." Later. "it's a law or something". When
asked for "something more mathematical" he produced the algebraic
expression x2+x and used it to demonstrate evenness by considering the
cases x odd and x even separately He worked through the case of x even
and x odd referring to x=6 and x=7 but in a very different way than most
students who introduced numeric examples Looking at his argument we
see that the 6 and 7 are used more to illustrate than justify.

"Every time you square an ev .. an odd number you get an odd

square i ... forty-nine. Whenever you add two odd numbers
together its always an even. (Here interviewer says "That's too
fast for me") Okay, well x squared is these sevens ... is forty-
nine (Here he writes 49+7=56) .. If you use an even number
let me think. Five, no, I mean six .. plus six. You get 36 plus 6
which is equal to 42 So it's always even." (Writes 62+6=42)

When the interviewer asked "but how do you know that's going to work for
other even numbers?", Yves replied 'Cause of the formula, it should."

Although Yves was slow to introduce algebra here he did not seem to be
satisfied with his explanation until he used the algebra. He was the only
interview student who used an algebraic demonstration here On a similar
test problem which asked students to explain why the sum of two
consecutive numbers is always an odd number and their product even, only

349



322

8 of the 118 students used algebra in their justification of the sum and
only 2 of these were able to use it in the case of the product 27 students
did express consecutive numbers as x and x+ I and showed they were able
to write the expressions for their sums and products but the majority of
these used their algebra either to create examples by substituting values
for x or to set up equations and solve for x (i e 2x+1=7, x=3, x+1=4 which
are consecutive numbers) The justification produced in the consecutive
numbers questions appeared to be very solidly entrenched in number
examples and both the algebra and to a lesser degree the even/odd
non-algebraic discussions were more for the form or peripheral to the
main work Yves was one of a very small number of students who seemed
to appreciate the role of algebra in justifying a general statement about
numbers

Our look at student's appreciation of generalised algebraic statements is
very incomplete and will need to be the object of much more systematic
research We hope to continue our research looking at the influence of the
instructional context on students' understanding of generalisation in
algebra and undertaking a teaching experiment to determine whether
students' understanding of generalisation can be improved by special
instruct ion

To date the research literature has not been extremely helpful
Considerable literature exists concerning the theme of generalisation.
Some of this literature concerns generalisation as a human activity, some
restricts discussion to mathematical generalisation, and some touches on
algebraic generalisation All authors seem to presume that everyone
knows what generalisation is although no two authors seem to be
considering the same activity and many tend to jump about in the meaning
they give to generalisation within a single discussion. The confusion
surrounding generalisation is compounded by a lack of clarity on what
constitutes algebra leaving the definition of algebraic generalisation
totally arbitrary. For example, in the Open University text Routes
to/Roots of Algebra (1985) we read. "Generality is the lifeblood of
mathematics and algebra is the language of generality" (p.8) Later
however in the same text we read: "algebraic language provides both one
way (there are others) of expressing generality because it is compact and
succinct, as well as a tool for manipulating general expressions to reveal
new relationships among them." (p.56) What is clear from the literature
as well as our own research is that much more work needs to be done in
the area of generalisation if it is indeed "the lifeblood of mathematics"
and more particularly in the area of algebraic generalisation if algebra is
to become "the language of generality" for our students.
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A PSYCHOLINGUBTIC prRsprrTrn OF

ALGEBRAIC LANGUAGE

V. Alexander Norman

University of North Carolina, Charlotte

This paper includes a description of a psycholinguistic
perspective trom which we examine relationships among
language, cognition, and experiential phenomena. Language
influences both thought and perception - this thesis is
followed through in an explanation of common syntactical
misconceptions in students' interpretations of algebraic
structure.

There has been, over the last two decades, an expanding body of research

dealing with the learning of algebra. Results of several recent studies

include the delineation of students' difficulties with algebra that are

associated with algebraic symbolism. Foe example, Mats (1979) and

Chalouh & Herscovics (1983) have identified and investigated

misconceptions about concatenation of numerals and literal variables;

Kieran (1984), among others, has indicated that students sometimes

perceive variables in algebraic equations differently than they do in

algebraic expressions; Wagner (1981) pointed out difficulties some

students had with changing the literal variable in equations and has

also described some of the semantic differences between verbal and

numeric variables (1983); Wagner, Rachlin Jensen (1984) and others'

have made important contributions to the literature concerning students'

interpretations of algebraic language. The variety of syntactic and

semantic interpretations which students give to algebraic language

suggests that a psycholinguistic perspective of these interpretations

may he helpful in elucidating students' understanding of algebra.

PSMHOLINGUIST1C PERSPECTIVES

Since the turn of the century psycholinguistics has developed into a

complex, eclectic field reflecting a variety linguistic perspectives,

epistemologies, and theories of cognition and cognitive development

(e.g., Hamann, 1970). This is not the place for a retrospective of

the historical development of psycholineuistics; however, a few words

r 9
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may help to illuminate the genesis of the perspective taken in this

paper. LA more fully developed and detailed exposition ot a

psycholinguistic approach to algebra will be fotnd in Norman (in

preparation).1

In its simplest tormulation the object of psycholinguistics is to

describe the processes of language use. The work of Vygotsky (1962)

and Luria (1982), particularly in reference to the ontogenesis of

language and the role of language in the regulation of thinking, has

significantly influenced my general approach to the application of

psycholinguistics to algebraic language. Additionally, Whorf (1956)

proposed complementary hypotheses of linguistic determinism (language

determines the categories in which we think) and linguistic relativity

(different languages constrain the development of relatively different

cognitive categories) which, in a modified form, underlie some of the

assumptions taken here. Although reaction to Whorf's theses has been

mostly negative, a recently developed paradigm, cognitive structuralism,

has placed on a much firmer theoretical base investigations of the

related question, "What are the conditions and constraints on the

influence of linguistic constructs in the shaping of thought?". The

cognitive structuralist perspective, founded in the work of Piaget and

Chomsky, holds, as guiding tenets, that:

1) Cognitive structures (separate from behavior) mediate between

perceived phenomena and our reactions (behaviors) to those

perceptions;

2) Cognitive structures develop via interaction with external

phenomena; and

3) Cognitive structures are distinct from, but influenced and

elaborated by, language (Bloom, 1981).

Figure 1 is a simplified schematic representation ot the cognitive

structuralist view of the associationhamong perceived phenomena (world),

the mediating function of cognitive structures (cognition), and

language. The bidirectional arrows represent cognitive mechanisms

(such as perception) and non-cognitive processe., (such as sociocultural

influences) which interactively affect the three constructs of world,

cognition, and language.
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Cognition

Language World

FIGURE 1

The diagram does not adequately retlect the dynamical relationships and

interactions among the tnree constructs. In particular, note that

linguistic understanding (and thus its influence) is subject to

evolutionary processes, and develops, it not in parallel, at least

synchronously with the evolution of cognition and the world, continuously

influencing and being influenced by them.

ALGEBRAIC LANGUAGE

The origins of natural verbal and written language are different -

verbal language develops sympractically, primarily through social

interactions, whereas written language emerges from special learning

(Luria, 19112). Nevertheless, there is a direct syntactic isomorphism

between natural verbal and natural written language. Note that I do not

infer a semantic isomorphism, although for the native speaker of a

language the natural association of written language with its verbal

image (under the syntactic isomorphism) is semantically rich. A prime

feature that distinguishes symbolic algebraic language from symbolic

(i.e., written) natural language is the evident tact that algebraic

language no longer has a direct, coherent semantic association with

verbal language. Any experientially-based frames of reference for

algehraic language are too weak to supply students with an adequate

semantic support for algebraic understanding.

Mathematical language is envisioned here as a web of symbolic dialects-

an arithmetic dialect, an algebraic dialect, a set-theoretic dialect,

and so on. Now, keeping in mind the tenets of cognitive structuralism,

we consider some linguistic influences on learners' construction of an

algebraic grammar (following Chomsky). Two important influences on the

construction of an algebraic grammar are related to the depth of

knowledge of natural language and knowledge of the arithmetic dialect.

Evidence from some of the studies mentioned previously suggests that

sometimes students attempt to gain a syntactical understanding of

algebraic structure by applying (Wien inappropriately) syntactic
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rules from natural language or arithmetic. Thus, both inter- and

intralinguistic mechanisms are involv: i in students' constructions of

algebraic grammar.

A simple illustration of the above remarks can be found in students'

misconceptions involving concatenation of a numeral with a literal.

A student, say, who perceives the algebraic expression 5y as an

integer in the 50's has made an inappropriate application of legitimate

arithmetic rules of syntax in an algebraic situation (which, of course,

has its own, quite different, syntactical structure). The example here

shows that the arithmetic dialect influences the perceived structure

of the algebraic dialect (see diagram below).

arithmetic syntax "' algebraic syntax

The following example illustrates how the syntax of natural language

might influence students' perceptions of algebraic structure.

Consider the following two problems given to a class of elementary

education majors (they were not presented consecutively):

(1) Larry made two donations to the World Wildlife Fund totaling

$60. One donation was for $40, How much was the other?

(2) Joan drove a total of 50 miles in one hour. On one part of the

trip she drove 35 miles per hour. How fast did she drive

during the other?

Although the semantic content, especially the quantity structure, of

these two problems is significantly different, the syntactical structure

is identical. In each problem we have "quantity I combined with

quantity 2 results in total quantity." The syntax appears to impose

an additive structure in the transition to algebraic language- perhaps,

Q1 + Q2 = T. In fact, 8 of 22 students apparently found the natural

language syntax powerful enough to dominate both the natural language

and algebraic semantics of the situation, and arrived at a comfortable

15 miles per hour for the second part of Joan's trip. Thus, we have a

clear example of natural language syntax influencing the structure of

algebraic syntax.

natural language

syntax
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Actually, it is not too surprising That students would ignore 'le

semantic content of the natural langu-, questions posed in th

previous example. After all, students are encouraged to make such

translations whenever possible ( the "whenever possibl,'" is tl often

overlooked key). Percentage problems come to mind as a class uf

statements which, when stated as textbooks usually do, are sy,°actically

isomorphic with algebraic language.

The powerful influence that both natural language and arithmetic

syntactical structures have on the development of an algebraic syntax

suggests that there ie a linguistic aspect to the cognitive c.betaeles

That arise when a student is experiencing conflict among two or more

frames of reference. Herseovics & Chalouh (1985) have descried come

of these obstacles as they emerge in the transition from an arithmetic

to an algebraic frame of reference. It is worthwhile to note here that

these researchers attempted to have their students circumvent some of

the obstacles by linking the arithmetic and algebraic structures

together via a common geometric association. It may be the case that

the figural syntax of geometry is an effective mediator between

arithmetic and algebraic language.

A third example of how syntax has a structuring influence on the

development of an algebraic grammar illustrates more than the previous

examples the evolutionary nature of the grammar. In fact, this example

is intradialectical, almost self-referential, because it illustrates a

syntactical transition within the algebraic dialect itself. Consider'

the introduction of functional notation (e.g., y = f(x), sin(x), etc.).

This new notation is more subtle (syntactically) than we might think

(I still have calculus students who write sin(x)/x = sin ) because the

symbolism is not new, but the interpretation is. Just when students

know parenthetical expressions are multiplied (f(x) means f.x and

f(x + h) = fx + fh ), as are concatenated literals (xxyx3 = 3x3y and

similarly csc(2) should he 2c2s ), they find out otherwise! Whatever

grammar the students have when they are first exposed to functional

notation, it must be elaborated in order to accommodate the new

structural interpretations. (Note that part of this elaboration will

include rules which must take into account mathematical conventions.

Conventions are essentially a product of social interactions, thus we

see that a Vygotskian perspective is relevant.)
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Figure 2 summarizes some of the connections which have been discussed

so far. The dashed arrowheads indicate directional influences that

have not been discussed but which fall within the constraints of the

psycholinguistic perspective used here.

An idea that is reinforced by the three examples we discussed is that

the development of an algebraic grammar is an evolutionary process.

Apropos of syntactics, such a grammar is simply a theory of correct

syntax which is constantly undergoing testing and modification until

the theory becomes an adequate formulation of rules for the construction

of algebraically grammatical syntax. What has been said so far does

not even address the more important question of semantics.

Semantic knowledge of algebraic grammar can not be rule driven (as

syntax can) any more than can semantic knowledge of natural language.

Rut, as there is no coherent link between algebra and natural language,

it is difficult to see how to provide an enriched semantical structure.

The ideal situation would be to find a semantically rich representation

system and an isomorphism which linked such a system to algebra. A more

promising alternative would he to model the development of algebra after

the development of verbal language- i.e., sympractically. The impli-

cations of such an approach are exciting and could be far reaching.

CONCLUDING REMARKS

This paper represents a first response to Wheeler & Lee (1986) who

suggest the importance of opening a dialogue concerning the roles that

various aspects of psychology might play in investigations of algebra.

I have endeavored here to take a look, albeit through a rather narrow

lens, at a few linguistic influences on algebraic language. I suggest

that the field of psycholinguistics holds great promise in providing

us with tools for examining and eventually understanding students'

conceptions of algebra.

357



330

REFERENCES

Bloom, A. (1981). The linguistic shaping of thought: A study on the
impact of thinking_ in China and the West. Hillsdale, NJ: LEA.

Chalouh, L. & Herscovics, N. (1983). The problem of concatenation in
early algebra. In J.C. Bergeron I. N. Herscovics (Eds.),
Proceedings of the 5th Annual Meeting of PME-NA, Vol. 1.

(pp. 153-160). Montreal.

ticrscovics, N. i Chalouh, L. (1985). Conflicting frames of reference in
the learning of algebra. In S. K. Damarin & M. Shelton (Eds.),
Proceedings of the 7th Annual Meeting of PME-NA (pp.123-131).
Columbus, OH.

Wirmann, H. (1970). Psycholinguistics: An introduction to research and
theory. H. H. Stern (Trans.). New York: Springer-Verlag.

Kieran, C. (1984). A comparison between novice and more-expert algebra
students on tasks dealing with equivalence ot equation. In

Proceedings of the 6th Annual Meeting of PME-NA (pp. 83-91).
Madison, WI.

Luria, A. R. (1982). Language and cognition. J. V. Wertsch (Vd.).
New York: John Wiley.

Mats, M. (1979). Towards a process model for high school algebra errors.
Unpublished working paper No. 181, MIT, Cambridge,

Norman, F. A. (in preparation). Implications of psycholinguistic theory
in mathematics education. Working paper, University of North
Carolina at Charlotte.

Vygotsky, L. S. (1962). Thought and language. E. Ilanfmann 1. G. Vakar
(Trans.).Cambridge, MA: MIT Press.

Wagner, S. (1981). Conservation of equation and function under
transformations of variables. Joural for Research in Mathematics
Education, 12, 107-118.

Wagner, (1983). What are these things called variables.
Mathematics Teacher, 76,474-479.

Wagner, s., Rachlin, S. h, 6 Jensen, R. .1. (1984). Algebra learning
project: Final report. Athens, CA: University of Georgia, Department
of Mathematics Education.

Wheeler, 0. 6 IMO, L. (1986). Towards a psychology of algebra.
In C. happan 6 R. Even (Vds.), Proceedings at tho 8th Annual Meeting
of N#: -NA (pp.102-107). Fast Lansing, MI.

whorf, B. L. (1956). hannuage, thought, and reality. I. B. Carroll (I4,)
Cambridge, MA: MIT Pres..

BEST COPY AVAILABLE



-331

ERROR PATTERNS AND STRATEGIES IN ALGEBRAIC SIMPLIFICATION

Lionel ?ereira-Mendoza

Faculty of Education

Memorial University of Newfoundland

This study examines the underlying strategies utilized in

simplifying algebraic expressions and students' rationales

for their processes. Written tests were given to 230 grade

10 students and 20 of these students were individually

interviewed and asked to simplify expressions involving the

product of two monomials. An analysts of audio-taped interviews

indicated that students were operating in two distinct, but

not disjoint spaces, namely an algebraic and arithmetic

space. Incorrect solutions often resulted from the application

of inappropriate algorithms or principles within the algebraic

space. This was caused by the invalid generalization of an

arithmetic algorithm or principle to the algebraic space.

Other errors occurred because of the incomplete conceptualization

of the algebraic space.

INTRODUCTION

The study of algebra constitutes a
major component of high school

mathematics. The basis of algebra is the concept of a variable and its

associated notations. Comprehending the solution of equations, factori-

zation, polynomials, etc., depends on students' comprehension of algebraic

symbolization. Without this comprehension, algebra will be internalized

as a set of disjoint and meaningless rules.

Matz (1980) in investigating the nature of algebraic errors indicated

that students try to extend and adapt their arithmetic knowledge to

algebraic space and this model has been utilized by many researchers in

their attempts to analyze and discuss algebraic errors (Kieran, 1984;

Herscovics & Chalouh, 1985). The question arises as to the extent the

mathematical relationship between arithmetic and algebra parallels students'

perceptions.

Researchers such as Kuchemann (1981), Mason and Pimm (1984) and

Booth (1984) have investigated
students' Interpretations of a variable.

Their research indicates that students develop different interpretations.

Furthermore, many of these interpretations do not appear to derive from

an extension of arithmetic space to algebraic space.
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Other researchers such as Carry, Lewis and Bernard (1980), and

Pereira-Mendoza (1984) found that students do not interpret algebra as

generalized arithmetic.

As Byers and Erlwanger (1984) stated:

It is well known that traditional high school algebra consists

largely of repetitive symbolic manipulation and that, pe-haps

of necessity, this characteristic of the subject persists to

the present day. It is equally well known that by and large

students do not understand what they are doing. (pp. 265-6)

If one accepts the reality that students do not understand the

algebraic manipulations they undertake, then two questions arise: What

underlying rules do students utilize to manipulate algebraic expressions?

How do they do they interpret the rules?

SAMPLE AND PROCEDURE

Written tests were given to approximately 230 Grade 10 students

randomly selected from various schools in the Province. In the algebraic

rest the students were asked to simplify the product of monomials such as

3y3.4y 5y4.6y2 etc.

The types of errors were categorized according to the pattern of

errors. For example, patterns involving the incorrect combining of

exponents, patterns involving the addition of coefficients and patterns

involving incorrect signs when multiplying integer coefficients. A

subgroup of 20 students was selected for in-depth interviews. Those

interviewed included both students with identifiable error patterns

(16 students) as well as students who had obtained correct solutions

(4 students). The students were individually interviewed by the researcher

and the sessions audio-taped. The purpose of the interviews was to

determine the rationales for the processes the students were using to

simplify the expressions. This report presents part of the results from

the interviews.

RESULTS

1. A very common error was simplifying problems involving y.y. For

example, many students simplified 3y.4y as 12y. There were three main

rationales for this error:
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a. Students incorrectly generalize the distributive principle.

e.g. interpreting 3y.4y as (3.4)y.

In the interviews students would make comments such as you take

out the y". One particular student stated that he was applying the

distributive principle. When asked to explain the distributive principle

most students would resort to either a general statement such as it

means "taking out the common term", or select an arithmetic or algebraic

example involving the distributivity of multiplication over addition.

When asked to compare what they had written or said with their solution

to the problem (which involved only multiplication), only in two cases

did this result in a changed view (the students corrected their process).

In all other cases they could see no
'difference' since all the expressions

have a common term.

b. Students interpret y as meaning just y and hence they conclude that

yy = y.

When asked to explain, students would make comments such as "y.y is

just y". When probed further it was clear that these students did not

have any comprehension of a variable. In fact, students used many of

the interpretations of a variable found in the literature. The following

is part of an interview with Ann (A) and the investigator (I).

(Ann wrote 3y.4y = 12y]

I: Can you explain what you did?

A: 3 times 4 is 12 and y times y is y

I: What do you mean by y times y is y?

A: y is just y

I: What is y?

A: y is algebra... we use it all the time. Sometimes we use x or

z... any letter will do.

c. Students interpret . to mean 'multiply everything' so they conclude

that 3y4.2y5 = 6y20

Comments in the interviews tended to include statements such as .

means multiply so you multiply everything.

2. Students do not see algebra as generalized arithmetic. Even students

who have obtained correct
solutions were unable to clearly articulate the

relationship between arithmetic and algebraic simplification; for example,
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the relationship between simplifying 3y.y and (3.471).471. This was

clear from a variety of responses.

a. Even when asked how they might check their answer, few students

suggested substituting a number. Two students who did undertake the

substitution concluded that "the answers were different because one is

algebra and the other arithmetic." They could see no contradiction

between obtaining, 12y24 for 3y4.4y6 and 12(371)10 for 3(371)4.4(371)6

b. For those students who did not try a numerical substitution the

investigator made the suggestion that they check their answer by substituting

a numerical value for y. Four students asked, "What number should I

use ?" On questioning they were unsure whether the number used would

alter the relationship. The following is part of an interview between

John (J) and the investigator (I).

I: Could you try a number?

J: What number should I use?

I: Does it matter?

J: I'm not sure. I could try 2 or 3...

I: Try them and see what happens

J: [Student substitutes)

It's not working...[Student checks work)

I: Why not?

J: Don't ...Must have done it wrong... This Lsn't algebra...

c. Any substitution was a whole number. Even some students who were

sure that any whole number would do, were uncertain if a decimal would work.

3. The following student was of particular interest. Joanne solved all

the problems by substituting a value for y. She assigned a numerical

value from the outset and proceeded to solve the arithmetic problem,

concluding by reverting to the corresponding algebraic expression for

the solution. When asked to explain she indicated that she "had trouble

with letters ", but using a number and "going backwards always worked."

Her explanations seemed to indicated that she comprehended that the

algebraic rules were the same as the arithmetic rules although she was

not sure why.
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DISCUSSION

Overall, the analysis seemed to show that students operate in two

distinct, but not disjoint spaces, namely an algebraic and arithmetic

space. Students' perceptions of the relationships between these spaces

is complex, being influenced by their comprehension of arithmetic and

algebraic concepts, principles and rules.

The surface explanation for many errors was the misapplication of a

principle, or the invention of an
algebraic algorithm for a given situation.

For example, the misapplication of the distributive principle resulted

in students' concluding that 3y.4y a 12y since y is a 'common term'.

Students invented a rule that . meant multiply everything, resulting in

students multiplying exponents. Such surface explanations do not explain

the cognitive processes underlying
the development of invalid algorithms

or the invalid generalization of principles. The underlying problem

appears to be a combination of the perceived relationship (or lack of a

relationship) between the algebraic and arithmetic spaces, together with

an incomplete conceptualization of algebraic space.

Students first experience with number is in a physical situation.

In the development of arithmetic ideas it is expected that students will

progressively and slowly develop an abstract notion of number. Thus,

arithmetic algorithms and principles can be attached to abstract situations,

because it is assumed that students have had the concrete experiential base

on which to build. A parallel experiential base for learning algebraic

manipulation does not exist. Students are expected to make the connection

between arithmetic space and its generalized form (algebraic space)

without the appropriate foundation.
This results in the development of

an algebraic space that is faulty in terms of its structure and is

incompletely conceptualized.
Consequently, when arithmetic algorithms,

principles, etc., are mapped onto the algebraic space, the resulting

trans2ormed algorithms, principles, etc. are invalid and result in

incorrect solutions. An example would be the attempt to apply the

distributive principle to the expression 3y.4y obtaining the answer 12y.

This is caused by both an incorrect mapping of the principle and a

miscomprehension of the meaning of a variable. Thus, what on the surface

appears to be a invalid application of a principle is, in many cases,

the 'correct' application of a principle in an invalid situation. The
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fault lies in the application of the principle to a faulty algebraic

space, not in the principle, per se. Similarly, when students generate

invalid algorithms, the basis of the error lies in their view of algebraic

space.

In conclusion, it is important to note that even students who could

correct simplify the algebraic expressions did not have a well developed

cognitive basis for their procedures. Rather, the correct solutions

often resulted from a pragmatic application of algorithms. In fact,

when pushed to explain a correct procedure, one student got annoyed and

finally informed me that "It's the rule when you have letters. Everyone

knows that you add the numbers" (referring to the adding of exponents).
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UNDERSTANDING SIGN CHANCE TRANSFORMATIONS

Ralph T. Putnam
Michigan State University

Sharon B. Lesgold, Lauren B. Resnick, Susan C. Sterrett
University of Pittsburgh

This study examined students' understanding of sign-
change rules in elementary algebra, with a focus on their
informal, intuitive understanding of quantities in
situations and their ability to link this understanding
to formal mathematical expressions. Students from grades
5, 7, and 9 participated in an interview in which they
judged the equivalence of formal expressions add of story
situations, matched expressions to situations, and
modified situations to fit expressions. Students were
considerably more successful in judging the equivalence
of the situations than of the formal expressions and made
few spontaneous links between the two domains. Errors
made in modifying situations to match expressions
revealed difficulties in applying successive
transformations and in interpreting expressions as
representing quantities.

An important part of learning elementary algebra is learning to

apply various transformations to the symbols in algebraic

expressions and equations. Algebra derives its power from the

representation of situations (such as those described in word

problems) in a formal language in which manipulations can be made

independent of the initial situation. Much of the elementary

algebra curriculum focuses on the learning of the rules for

manipulation of this formal symbolic system--rules for transforming

expressions and equations. But students often attempt to learn

these rules without linking them to their informal, intuitive

understanding of mathematics, reflecting the broader problem of

formal school mathematics learning often failing to build upon more

informal quantitative knowledge (Ginsburg, 1977; Resnick, in press).

Similarly, current theories of algebra learning (Matz, 1983;

Sleeman, 1984) account for errors as deformations of symbol

manipulation rules; they involve no representation of the quantities

or relationships among quantities. Our research examines students'

understanding of the manipulations and transformations of algebra,

with a focus on situations to which algebra expressions might refer.
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In this study we examined students' understanding of a basic set

of transformational rules in el,mentary algebra: sign-changes in

addition and subtraction expressions with parentheses (e.g., a-(b+c)=.

a-b-c). The focus was on (a) children's informal, intuitive

understanding of the principles underlying the sign change rules,

(b) their formal knowledge of the rules applied to symbols, and (c)

their ability to link the two.

Because we were interested in students' intuitive understanding

of the principles underlying the sign-change rules before as well as

after instruction in algebra, we interviewed students in grades 5, 7,

and 9. Our main sample consisted of 28 students from each grade

level in urban and suburban parochial schools. In addition we

interviewed 8 ninth-grade students from an accelerated algebra class

and 14 ninth-grade students from slower paced algebra classes. Each

student participated in a three-phase interview, in which he or she

judged the equivalence of story situations, judged the equivalence

of pairs of expressions, and chose expressions that fit story

situations.

EXPRESSIONS AND SITUATIONS USED

Two sets of expressions were used in the interviews. The first

set consisted of the expression a-(b+c), its correct transformation,

a-b-c, and its frequently made incorrect transformation, a-b+c. We

call this set parentheses-plus because of the plus sign inside the

parentheses. The second set, parentheses-minus, consisted of the

expressions a- (h -c), a-b+c, and a-b-c. The expressions seen by

students used numeric values in place of the letters. Story

situations that can be described by the expressions were generated

for each set of expressions. The story settings involved adding and

subtracting money (in a store) or combining and changing sets of

discrete objects. Following are two of the story sets:

Parentheses-Plus Situations in Discrete Object Setting (Cupcakes)

1. David took 18 cupcakes to the bake sale. He sold 7 chocolate

ones and 2 yellow ones. (This story is described by 18-(7+2) )

2. David took 18 cupcakes to the bake sale. At lunch time he

sold 7 chocolate ones. After school he sold 2 yellow ones.

(This story is described by 18-7-2)
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1. David took 18 cupcakes to the hake sale. He sold 7 chocolate
ones. then David's mother brought him 2 more yellow cupcakes.
(This story is desc.ibed by 18-7+2)

Parentheses-Minus Situations in Money Setting (Record Store)

1. Sally went to the record store with $14 and bought a record.
The record was usually $8 but was marked $3 off. (This story
is described by 14-(8-3) )

2. Sally went to the record store with $14. She bought a record
for $8. After Sally paid for the record, she remembered she
had a $3 gift certificate. So, the clerk gave her $3 in cash
for it. (This story is described by 14-8+3)

3. Sally went to the record store with $14. She bought a record
for $8. On her way out Sally saw another record she wanted to
buy. She bought it for $.3. (This story is described by
14-8-3)

THE INTERVIEW: PROCEDURE AND RESULTS

Each child participated in a three-phase interview. Phase I

assessed the student's informal, implicit understanding of the

principles underlying the sign change rules. The student was

presented with each of the sets of three stories, asked to say which

stories were "about the same," and to justify the choice. Students

were generally quite successful in judging the equivalence of the

story situations and justifying the equivalence in informal terms.

An adequate explanation of the Cupcakes stories 1 and 2 (see stories

above) would state that in both stories David sold the same number

of cupcakes; it does not matter whether he sold the chocolate and

yellow ones at the same time or at different times. The percentages

of students choosing the correct story pairs ranged from 77% correct

for fifth-graders to 917. for the ninth-graders. Percentages of

students who gave adequate explanations of the equivalence of the

various stories are presented in Table 1. As can be seen, performance

generally improved over the grades. Students were considerably more

successful judging and explaining the parentheses-plus situations

than the parentheses-minus sets.

Phase 2 assessed knowledge of the sign change rules applied to

formal expressions by having the student judge the equivalence of six

pairs of expressions to which the sign change transformations had been

correctly and incorrectly applied (16-(8+3) compared, to 16-8+3,

16+8-3, and 16-8-3; 11-(5-2) compared to 11-5-2, 11-5+2, and 11+5-2).
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Table I

Percentages of Adequate Explanations of Story Equivalence
in Phase

Parentheses-Plus Parent ties es -Minus

Objects Money Objects Money Row

(Cupcakes) (loys) (Cookies) (Records) Mean

-
5 74 86 26

7 96 93 48

9 85 81 68

__-_-.

43 57

64 75

79 80

Students were much less successful with these formal comparisons

than they had been in judging the situations in Phase 1. Only 2i%

of the students correctly judged the expressions I6-(8+3) and 16 -8 -3

to he equal; 31% of students made correct equivalence judgments of the

expressions 11-(5-2) and 11-5+2. Even the ninth-graders. who were

taking algebra, did poorly in making formal equivalence judgments.

Thus, students' knowledge of the sign-change rule applitd to

mathematical expressions was weak, even after instruction in algebra.

The students did not apply their informal knowledge of the

quantitative relationships involved to the formal expressions.

Further evidence of this failure to draw upon informal knowledge is

offered by the fact that students were less successful in correctly

judging the parentheses-plus expression pairs than the parentheses-

minus pairs--the opposite of the pattern found in judging the

informal situations. In addition, the justifications students gave

for their judgments of the formal expressions never involved

reference to the structurally equivalent situations in Phase 1.

Rather students relied on computation-based justifications, tiortaco-

level comparisons, or the application (often incorrect) of rules for

operating on the symbols.

Phase 3 examined the student's ability to map the formal

expressions and the situations. the student was presented with the

story from each set that was best described by the expression wit)'

parentheses (e.g., the first story in each of the Jets presented

above). The student was asked to choose from a set of three

expressions the one that best fit the story and to explain why that

expression fit. Success on this task paralleled performance in

369
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Phase 1, with approximately 70% to 90% of students choosing an

appropriate expression and 50% to 80% giving adequate justifications

of why the expressions fit.

For the other expressions in each set (the ones not chosen as

describing the story) the student was asked to modify the story to

make it fit the expression. This task produced an interesting array

of errors. Many of the errors reflected difficulties in conceiving

of successive transformations to a quantity. For example, for the

expression 18-7+2, one ninth-grader modified the Cupcake story as

follows: "David took 18 cupcakes to the bake sale. He sold 7

chocolate ones and, (pause) he didn't sell the yellow ones." This

student was unable to incorporate the second transformation (+2)

appropriately into the story, resulting in its interpretation as a

state (number of cookies left over) instead of a transformation

(number of cookies sold, or removed, from the start set).

The largest categories of erroneous modifications appeared to be

a result of students treating expressions in a strictly linear and

localized fashion, rather than conceiving of the entire expression

as representing a quantity. For example, in a typical modification

of the Record Store situation to fit the expression 14-8+3, one

ninth-grade student said "Sally went to the record (store) with $14

and bought a record; the record was usually $8, but it was marked

higher; it was raised, the price was raised $3." This student

correctly interpreted the +3 as an increase ("it was raised"), but

applied the increase to the wrong quantity--the price of the record

instead of the amount of money Sally had. The student did not seem

able to construct an adequate representation of the two successive

transformations in the expression. Errors like this were made by

numerous students on all of the stories and expression types. They

had considerable difficulty constructing appropriate situations for

expressions, again reflecting difficulties in linking the formal

symbols with the reference domains represented in the situations.

Even after matching expressions to and modifying the situations

in Phase 3, few students were able to justify the equivalence of the

expressions in terms of the stories. The potential power of thinking

of the expressions in terms of the situational referents is, however,

illustrated by the students who were successful in explaining the

equivalence of the expressions in terms of the situations. For

example, one seventh-grader in Phase 2 had declared the expressions

16-(8+3) and 16-8-3 to be not equal because in the first "you're
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saying 16 minus 8 plus 3" and in the second "you're saying 16 minus

8 minus 3." Note that the student seemed to be ignoring the

parentheses, focusing only on the fact that there are different

operations in the two expressions. After some false starts matching

expressions of the same type to the Cupcake story in Phase 3

(Cupcake story 1 above), this student correctly chose and justified

the expression 18-(7+2) as best fitting the story, and modified the

story appropriately for the expressions 18-7-2 ("he sold 7 yellow

cupcakes and the next day he went to another hake sale and sold 2")

and 18-7+2 ("He sold 7 cupcakes at the bake sale, and then when he

got home, his mother baked him 2 more."). When subsequently shown

just the three expressions (I8-(7+2), 18-7-2, and 18-7+2) and asked

if any of them "would come out to be equal," the student correctly

said that 18 -(7 +2) and 18-7-2 would be equal "because in each story

David sold the same amount of cupcakes out of 18, so naturally it's

going to come out the same answer." By mapping the symbols in the

expressions to quantities in the situations, it had become obvious

to this student that the two expressions are equivalent. The student

was thus able to link the formal symbols to this more intuitive

knowledge about how quantities behave in situations.

SIGNIFICANCE

The ultimate goal of this line of research is to develop ways to

improve students' understanding of the symbolic manipulations they

learn in algebra. We believe that increasing students' understanding

of the referential meaning of algebra's formal symbol system

may facilitate the learning of formal rules and the application of

algebra to problem solving and learning more advanced mathematics.

This study provides important psychological description needed as a

base for the development of instructional interventions.
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PME XI ALGEBRA PAPERS: A REPRESENTATIONAL FRAMEWORK

James J. Kaput

Department of Mathematics, Southeastern Massachusetts University

and

Educational Technology Center, Harvard University

This set of papers is uniformly excellent in depth of analysis and in importance of issues
addressed. These papers and other recent developments in mathematics education research are
the basis for real optimism in the future of algebra learning and teaching, especially for long
term constructive improvement of the algebra curriculum. Research isbeginning to identify
specific reasons why algebra is so hard to learn and what appropriate curricular and
pedagogical responses might be. This is not an easy task, because algebra is a complex
domain, both in the structure and in the multiplicity of its representations.

This paper has two parts. The first is an attempt to draw curricular conclusions from the work
presented. The second develops and applies a theoretical framework to this reviewed
research. I will not explicitly cite other work published by the authors relating to the papers
under discussion despite the fact that some of that other work has frequently influenced what I
have written here. Readers can find such references in the bibliographies of the papers under

review.

A. SHARED PERSPECTIVES ON CURRICULUM.

Too Much Meaningless Symbol Pushing - Algebra Alienation.

First of all, there is choral unanimity calling for much less curricular emphasis on
manipulation of algebraic objects in the absence of meanings for those objects and the actions

on them. This unanimity extends far beyond the researchers represented here - virtually

everyone who has given a critical look at the standard algebra curriculum criticizes it on these

grounds.

This experienced meaninglessness of school mathematics is at the heart of the attendant and

devastating problems of lack of motivation and inability to apply mathematics as a tool of

personal insight and problem solving. Further, this core problem of school mathematics
alienation is compounded by the inherent difficulties in dealing with a formal symbol system
isolated from other knowledge that might provide informative feedback regarding the

appropriateness of actions taken ora cognitively stabilizing context for those actions.

The traditional curricular response to student difficulty with maneuvering symbols in isolation

is to sequence small pieces of activity carefully organized by syntactical features of the symbol

system and to isolate this activity from the messiness of "applications" and wider
interpretations. The standard mclagogical response is to schedule ever more practice with

such symbol maneuvering. One mode of educational research response, feeding from recent

skill acquisition work in cognitive science, is to parse the structure of such symbol

manipulation skill learning and application in order to design appropriate instruction. (I am

happy to note that none of the research in this collection of papers is of this genre.) A recent

technological response is to accept the "isolationist" approach, but to augment the skill

learning environment with additional features to enrich the experience of symbol

manipulation, by providing "history windows," explicit representation of computation or

reasoning paths, "inspectable experts," etc., or to add "intelligent advice" on how to

manipulate symbols in isolation of wider meanings.
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The response on the part of the students has been highly adaptive - to use ever moresuperficial learning strategies, resulting in even more alienation, which in turn feeds the
responses already listed. It is too early to know the effectof the kinds of technological
responses mentioned here. My bets for breaking the feedback cycle lie with intelligent use of
information technology (not necessarily "artificial intelligence" based, however) that respects
the role of teacher and student as sense-making creatures and that capitalizes on student
knowledge and skill that have been developedoutside the mathematics classroom. Apart from
the technology, it appears that most of the authors reviewed here would agree with this view.

Integrate Arithmetic and Algebra - But It Won't Be Easy.

Here the consensus is not as plain, and is much more implicit. Several papers (Booker's
especially and Lee's by implication) call for a better integration of the arithmetic and algebra
curricula in view of the difficulties students face in the change of meanings for operations and
the equality sign, for example, as they move from arithmetic to algebra (sec also Kaput,
1979). After all, if one interpretation of the symbols is learned for years before an abrupt
switch to another interpretation, trouble is the only possibility. But looking more closely at
the key ideas in algebra, those of variable, function, and conditional equality, it is not clear
exactly how the integration should be organized. For example, should variable frames be
introduced in, say, grades 3 and 4, followed in grades 5 and 6 by variables denoted by letters
- as successfully done by the Japanese (Miwa, in press)? And if so, how? Should they be
used consistently for writing arithmetic sentences, especially in modeling situations? ("Minnie
has some marbles before losing 4 to Zeke, leaving her with 5 marbles. How many did she
have at the beginning?" Model this as - 4 5, where the goal is to put a number in the
box that makes the equation true.) Gahlardo and Rojano show that the transition from
frames to literals is not trivial - simple replacement of frames by literals is not sufficient.
Moreover, Putnam and colleagues show that using natural language based story contexts to
model the syntax of sign changes requires special care to establish the mapping model. And
Booth and Filloy show that the use of concrete models, especially those which inherently
freeze variable values (see below), can hobble student conceptions of equation. So early
introduction of algebra is not easy.

B. A THEORETICAL FRAME OF REFERENCE.

We need a set of languages - representations - with which to communicate and think about the
languages of algebra. Given the widespread interest developing in algebra research, and the
variegated phenomena being uncovered, this need is more urgent than ever. Natural language
has normally been the primary language for this purpose, but for the same reasons that.any
substantial research domain requires specialized representations that go beyond standard
useage in everyday discourse, algebra inquiry needs them. The aims of a comprehensive
language and theoretical framework are threefold:

1. to provide means for describing the web of related languages that constitute the languages
of algebra (expressions, equations, coordinate graphs, tables of data, hybrid
constructions involving natural language fragments, etc.), thereby, in support of
Norman's main point:

2. to complement with a linguistically/representationally oriented language the traditional
cognitively oriented language used to describe student algebra learning and application
phenomena, and

3. to provide means for discussing and evaluating the characteristics of new or potential
algebra learning and algebra application environments, including environments with
cybernetic support features.

Four Sources of Meaning in Mathematics.

Mathematics learning can be regarded as meaning-building. Although the idea of
representation system will be illustrated more concretely later, you may assume such systems
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include the familiar representation systems of coordinate graphs, algebraic equations, and so
on, as well as the non-mathematical representation systems of natural language and pictures.
In these terms we assert that mathematical meaning can be established in at least four ways:

1. By transformations within a particular representation system without reference to another
representation, (these referentially isolated transformations currently dominate the
curriculum and lead to the difficulties described by Pereira-Mendoza ),

2. By translations across mathematical representation systems, say A-->B and, most
importantly,

3. By translations between mathematical and non-mathematical representations (such as
natural language, visual images, etc.)

Repeated experience with the above three sources leads to a derivative, but essential,
fourth source of longer term meaning growth that occurs all across mathematics:

4. The consolidation and reification of actions, procedures and concepts into
phenomenological objects which can then serve as the basis of new actions, procedures
and concepts at a higher level of organization. (The process by which this is achieved is
sometimes called "reflective abstraction.")

To describe adequately the establishing of mathematical meanings, one must necessarily be able
to describe in a systematic way the structural features of the representations involved and,
especially, how the features interact with one another, since dealing with their differences is
what translation is all about.

An important consequence of this primarily referential theory of meaning is that we do not
assume the existence of absolute meanings, or absolute sources of meaning. Rather meanings

areskickagsbuithiasffirafiniQRanicular representations. Thus, for example, there is no
absolute meaning for the mathematical word "function" (Platonic or otherwise), but rather a
whole web of meanings built out of the many representations of functions and correspondences
among them that we have available. Some of these are inherently procedural (function as a
transformer of numbers) and some relational (function as a relation between numbers). And
each of these families of meanings has its more congenial representations, e.g., the "f(x)=.. "
as procedural and the "y=..." as relational.

"Mathematical Representation" Unpacked.

I find very helpful an unpacking strategy that explicitly acknowledges the representational
aspects of mathematics and hence separates the representing entity from the represented entity.
A starting point is provided by the figure below, intended to provide a general and systematic
frame for describing representational acts, not to provide some grand formal theory. Later,
such systematic descriptions might serve to explain regularities in the representational acts
observed. To help understand this point of view we must distinguish:

the notion of mental representation as the means by which an individual organizes and
manages the flow of experience - the upper half of the figure - and

the notion of representation system as a materially realizable cultural or linguistic artifact

shared by a cultural or language community.

"Materially realized" symbols are physical instantiations produced by pen on paper, er
keystroke on computer screen, etc. - the lower half of the figure below. Representation
systuns,Ehenitatited. E4re used by individuals to structure the creation and elaboration of

their own mental representation . It is useful to think of mathematical representation systems
as functionally corresponding to the grammatical structures of natural language - they are the
conventionally defined organizers of the "content" we wish to express. A central goal of

algebra research is to determine how those representational forms are learned and applied by

individuals to produce useful mental representations - in the figure below, how the vertical

arrow comes to be. This picture is intended to depict the major ingredients in representational

acts involving two representations, allowing for the possibility that each might be used to

:3r-rt,
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represent the other.

CtXZWITIFT REPRESKAITA TION.N.`

(Hypothetical Entities) (Signified)

(Observable Entities) (Signifier)

EXTERNAL REPRESENTATIONS

Ilere H and B can be any representations whatever, mathematical or non-mathematical, and
the media in which they are instantiated can likewise be virtually anything, paper-pencil,
physical apparatus (e.g., a balance scale), a computer screen, sound, etc. The horizontal
correspondence is not assumed to have a particular direction until a particular representational
act is specified then we assume that the arrow "points to" the the thing represented. Note
that some, in the Piagetian tradition, refer to the top part of the diagram as the "signified" and
We bottom as the "signifier" (Vergnaud, 1987). We would all agree that the constituents of

the top arc purely hypothetical. A very similar diagram applies when, say B, is n a

representation system, but rather is a thing or situation being represented by H so the

horizontal arrow at the bottom of the diagram points from left to right, from fl to B (although

the cognitive version may be bidirectional). Finally, it is often the case that B in turn is

representing yet something else, in which case we introduce C, and so on.

To help clarify things, consider the following simple example involving two familiar

mathematical representations: H is an alphanumeric representation of a function, B is its

If)
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coordinate graphic representation, and the correspondence is the usual one. It may be the
case, as with some software environments that we arc familiar with, that one can perform
transformations of the algebraic representation of a function and such transformations rare
reflected by corresponding transformations of its graph. This fact that we frequently use
representations in order to act on them is reflected in the existence of the transformational
arrows in the picture. Others sometimes refer to the transformed representation as a "new
representation," as when one rewrites a function in more convenient form to emphasize a
particular feature in the context of problem solving. In this case we would refer to the new
representation as a transformed version of the old in order to emphasize that the
transformation took place within a particular representation system and did not involve a
translation across systems. (Of course, one might then attempt to interpret - i.e., translate
the newly emphasized feature in another representation system.)

It is clear that while some features of representations correspond to each other, the
correspondence is generally imperfect, with features of one not related to features of the other
and vice-versa, with several features of one perhaps collapsed into a single feature ofanother,
etc. Furthermore, the correspondence itself may be understood (i.e., cognitively represented)
imperfectly. (There are some subtle philosophical points we choose to ignore in this paper.
See Kaput, 1987, and in press-b, for details.)

Applying the Theoretical Framework: An Attempt at Synthesis.

We begin by analyzing Kirshner's ideas because we will then be in a position to understand a

few of the other papers as well.

Kirshner:

Kirshner's work, as only partly revealed in the paper underreview, provides a penetrating

analysis of how the alphanumeric algebra symbol system is understood and applied,

especially via the relation between the spatially organized features, the "surface structure," and

the "deep structure" that they are presumed to represent. In the framework offered above,
is the surface structure - the symbols that we see and respond to. We arc cued by these to

form (through the acts of identification and parsing) a cognitive representation of the symbol

strings that we see. Kirshner posits Utz existence of a deep structure of such symbol strings,

which we put in the role of B. Here B may or may not be representing anything else, so may

or may not be serving as a representation system itself. Knowledge of the syntax of algebra

then amounts to possessing a reliable and flexible cognitive version of B that is well

coordinated with one's cognitive version of R. The correspondence, from R to B, is

describable in terms of the translation rules that he offers. Much of what he says about the

psychological reality of deep structure and the translation rules is therefore about the reality of

the cognitive version of the explicit translation rulesand the

Surface
Structure

Trensletton Rules
Den
Structure

appropriateness of characterizing such translations
in psychological rather than purely

mathematical terms (e.g., field properties) or other formal terms. I agrce wholeheartedly with

the thrust of his remarks: including his assertions regarding the non-binary psychological

parsing rules and especially the default to left-right processing (at least among those who read
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their native language that way).

An important consequence of accepting Kirshner's "parsing" of algebra symbol use acts is the
need to interpose the above two-part diagram whenever we talk of a person using the algebra
symbol system to represent anything: It is not R that is doing the representing, but rather its
deep structure B, which, by the way, is not to be identified with Kirshner's particular
representation of it. His is a fresh and enlightening perspective thatmay deserve application
beyond the symbol system to which it has been applied.

Pereira-Mendoza:

This paper provides some nice examples of student transformation rules based on surface
structure which are independent of deep structure - students operating on R using tai cognitive
representation only. After all, the spatial regularities apparent in symbol-string behavior,
especially if based on limited experience, can be codified in ways other than those dictated by
the conventional rules. And if we arc to believe Lee's work that the status of algebraic
formulas as generalizations of arithmetic patterns is not established in many students' minds,
then the rules are not constrained by those students' arithmetic knowledge. Hence it is
entirely reasonable that they will be assimilated into whatever meager spatially-oriented
patterns that are available from their limited experience. in particular, the fact that they are
willing to replace 3w4g by 12y is an easy superposition of (a) (3+41)'9,-79 with (b)
y y2 understood as the rule that allows you to replace two appearances of g by a single
one. Note that while the reason given for the first statement is the "distributive law," this
"law" has a perfectly consistent surface structure interpretation as "add the numbers and take
out one g." Hence a student who provides the distributive law as a reason for (a) above is
quite likely to be thinking "multiply the numbers and take out one y." Moreover, if y is
merely a character (which might be "modified" by a numerical coefficient-adjective) then

again, spatially-based surface structure rules can easily account for replacing y 'y by y.

The key to understanding all these sorts of referentially isolated transformation rule
phenomena is to regard them as surface structure rules generated out of the immediate
character-string experience combined with some natural language patterns and perhaps some
arithmetic experience (although not formal generalizations of arithmetic rules). The students
arc being perfectly reasonable in the limited symbol system context that they are being asked
to perform in. A good question: How to engender the usual deep structure rules that are at the
heart of algebraic syntax? My suggested answer is first to put the student in the position of
using the algebraic statements to represent something that already has an established cognitive
referent - either a numerical pattern or some phenomenon that, in a well-understood way,
gives rise to a numerical pattern. Then transform the thing being represented in such a way
that a transformation of the algebraic representation is required to maintain the
correspondence. This brings us to the next paper.

Putnam, Lesgolal, Resnick, & Sterrett:

Typical acts of algebraic modeling start with B as a natural language, textual representation of
some situation C embodying some quantifiable relationships. The goal is to construct some
algebraic representation R of that situation, and perhaps to use that representation to reason
about C. This particular paper illustrates clearly that connecting and coordinating the
cognitions associated with each of these representations is not an easy task. The research
examines linkages between student understanding of arithmetic sign change transformation
rules (applied to 9) and their understanding of situations and transformations of those
situations (C) as represented in text B. Here we must distinguish between procedure
representing objects, i.e., a phrase such as '16-(8+3)" (which represents a procedure
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embodied in some story situation - selling cupcakes or buying records) and a transformation
of one such object into another: either into an equivalent object such as "16-8-3' or into a
nonequivalent object such as "16-8+3." The difference is confusing for students because
equivalent objects can be linked to distinct story situations C just as nonequivalent objects
could be linked to distinct situations. (See Kaput, in press-a, for more detail on the
distinctions between display representations, procedure representing objects, and action
representations.)

(build cognitive
representation )

Formalism Text Situation
(n2.1 provided)

The researchers found that students had considerable difficulty linking transformations across
the representations in such a way that could apply reasoning about the equivalence of
situations to reasoning about the formalisms. An interesting issue is the extent that the natural
language cues served to identify differences in stories. It seemed to me that often these cues
are rather subtle, hence provide relatively weak features to distinguish the formalisms (see, for
example, the first two cupcake stories - denoting slightly different action-situations with
equivalent, but semantically distinct formal representations).

Norman:

I believe the discussion in Norman's paper relating to semantics and syntax can be fruitfully
cast in the terms of representation systems as indicated in our first Figure. The semantics of

representation R are to be found in a reference field for fl, say,B - which means, for us, that

referential semantics is relative: There is no absolute semantics for A. The syntax of ft
consists of the rules that identify and define equivalence of its objects and its allowable
transformations. (For more on semantic equivalence, see Kaput, 1987, and in press-a.)
Some of Norman's comments on the special role of natural language in interpreting algebraic
statements find even stronger illustration in the "Student-Professor Problem" phenomena,
e.g., (Clement, 1982; Kaput & Sims-Knight, 1983). As noted above, the whole approach
here is in line with Norman's call for a psycholinguistic approach to algebra research.

Booth and Filloy:

In Booth's paper fl is the representation system of single variable linear equations and B is the

system of ideographs of balance scales, with parallel transformation rules defined for each.

Here B is assumed to represent imaginary, or at least invisible, balance scales C which are

further assumed to have readily available cognitive referents Ccog which are assumed rich

enough to guide and constrain actions on B, which in turn do the same for ft.

As Booth points out, a critical matter in the design of learning situations based on linking two

or more representations is how the features match up, and how the central ideas - in this case

variable and equivalence - are represented. A box icon in the paper-pencil medium
representing an apple box containing an unknown number of apples does not represent a true
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(build cognitive
repreaentation - perhaps)

(Interpret)

Formalism Iconic
Balance Scale

Real Scale
(vat provided)

variable, but rather a letter standing for a single, unknown number (see below). And if that
unknown is represented as an object (a box), then the translation process, governed by the
reference patterns of natural language, yields letter-as-label rather than letter as variable. And
how Pit equivalence and transformations (e.g., inverse operations) represented? For
example, if a balance scale is the initial model for equivalence, then the process of
transformation to maintain equivalence is likely to be strictly additive, as was observed, rather
than multiplicative because the underlying metaphor for balancing a scale is additive.

Filloy and Booth (as well as Booker) emphatically point out the potential weakness in
using concrete models to represent algebraic statements, including conditional equality,
because of the inherent particularity of such models - a particularity which runs entirely
opposite to the inherent generality and abstractness of algebraic statements. Here is a very
important place where cybernetic models can capture the concreteness that enables the student
to use existing cognitive structures without being frozen into particular values of variables.
But perhaps even more importantly, such computer-based models can serve not only as
display representations, but also as anti= representations (Kaput, in press-a) that support
easy transformations. A fundamental issue is the role of the medium in which models are
embedded and the ability of that medium to carry an idea such as variable. Static and dynamic
media differ greatly in their ability to support the learning of this central notion. Indeed, I feel
that one of the reasons that the idea of variable has been so difficult to learn is the static nature
of the media in which we have historically been forced to represent it.

I suggest that the work by Filloy and Booth using concrete models would have vastly
different outcomes (1) if their concrete models had been instantiated in the computer medium,
a medium much more congenial to variation and hence conceptual generalization, and, even
more importantly, (2) if those models were then actively linked to the associated algebraic
formalisms, so that transformations of a concrete model would have salient consequences in
its formal counterpart, and vice versa. This then supports the learning of the syntax of
representation II by providing it a semantics in the model B. Further, by appropriately
defining the environment, one can traverse the "didactical turning point' identified by Filloy
and emphasized by Booker marking the true entry into algebra as introduced by Vieta -
where one acts on variables as well as on numbers.

A larger message in this episode concerns the need to focus research on the possible learning
environments of the future rather than those of the past - to take an inherent difficulty such as
identified by Filloy, and then build and test new teaching and learning environments that
respond to that difficulty. (Although I am not an economist, my guess is that the necessary
information technology to support such environments will be affordable at least at the level of
one computer per teacher in most countries in time for the next generation of students.)

3



353

Booker and Lee:

I have already mentioned Booker's arguments, mainly implicit, for doing a better job of
integrating the arithmetic and algebra curricula. Lee's results regarding the failure of many
students to recognize algebraic statements as general statements of quantitative relationships
dovetail extremely well with Booker's exhortations to generate situations that require
students to use algebra to formalize patterns in numerical data that in turn arises in meaningful
contexts, (These students' algebra does not represent anything!) Among the best materials!
know of that deliberately do this have been generated by a team initially led by loan Leitzel at
Ohio State University (Leitzel & Osborne, 1985 - other materials are in preparation), although
materials with a similar style have been developed by Zalman Usiskin's group at the

University of Chicago School Mathematics Project (Usiskin, et al, 1985). Both sets of
materials rely heavily on the use of a calculator to generate orelaborate data, and also involve

students in plotting the data on coordinate graphs. Hence the algebraic statements are seen not

only as formalizations of numerical relationships, but also as ways of describing lines and

curves in the plane. Surely, others have done likewise in other countries, e.g., (Miwa,

1987).

Lee's extremely rich paper provides us with a good opportunity to take the representational

perspective see our first Figure - to yet another level of detail, because much of her paper

concerns the translation process explicitly. She looks closely at a couple of students

translating from the numerosity of arrays of dots B to algebraic functions R and from natural

language based procedures B to algebraic equations R (which involve putative constraints on

the procedures). Her close look at the correspondences used to move from B to fl involves
examining exactly how the features of the respective representations are used in such

translations. For example, the number of dots on the edge of the (equilateral) triangular dot
array provided a feature Bi that was used as the value of the key variable Al in the algebraic

representation - so the edge B2 came to correspond to the variable A2 itself (and the

relationship between B1 and B2 as the "numerosity of B2" gets encoded as the relationship

between A1 and A2, which is "value of 92.") She then cites two other approaches to the

translation process that are based on different features ofB. I find fascinating the ways that

the differences in "fit" between the various features attended to affect the translation process -

somehow they differ in the cognitive structures that they generate, so that the
translation-cognitions (where, of course all the action is) are vastly different: first there are

ducks and then there are rabbits.

But perhaps even more interesting is the role of the natural language representation system as

a mediator in the translation process. Between 0 and B, a natural language based C was

interposed that seems to feed the cognitive versions of both R and B: Yves wrote natural

language statements as an intermediate step in the translation process, which is a clue to the

important, perhaps primary role that natural language plays in the interpretation of his

mathematical experience.

The second translation process, associated with understanding the results of a numerical

procedute described in natural language terms, involves natural language even more directly.

We see a strong contrast between Eve and Yves. One of the main differences between these

students is the degree to which algebraic statements represent general relationships among

quantities, or in our terms here, the extent towhich they have a cognitive version of the

correspondence between the algebraic and the arithmetic representation systems. The strength

and richness of such a correspondence in tum determine the strength and richness of their

respective cognitive versions of the algebraic systeu because it inherits much of its initial

structure from arithmetic experience by means of that correspondence. Hence we see Eve

doing what approximates a transliteration from natural language to algebra and then

abandoning the result as a support for reasoning about the issue at hand because her cognitive

version of the algebraic representation is so impoverished and so isolated from her arithmetic
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experience. But these students also differ in the richness of their arithuactic knowledge. The
richness of Yves' arithmetic structures, interestingly, in this problem do not initially contribute
to the building of an algebraic representation in which to reason about the problem, but rather
to his patural language based representation of anthmetic procedures. He manages to
represent the generality of the procedure in natural language rather than algebra, which for him
in this situation seemed sufficient - until prompted torepresent it algebraically, which he
apparently did as well.

CONCLUSION

Space limitations prevent as full an examination of these valuable papers from a
representational perspective as I would wish. Hopefully, time available at the conference will
afford that fuller examination - and thereby help strengthen the case that a systematic
discussion of the complex phenomena of learning and using algebra can be facilitated by
giving explicit attention to the representations involved, especially how their specific features
interact in the cognitive realm. Note also that a much fuller discussion of this frameworkcan
be found in (Kaput, in press-a).
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UNIT FRACTIONS OF A CONTINUOUS WHOLE

Jacques C. Bergeron, University de Montreal

Nicolas Herscovics , Concordia University

The first part of this paper on unit fractions of a conti-

nuous whole introduces the theoretical framework. Fractions

are defined in terms of "quantification of the part-whole

relationship". This leads to a distinction between three

levels of the notion of measure; iterative measure, frac-

tional measure, and sub-unitary measure. The experimental

work reported in the second part deals with various aspects

of unit fractions as observed among 45 elementary school

children in grades 3 to 6. The results indicate that the

problem of equi-partition still appears in the upper grades,

but that by then, the problems of reversibility and invari-

ance have been resolved. Also, the usual vocabulary appears

to treate a cognitive obstacle for the third graders.

THEORETICAL FRAMEWORK

The general concept of rational number has been investigated extensively

throughout the world (Post et a1,1985 ; Hart, 1981; Hunting, 1984;

Novillis Larson, 1986; Southwell,
1984; Streefland, 1984). Most of these

studies have been quite broad and ranged over various related topics

such as the different
representations of m/n, the notion of equivalence,

and th' four operations. However, because
of their wide scope, these in-

vestigations dealt with the primitive notion of unit fraction almost

incidentally, without going too deeply into it. Surprisingly few papers

focused on the child's acquisition of the fundamental concept of a unit

fraction, that is 1 /n. And yet, while min can be viewed as "1/n of m"

or "m x 1 /n ", both
interpretations must rest on a prior construction of

the notion of unit fraction. The most important work on this topic

dates back to 1948 when Piaget,
Inhelder and Szeminska studied how chil-

dren between the ages of three and eight handle tasks involving the

part-whole and part-part relationships when partitioning circles, rect-

angles, and squares. More recently, Hiebert 8 Tonnessen (1978) have

attempted to extend the above study to discrete sets, while Pothier

8 Sawada (1983) have investigated the development of the nartitioning

process.

Research funded by the Quebec Ministry of Education (F.C.A.R. W-2923).
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In analyzing the concept of fraction, Piaget et al (1948) have pointed

out that "initially, a 'part' in simply a piece detached from the whole,

and not an element embedded in the whole, that is, remaining mentally

linked to it even after having been separated". Their research showed

that children master equi-partitioning in the following order: two,

four, three, then five and six pieces, and that the subdivision of

rectangles seems easier than squares, which in turn seems easier than

circles. While the Genevans' work is the finest to date, neither their

conceptual analysis nor the tasks they have set, go far enough to claim

that they are dealing with fractions in the arithmetical sense, that is,

as numbers. The tasks they have designed require the subjects to split

up the geometric figures into equal parts, but does success in equi-

partitioning imply that the numerical concept of fraction is necessarily

present in their mind?

Owens (1985) has reported on the classroom implications of recent re-

search on rational numbers. He pointed out that Kieran (1980) also

found that the part-whole paradigm is somehow insufficient to account

for the fraction contnpt. Kieren suggests alternative models for ra-

tional number, that of measure, quotient, ratio and operator. While all

these models are important in the construction of the general concept of

fraction, including both the continuous and discrete case, not all of

them prove to be useful in the initial construction of the notion of

unit fraction of a continuous whole. In our own conceptual analysis we

find that while equi-partitioning results in the production of equal

parts, the notion of fraction as a number can only emerge from the

quantification of the part-whole relationship. It is not enough for the

child to view a piece as part of the whole. The arithmetical concept 3f

unit fraction requires more: that the learner should know what part of

the whole is involved! Such quantification requires both a new concept

of measure and a priuitive sense of ratio.

In reporting Kieren's measure subconatruct of rational number, Owens

(1985) indicates that it appears in the context of the quantification

of the surface area of a region or the length of a segment. "A suitable

unit is chosen and fractional parts are derived by successive partition-

ings to make the measurement more precise". This notion of measure is

very general and quite advanced. But it conceals the fact that it is

based on two preliminary stages in its construction. The first one is

the well-known concept of iterated measure which involves the iterated

t)



359

use of a measuring unit. This is sufficient if the quantity measured

is an exact multiple of the unit of measure. However, the measure of

part of a unit requires a new and different notion of measure, that of

fractional measure. For example, if asked to measure a certain length

which is not an exact multiple of a given unit, young children will

provide approximations, stating that "it measures seven and a bit" or

"almost eight". But they do not as yet perceive the left over part as

being measurable. And this is perfectly normal since they do not at

this stage view the unit of measure as being itself divisible.

The initial concept of fractional measure does not require any standard

unit of measure. It starts from the perception of a whole as being

divisible. Children may have this perception regardless of whether

they can perform an equi-partition or not. When presented with a pie

subdivided into six equal parts they can recognize the equi-partition

even if they cannot produce it themselves. In either case, the next

step is crucial in the development of fractional measure. They must

now quantify the part-whole relationship: "Since the whole has been

subdivided into n equal parts, each part must he an n
th

of the whole".

It is in this sense that fraction is a measure of the part-whole

relationship.

While fractional measure results from the equi-partition of the whole,

the reverse process, the reconstitution of the whole from one of its

parts, requires the appropriate iteration of the given part, and hence

is similar to the concept of iterated measure. In this case, the given

part is used as the unit of measure in the reconstruction of the whole.

The similarity is not quite complete since a fractional part exists

only with respect to a whole whereas a ,:nit of measure exists indepen-

dently and need not he part of a whole.

Of course, fractional measure of a whole is not restricted to unit

fractions and these can easily be generalized to multiples of unit

fractions of a whole (m x 1/n = m/n). But even then, children are not

necessarily ready to handle the more advanced notion of measure invol-

ving the use of both units and sub-units. For indeed, they may have

acquired the concept of fractional measure without fractions being as

yet interpreted as sub-units. For this to occur, the learner has to

perceive that the initial unit can be equi-partitioned and that the

resulting parts can then in turn be used to obtain a more precise
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measure. The outcome of this construction is a higher level of the

notion of measure that can be called sub-unitary measure.

As mentioned earlier, the quantification of the part-whole relationship

also involves a primitive sense of ratio. The general concept of ratio

refers to a numerical comparison of two sets, as for example "the

elements in set A and set B are in a ratio of 3 to 7". However, in the

case of a unit fraction of a continuous whole, the quantification re-

sults from a comparison of one part to an equi-partitioned whole. The

notion of ratio involved here is primitive in the sense that one of the

sets compared is a singleton, resulting in a ratio 1:n.

In the light of our conceptual analysis, we have designed an experiment

in order to investigate different aspects of elementary school chil-

dren's knowledge of unit fractions of a continuous whole. In this pa-

per, we will report on a part of this experiment dealing with the

learners' awareness of the necessity for equal parts in a partition, of

their ability to reconstruct the whole from one of its parts,and of their

awareness of the invariance of a fraction relative to the mode of div-

ision and the size of the initial figures.

EXPERIMENTATION

To investigate these questiors, 45 elementary school children,in 22

different French schools of Greater Montreal, were interviewed (10

from grade 3, 13 from grade 4, 8 from grade 5, 14 from grade 6). The

interviews were conducted by 19 teams of prospective elementary school

teachers who were in their third and final year of their B.Ed. program,

and as such had enrolled in a second course on the teaching of arith-

metic at the primary level. The 46 future teachers were grouped into

small teams (from 2 to 4). Their training consisted of various sim-

ulations, the study of videotaped interviews, and the study of the

semi-standardized questionnaire to be used in the assessment. Each

interview w.. h.u:led by two team members, one interviewing, the other

one observing and audio-recording. Each recording was then totally

transcribed.

Eoul7partition. The children's awareness of the necessity for equal

parts in a partition was investigated in tun sets of quentirls. The

firrt sot. presented th subjects with two rectangles cut up into equal

3 8'/
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and unequal parts as fallout,:

Each child was asked:

HERE ARE TWO RECTANGLES, CAN YoU CIVL ME A 1-LFEH OF A RECIAN(L[1:

CAN YOU FIND A FIFTH IN THE OTHER RECTANGLE?

In a second question, children were presented with a row of circles cut

up in 3,4,5,6,8 and 6 parts as well as an uncut one

LAI le;

o
They were asked: HERE ARE SOME CARDBOARD PIES WHICH HAVE. BEEN CUT UP.

CAN YOU USE A PIECE OF ONE OF THESE PIES TO DRAW A SIXTH OF THIS PIE

HERE (indicating the uncut pie)? ... CAN YOU FIND A SIXTH IN ANOTHER

PIE?

In interviewing the children, we have found that some did not understand

the questions. Among those who did, most felt that the parts had to be

equal, but a non-negligible minority accepted unequal parts. On each

task, some were classified as transitional because of their mixed res-

ponses which focused alternately either on the number of parts or on

the necessity of equal parts. When children provided similar responses

in both the rectangle and the circle contexts, they were considered to

be consistent. The following table provides the distribution for each

grade

Grade

1

4

5

6

10

12.

8

14

RECTANGLE CIRCLE Cowrie-

Lc ").").

10

11

6

12

D° not
understandtand

question

6

Parts
must be

equal

8

5

11

Unequal
parts

accepted

3

2

3

3

Treat-
clonal

1

2

Do not
understand
question

6

1

Parts
moat be
equal

9

5

9

Unequel
parts

accepted

3

1

2

3

ranca-Trent-
tional

I

1

2

* one 'subject vas limineted duo to normensicel enamors

The very marked change oucuring between tne third and fourth grades

simply reflects the fact that fractions start being taught in grade four.

Questioning third graders has proved revealing, especially those six

who did not understand the questIons,for thr answers were quite logic-

al. When asked to find a fifth of a rectangle, some of them gave the

question an ordinal interpretation, as the fifth part (counting from

the left). To them, finding a sixth of a circle made no sense at all

since there was no initial piece. Another interpretation was more of a

cardinal nature, with subjects referring to the whole subdivided rect-

angle or the whole subdivided pie rather than a part of them. Also in
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this table, one finds evidence that the acceptance of unequal parts is

not restricted to the initial learning period but persists to some ex-

tent in grades S and 6. In all grades the children show a remarkable

consistency in their answers regarding the rectangles and the circles.

Reversibility. While the previous tasks dealt with the selection of

fractions to be chosen from appropriately partitioned whole units, the

next three sets of questions were aimed at the reverse process, that of

the reconstitution of the whole from one of its parts. The first task

consisted in presenting children with a sector of a circle (1/7)

a pencil and paper, while asking them:

HERE IS A PIECE OF PIE. WOULD YOU HAVE A WAY OF FINDING OUT WHAT PART

OF A PIE THIS IS ?

The next task was slightly different in that it investigated if, when

given specified parts of a whole, children would anticipate the number

of pieces required and rewstitute the whole.

HERE IS A FIFTH OF A PIE . HOW MANY PIECES LIKE THIS DO I NEED

TO HAVE A WHOLE PIE ? WOULD YOU LIKE TO DRAW THE WHOLE PIE ?

(If unable to do so, the child was asked to trace out the given sector

and the question was repeated). The next question was similar except that

the children were given a square piece of "cardboard chocolate"

and were told that it was a sixth of a chocolate bar. Finally, the

first question was repeated using another sector of circle (1/6)

in order to verify it for consistency with the initial response or the

possible acquisition of new skills which might have been induced by

these tasks. The following table provides the distribution of the

students' responses:

Craig a 4 (1/7) p (US) (1/6) 6 (1/6)

en draw
whole pie

tea oar
pert

eon pc et

no. of part
en Prow
whole pie

cam predict
no.of parts

tdo 0.4w
whole bar

can dr./
whole pia

toe tom
pert

) 10 6 2 4 I 5 7 6 1

4 U 11 11 11 11 12 12 12 12

5 6 II 6 6 4 6 0 6 6

6 14 1 14 14 14 14
i

14 14 14

As can be seen from the data, by grade 4, all our subjects have mastered

the process of reconstituting the whole from one of its parts. A com-

parison of the first and last tasks indicates that some learning might

have been induced in two third graders and one child in grade four.

Again, it is the third graders' responses that have provided us with

unexpected insights. In all the above tasks, these children have a

38!)



-363-

greater success rate in drawing the whole pie or chocolate bar than in

naming the fraction involved or predicting the number of necessary parts.

This brings up the question of whether or not the notion of fraction

exists prior to the acquisition of the relevant vocabulary. Evidence

of the existence of this notion was provided to us by the two children

who, on the first task, found a way of expressing the notion of fraction

by drawing the whole pie and then telling us that the original piece

was "one piece out of seven" ("un morceau de sept") and "one of seven"

("un de sept") respectively.

Invariance. The last two tasks dealt with the invariance of fractions.

The first one aimed at assessing if children viewed a fraction as invari-

ant with respect to different equi-partitions. They were presented

with the following two squares[1],[n. They were asked to verify that

they were the same size, to count the number of parts, and to identify

what part of the square each piece could be. At that point the inter-

viewer raised the question:

IF I TAKE ONE QUARTER OF THIS BISCUIT (coloring it in front of the child)

AND YOU TAKE ONE QUARTER OF THE OTHER BISCUIT (coloring it in front of

the child), DO YOU THINK THAT WE WILL HAVE THE SAME AMOUNT OF BISCUIT,

OR THAT ONE OF US WILL HAVE MORE THAN THE OTHER, OR LESS THAN THE OTHER?

The next task assessed if children could perceive the invariance of a

fraction with respect to the size of the initial figure. They were

provided with two quarters of pies of radii 2" and 4" respectively C)

[2) ,
and asked if each one of them could be a quarter of a pie. if

they thought that the pieces could not both be qvarters, they were re-

quested to use each piece in turn to draw a complete pie and identify

which part of the pie it was. And then, they were asked a second time:

DO YOU THINK THAT THE SMALL PIECE AND THE BIG PIECE CAN BOTH BE QUARTERS

OF A PIE?

The following table describes the distribution of the responses:

Geode s Invariants wet En oiro
equl-pertitIon

Invariance wrt the else

of the initiel (Leon, r2-

Quarter. perceived Cho rrrrr perceived Initial reopen. After drains

me equal aa unequal both sectors
perceived
as quarters

sitters not
perceived tie

both betel
quarters

both sectors
perceived
Cr quarters

sectors not
perceived 42

both being
glacier.

5 10 5 (5)" 5
3 6 5 6

4 12 10 (4)" 2
12 0

5 d 6(12" 0 6 0

6 4 15 (2)" 1
11 2 14 0

one subject did not unearetend the word "quer ar" ("quart").

the wisher* In parentheses ccccc to the
number of subjects

who Limed visual cempaustios am
juetificatide of their answer.
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Regarding the invariance with respect to different equi-partitions of

the square, it seems at first sight that by the fourth grade moat of our

subjects were aware of it. However, a closer examination of their just-

ifications indicates that this conclusion is premature for many of them

(see numbers in parentheses) explained that the rectangular quarter could

be split to make up a square quarter. Thus, their rationale has little

to do with the invariance of fraction since it merely reflects visual

compensation of surfaces. The second task on invariance also indicates

that by the fourth grade our subjects seem to be conscious of it. That

the drawing of the full circles had a certain impact is evidenced by the

two third graders who then found out that both sectors were quarters,

and on the two sixth graders who corrected themselves.

CONCLUSION

In our exploratory' study of unit fractions of a continuous whole, we

have felt the need to provide a clearer definition of this concept. And

we have come up with a functional approach, a fraction being defined as

"a quantification of the part-whole relationship". This has led us to

distinguish between three distinct levels of the notion of measure:

iterative measure, fractional measure, and sub-unitary measure. The

experimental work reported in this paper has dealt with three aspects of

unitary fractions related to fractional measure. We were surprised to

find that the problem of equi-partition lingered on among our subjects

in the upper grades but we were equally surprised to find that the prob-

lems of reversibility and invariance had been so well resolved.

Our study of third graders has revealed that the language used to des-

cribe unit fractions created a cognitive obstacle for the children.

Either they simply did not understand the words we used or they assigned

to them a meaning other than the intended fractional one. For instance,

while all subjects understood "moitie" or "demie" for half, they did not

necessarily understand "tiers" and "quart" for third and quarter,

often preferring "troisieme" and "quatriame". But then, as with fifth,

sixth, and other unit fractions, many children associated with these

words the only meanings they had previously acquired, that is ordinal

and cardinal meanings instead of a fractional one. However, we found

that even if young children have not yet learned the conventional vocab-

ulary for unit fractions, they can nevertheless find ways to express

their quantification of the part-whole relationship using expressions

such as "one of n parts". In fact, until pupils become aware of the
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fractional context, using such expressions in the initial introduction

may overcome the cognitive obstacle caused by the use of words having

other meanings.
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SOME DIFFICULTIES WHICH OBSCURE THE APPROPIATON OF
THE FRACTION CONCEPT

0. Fitueras, / E. Fil loy / At. Valdetnoos
Centro de Investigaci6n y de Estudios Avanzadosdel IPN, Mexico

In the present work we will describe several difficulties identified via analyses of the
answers given by students between 11.11 to exercises included on a diagnostic clues
tionnake. The work we have been earring out his the purpose to further clarify the
relationship between th acquisition of the fraction concept end the development of
those abilities required to interpret and use the geometric language included in the
pictures that frecuendy awes/ In teaching vehicles (specially textbooks) for the
contextugisation of the fraction concept.

Theoretical framework and related studies.

Rational numbers appear in the Mexican curriculum from the very first years of
elementary school. A curricular analysis of the textbooks la 1 shows that the teaching of this
topic encompasses various meanings of rational numbers. These meanings are introduced
concurrently throughout the six years of elementaryschool.

The teaching approaches of the different interpretations of rational numbers emphazise
different aspects. For example, in the elementary curriculum of our co.ntry, we have seen
that

Fractions of the unit are Introduced highlighting the importance of the actions that
are carried out with a given whole.

The meaning of a fraction as a subset of a collection is approached either within the
problem solving context or as numerical computations; the latter tend to have a strong
alobraic flavour.

Decimals are introduced through measuring, but very quickly they are immersed in
algerithrric processes, where the emphasis is on computational rules.

A careful Inspection of the textbooks2 relfects the use of various types of language in
the treatment of the different meanings of rationals. For example,

With respect to the treatment of fractions of the unit, pictures of objects and geome-
tic forms are used. All the actions, suchas partitioning in equal parts, exhaustive divi-
sion of the whole and identification of the fraction, are represented in these pictures
(geometric language). Later on, thuse pictures are related to the numeral associated to
the fraction which expresses the results of such at.tions (arithmetic language).

111 In Mexico, there exists one single curriculum for the teaching elementary school mathematics inthe whole country. Cloricular principles and syllabi are included in the "Teacher s Guide"( 1 7) .Ouldren use the "cattfree textbooks" 116) which have been prepared in accordance with that gene-ral plan.

3 3 3
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In order to understand, via a particular treatment, a certain meaning together with the

relations between the different kinds of language Included in this treatment, it is necessa-

ry to develop some specific abilities.

With reference to the treatment of fractions of the unit, visualization, perception and
spatial imagination are called upon the learner; as well as his ability to translate from

one language into another.

We have called leaching model, the set formed by meaning, treatment, languages and
necessary abilities; together with the inherent relations that exist among them,

Under a particular teaching model, a pupil constructs a especific conception of rational

number. Each conception is related to a certain meaning, In the process of constructing

different conceptions, links between them get also established. By establishing these links,

the pupil is building a new mental image of rational number. The reiterative occurrence
of this process results in the pupil's adyuisition of the construct rational number.

Lately, we have been trying to detect the difficulties that inhibit the establishing of

such links between two or more conceptions. We have also tried to determine the plausi-

ble moments where the juxtaposition of the teaching model would favour the transferring

of knowledge from one conception to another, as well as to foster the creation of those

links -which are seldom spontaneously established,

The literature on rational numbers is vast, because it englobes studies related with the

different interpretation of rationals. Among those that have focused on the teaching

models3 , we can mention Freudenthal, I-1,171 , Stieefland,L (18], Kieren T.(N) Brousseau, G

01 and the work of our mexican colleagues (see for instance (2) ). Some projects, like the

English CSMS4 and SERV and the American RNP 6were set up with the purpose of under-

standing the relationships between the teaching models and the acquired conceptions

through the process of instruction. Kieren T. et al (il and the Pothier, Y & Sawada, D. (!s)

have lately reported their results related to children's uses of geometric language in natl

tioniny tasks.

(2 J 77re teaching at the elementary school In our country, due to its own characteristics (in the urban

zones, one group hare students; in the nual areas, you can find in the saute classroom students

that belong to different grades, etc.), fiindanien tally supports on the textbooks that the Ministry of

Education prepares and distributes. Frecuently, childrenhave access solely to Well books.

31 We arc not trying to make a review of the literature on rationals, our purpose is to mention souse of

the docurnews of those researchers that have been working in this area and whose work is more

related with the one we are doing.

I 4 ] CMSM: "Concepts ht Secondary Mathematics and
Science", see for instance, hart. K. 1 9 1.

1
SESM: "Strategies and Errors of the Secondly), Mathematics", see for instance, Kershke. D.1.101.

(6) RNP: "Rational Number Project", a brief description can be found in 1 11.

3 9,1
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Aims, methodology and stages of our study.

One of the main purposes of the research activities to which we have devoted our
efforts for the past four years is to try to clarify the relation between the acquisition of
the fraction concept, and the development of such abilities as are necessary to interpret
and use the simbolic - geometric language involved In the drawings used for the contextua.
lisation of the aforesaid concept.

First Stage. From the questionnaires used by two studies (13 ), (14) and those of the
CSMS project (9) , we selected those items which included pictures. We then made a
comparative analysis of these questions and of the results of the three studies. Once the
most significant difficulties were identified, we designed a number of exercises in which
the role of drawings was fundamental. In order to explore the pupils responses to these
exercises, we conduced and videorecorded several interviews with children of ages
between 11 and 13. The analyses of these interviews were the starting point for the next
stage of the study; (the most interesting results of these analyses were reported in (4 ),
where a more detailed description of this stage can be found).

Second Stave . We worked out a diagnostic questionnaire structured in a way that
it would permit us to examine various aspects of the concept of fraction. This evaluation
contains 48 questions and it includes two different meanings of rationals: the one associa-
ted with a fraction as a subset of a collection (which we denominated discrete case) and
the meaning of fraction of a unit. With respect to the latter Interpretation, the questions
ere referred to geometric plane forms (we called this the concrete case) and the plane re-
presentations of tridimensional figures.

The questionnaire had been applied during three consecutive years to students of the
first grade of secondary school, at the begining of the mathematics course (in 1984: one
group - 32 students; In 1985: two groups 43 students; and In 1986: two groups - 36
students).

At this moment where elementary school is over and pupils are initiating their second-
ary school, we consider that the observation is crucial. For us, this is an important didac-
tical cut., During the elementary school, rational numbers have been introduced within
various teaching models. The syllabus of the secondary include rationals, but the approach
to this topic focuses to the properties of the algebraic structure of these numbers. In
ether words, the teaching treatment of rational' turns to a formal and abstract approach
This teaching model presupposes that the links between the different conceptions acquir-
ed in the elementary school, have been appropiately established..

71A partial report of this stage can be found in .5

18 I Work on this study has been done with students from the "Centro Escolar lierntanos Rerueltas" an
experimental school in Mexico City where we con control the teaching process.
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With the data obtained in the application of the diagnostic questionnaire to the stu

dents of the first generation (1984), we started a cualitative analyses lb . The purpose of

these analyses was the characterization of the strategies used by the students to solve the

items of the questionnaire. At first, we classify such procedures in two groups: one of

them contains the strategies that lead pupils to a success and the other one englobes those

in which we observed difficulties and conduced pupils to a failure.

For each of such groups we endeavored to categorize the strategies developed by

children, according to the features they displayed (1,e. considering me resources to which

they had resorted, and the meaning emerging In each answer),

The characterisation of the answers to the items corresponding to the continuous case

is completely finished. In this case, we found 14 classes associated to failure and 13 to

success, Subcategories of these classes were also assigned. Subsequently, we carried out

a comparison with the data obtained with the preceding generations (1985. 1986). The

main objective of such comparison was to distinguish those obstructions which appear

repeatedly.

In what follows we will describe the more significant categories associated with failure

We selected only those classes that are directly related with the fraction concept, These

categories are meaningful because of their incidence of appearance In various contexts, as

well as for the characterization of the difficulties they encompass. Such hindrwicics

inhibit the pupil's oppropiation of the aforesaid concept. And efforts should be dews

tuated in the teaching process to that students are helped to surmount such difficulties.

The predominance of the cardinality of the part.

In this class we have reunited those strategies where the fraction given in the item is

not considered as such, These procedures reveals a disassociation of the numeral and a

tendency to centralise the number that corresponds to the numerator. For this problem

we found three types of subcategories. We will ilustrate them with answers of the stud.

dents.

a) The numerator of the fraction Imposes and the denominator is dltplaced (see Figure 1).

PROBLEM ANSWER

What fraction Is shaded? The sixth part of
eighteen.

6
the sixth pelt

of eighteen.

PROBLEM

Color of the cubes.

if0)
({0

tliWV)

iiti

ANSWER

Figure 1: Examples of answers that corresponds to the subcategory 61, (continous case at the left and

discrete case at the right).

9) A detailed description of these analyses can be found in the partial report of our research 1 61
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Is) The graphical representation of the fraction adapts exclusively to the numerator of the given frac-
tion; the denominator is substituted by another number, (sae Figure 2).

PROBLEM ANSWER

the the following figure
to represent one third.

AL
AVAVA

VAYATA

PROBLEM ANSWER

The drawing shows 1-
of the ballons. Draw
the rest of them

0 ON
II?

Figure 2: Examples of the answers that corresponds to the subcategory b),
(continous case at the left and discrete case at the right).

c) The numerator of the given fractions is separated from the denominator, and in thisabscencc of the
relation constituing the fraction, the first number is treated as a whole number (see Figure 3).

PROBLEM ANSWERS

We want to make this figure H
20
-yr are missing. Complete it.

II

IN amIC
IMI Hem

al11111111111
mil milIVaa

a I

Figure 3: Examples of anr:ters of the subcategory c), for the continous case.

The unequalnets of the parts.

The strategies that we have grouped in this class are those in which we identify un-
equal parts. These difficulties appeared in partitioning tasks of geometric forms' °(conti-
nous case, see Figure 4 ) .

PROBLEM ANSWERS

Draw a square end represent A- .

, ....P k.lir.

se"., r.e. -L-'74,

Figure 4: Examples of answers classified as unequalness of parts.

110] The traditional conventions considers as unequal parts, those subdivisions of a plane figure where
the resulting parts are not congruent. Our interpretation of this problem is different: we identify as
unequal parts those graphic representations where the subdivisions reveal variations of the area of
the resulting parts. In (Si there is a discussion of this matter.

rt J t---)
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This problem also emerged in the discrete case, where the classification criteria is

more evident; the subsets in which the whole is divided have a different cardinality.

Difficulties in the partition

Identified in this category are those problems related to the connection between the

sudivision of the whole and the recognition of the fraction.

These difficulties emerged in some partitioning tasks of figures that have a complex

structure and whose subdivision adapted to the fraction that appears in the item, imposes

the simultaneous use of more than one unit of partition, see figure 5. One of the strategies

that lead pupils to a success in the exercise that ilustrates this category, was the considera-

tion of an equivalent fraction.

PROBLEM ANSWERS Success Strategy

In the following figure repre-
sent .215

2''1

es

lip1. A

Figure 5: Examples of answers , the middle ones represent procedures that are included In the category

difficulties in the partition

The predominance of the cardinality of the denominator.

In this category we have included those readings of the fraction where the value of

the denominator takes precedence. Again these procedures reveals a dissasociation of the

numeral and a tendency to centralize the number that corresponds to the denominator,

assigning to it the meaning of part.
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COMPUTER -AIDED DIAGNOSIS AND REKEDATION IN FRACTIONS

FONG HO KHEONG
INSTITUTE OF EDUCATION

SINGAPORE

ABSTRACT

Computer has been introduced for use as an artificial intelligence to

analyse datu in the area of education. Educationists have found that

computer has not only help their work more efficiently but also it can

generate information which has not been encountered before. The use

of computer is not considered new in education but using it to analyse

the cognitive thinking processes of students is quite scarce in

mathematics education.

This research study was conducted in line with Ashlock, Brwon, Burton

and VanLehn on the analysis of error patterns. The objectives of the

present study are to develop an automated computer system fur

diagnosis and remediation and to construct a conceptual model of

remediation in fractions.

The initial stage of the project began with the construction of an

instrument to investigate the subjects' performances in fractions. The

items were based on a set of 13 objectives on the 4 operations of

fractions. The test was administered to 3000 subjects who were

classified as below average in fractions. The test was readminiatered

after a week later. The responses of the subjects were analysed and

systematic errors were classified.

An automated computer system for diagnosis and remediation in the 4

operations of fractions was developed. It consisted of three sub-

systems viz. (a) diagnostic system of errors, (b) tutorial system for

remediation and (c) automated generation of text materials for

remedation.

To accompany the computer system for diagnosis and remediation

conceptual model in remediation of fractions was developed which was

based on the hypothetical remedial activities.

Diagnosis and remediation in the teaching of mathematics. have been seen

by many teachers as essential for effective teaching. Okey (76)

reported that pupils' achievements tended to go up when teachers give

diagnostic tests frequently. It seems to indicate that it is

beneficial to research further into this area of teachng and learning.

Although the use of diagnosis and remediation in teaching seems to be

encouraging, the amount of time required for implementing the test and

analysing the data to find out the actual cause of pupils' errors will

be tremendous. Unless the amount of this time can be reduced, teachers

will normally reluctant to carry out this strategy to help their

pupils. Another factor which cannot be ignored is to determine the
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accuracy of diagnosing pupils' errors in mathematics. It would be

futile to conduct remedial classes which are mainly based on erroneous

diagnosis. In view of the problems identified above in teaching

mathematics, there is a need for mathematics educationist to look into

ways which can help teachers to reduce their burden in diagnosis and

analysis of data. The topic on fractions is used as an example.

REVIEW OP LITERATURE

"Diagnosis and remediation' is not something new in the mathematics

education curriculum. However, research using computer (especially

microcomputer) to help diagnosing and remediating pupils with

mathematics difficulties is not numerous.

Basically the concept and work done in the area of diagnosis are

pursued in two direction. The first group of mathematics diagnosticians

concentrated their work on categorising the types of errors according

to some major classifications. Robert (68) had classified four error

categories viz. wrong operation, obvious computation error, defective

algorithm and random response. The work of Engelhardt (77), Cox (75)

and Knifong (80) were quite close to Robert's work on errors analysis.

This area of research was found to have two limitations. First,

researchers tended to emphasise on written responses and there had been

few attempts to analyse pupils difficulties by talking to them. Second,

emphasis was placed on difficulties related to a type of mathematical

task rather than a whole range of difficulties which pupil experience.

The work of Ashlock (76) had indeed given rise to another group of

mathematics diagnosticians. His work was concerned with the

identifications of error patterns in computation. Methods for

correcting pupils' errors in computation were suggested in his book

'Error Patterns in Computation'. Brown and Burton (78) constructed

some diagnostic models of basic skills (addition, subtraction, etc.)

using a representation technique called 'procedural networks'. Using

these diagnostic models, two computer-based systems, BUGGY and DEBUGGY,

were developed to teach both students and student teachers about the

strategies of diagnosing bugs. Later, Brown and Van-Lchn (81)

introduced the Repair T'ieory in an attempt to expl,'in how the bugs
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(systematic errors) were acquired by students and how they were held.

Travis and Carry (83) and Woerner (80) did similar kind of work to

identify students' errors in multiplication and sedition of fractions

respectively. Travis and Carry concluded in their study that the

diagnosis-remediation combinations were effective for remediating

students' errors in multiplication. Woerner concluded that the use of

computer for diagnosis was effective for probing more information.

Bright (84) suggested that further computer-based diagnostic system

should incorporate CAI for remediation.

OBJECTIVES

In view of the previous research and suggestions discussed on the

previous paragraphs, a research project was initiated to investigate

further into this area on fractions. The main objectives of the

research study are to

(1) classify a near-exhaustive set of error patterns in fractions.

(2) develop a computer system for

(a) analysing pupils' erroneous algorithms in fractions.

(b) generating tutorial questions in remediation.

(c) generating text materials for remedation.

(3) derive a diagnostic model for remediation in fractions.

(4) test the accuracy of the computer system in diagnosing pupils'

errors in fractions.

(5) investigate the effertfveness or this approach as compared with

the 'usual method' for remediation adopted in the local context..

At the time of writing this paper, objectives (4) and (5) above have

not been realised.

METHODS

Sample

The sample for thiu study consisted of about 3000 average and below

average pupils from 30 schools in Singapore. They were selected from

the Primary 5 and 6 of the Normal Stream and the Primary 6, 7 and 8 of

the Extended Stream (pupils take 6 years and 8 years to complete the

Primary Education in the Normal and Extended Streams respectively).
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:nstrument

A diagnostic test on the addition of fractions was constructed which

was based on thi, pre-determined objectives. The thirteen objectives

identified for the test were

..,ddition of Fraction (Denominator -L. 12)

kl) Addition of simple fractions with like denominators.

(2) Addition of simple fractions with unlike denominators.

(3) Addition of mixed numbers with like denominators.

(4) Addition of mixed numbers with unlike denominators.

Subtraction of Fractions (Denominator = 12)

(5) Subtraction of simple fractions with like denominators.

(6) Subtraction of simple fractions with unlike denominators.

(7) :; btraction of mixed numbers with like denominators.

'8) Subtraction of mixed numbers with unlike denominators.

Multiplication of Fractions (Denominator = 12)

(9) Multiplication of a simple fraction and a whole number.

(10) Multiplication of a simple fraction with a simple fraction.

Division of Fractions (Denominator = 12)

(11) Division of a simple fraction by a whole number.

(12) Division of a simple fraction by a simple fraction.

(13) Division of a whole number by a simple fraction.

In each objective identified above, 4 parallel items were used to test

the subjects' knowledge in the algorithmic skills. This was to ensure

that the different types of errors were identified viz. systematic

errors and non-systematic errors due to misreading a question or

guessing a solution.

Procedure

The above diagnostic teat was administered to the 3000 subjects with the

twit) of 60 Certificate in Eduction students of the Institute. The

subjects were retested in the following week. In both teats, no time

limit was imposed on the subjects. They were told to hand in their

papers as soon as they had finished their work. Pupils' responses to

each item of the tests were marked. Incorrect responses were carefully

analysed to determine the actual error pattern of each mistake.

Subjects were also interviewed when their errors made were randomised
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or they icosld be asked to think aloud on working a similar problem.

The results obtained in the second test were used to check whether the

erroneous strategies used by the subjects were systematic.

COMPUTER SYSTEN FOR DIAGNOSIS AND RENEDATION

Owing to the nature of the topic on fraction, it is not the intention

of this study to construct a procedural networks to show a general

diagnostic model in fractions. However it was found that, on the

average, about 8 error patterns, were identified in each objective.

It would not be possible to list all of them here in this short paper.

It can be envisaged that teachers find difficulty to memorise all these

error patterns. Besides it is also time consuming to analyse

individual's error in performing operations in fractions and other

topics. Hence an automated computer system is developed to reduce the

burden of teachers who would, presumably, reluctant to perform the

above tasks without such a system.

The Automated Computer System developed consists of three sub-systems.

They are the

(1) Diagnostic System of Errors in Fractions.

(2) Tutorial System for Remediation in Fractions.

(3) Automated Generation of Text Materials in Fractions for

Remediation.

The Diagnostic System of Errors in Fractions is a system that can

generate randomised questions which were based on the 13 pre-determined

objectives. It can also determine the subjects' errorenous strategies

in performing the 4 operations of fractions. The subject is expected,

if desired, to work out the problem on a piece of paper. The answer is

keyed into the computer and it will logically analyse the subject's

work and the probable cause of error is printed out.

The following tables show an examinee's performances printed out from

this computer system.
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Table 1 : Analysis of a Pupil's Performances in Fractions

Objective (3) : Addition of mixed numbers with like denominators

Item 1 : (a) Time taken : 9 secs

(b) Question 2-2 + 2-1 = 419-
11 11 22

(c) Error Pattern : Add the whole numbers, the numerators

and the denominators correspondingly.

Table 2 : Summary of Results

Objective No. Item No. Result Time Taken (see)

1 1 Wrong 16
2 Wrong 6

3 Wrong 7
4 Wrong 8

2 1 Wrong 10
2 Right 7
3 Wrong 6
4 Wrong 5

The Tutorial System for Remediation is a system that generate

randomised questions for drill and practice. The system is used to

provide questions for drill and practice after the subjects have

undergone remedial lessons conducted by the remedial teachers. The

following table shows an example of the printout which summarises the

examinee's performances.

Table 3 : Summary of the Pupil's Performances in Fractions

Objective
No.

No. of
Question

No.

Right
No.

Wrong
%

Right
Time
Taken (sec)

1 10 5 5 50 12
2 10 6 4 60 23
3 10 3 7 30 13
4 10 2 8 20 43

Total 40 16 24 91
Average 40 22

The Automated Generation of Text Materials in Fractions for Remediation

is designed to generate additional materials for the subjects to

practice at home. The answers are also provided for the subjects to

check the accuracy of their work.

MODEL FOR MEDIATION IN FRACTIONS

An overview of the error patterns made by the subjects in this study
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shows that most of the errors made are rudimentary. It is possible to

use Brown and lisn-Lehn's Repair Theory to explain the occurances of the

bugs. The examinees tended to apply a simpler strategy to work out the

algorithmic operation.

An analysis of each error pattern was carried out and it was found that

it has its own error identity. On the basis of its uniqueness, a set

of hypothetical remedial activities was suggested that would moat likely

alleviate the weaknesses of the subjects. The following example shows

an error pattern in multiplication of 2 fractions and the possible

remedial actions forthose subjects who err in this type of problem.

NI N2
Question : x

D1 D2

Error Pattern :

Ni N2 N1D2 x N2D2

D1 x D2 D1D2

Treating 'x' as '+'

Weaknesses : Recognition of symbols

Remedial Activities : (1) Further diagnosis on the recognition of

symbols + and x

(2) Concept of Multiplication of 2 fractions

(3) Algorithm in multiplication of 2

fractions
(4) Comparing addition and multiplication

algorithms

To illustrate an example of the construction of a remediation model, an

analysis of the remedial activities to cater for the subjects who have

not mastered the multiplication of a simple fraction with another

simple fraction/whole number was carried out. Using these remedial

activities, a conceptual model for remediation of multiplication of

fractions is constructed as shown in figure 1 on page 10.

Each remedial activity is placed at one of the six levels identified

To help teachers identify the exact level at which the subject has not

achieved, the computer system may print out the required level for

remediation. Based on the conceptual model for remediation of

multiplication of fractions, teachers are able to select a set of those

remedial activities classified at and below the level identified by the

computer system.
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CCSICLUSICIN

Two important outcomes are seen to emerge out of this study viz.

development of an automated computer system for diagnosis and conceptual
model for
iremediation of fractions. This computer system and the conceptual

framework for remediation provide an alternative approach for

individualising instruction in mathematics. It serves as a prototype

system to cater for other areas of mathematics.

Some features of this system are worth noted for future implementation.

It does not only provide with accurate diagnosis of errors but also it

helps to reduce the investigator's time to analyse examinees' errors.

With the remedial.information printed out, investigator may conduct

remedial activities immediately without wasting much time in looking for

remediation materials. In the process or using the system for

diagnosis, the investigator may also be able to collect further

information on error patterns as the set or error patterns identified

earlier may not be exhaustive. This provides additional information

for research.

Two assumptions have been made in this study. The hypothetical

remedial activities are assumed to be effective and exhaustive.

Further research should concentrate on verifying the remediation model

and the accuracy of the diagnostic system.

REFERENCES

A'hlock, R. Error Patterns in Computation. Charles E Merill Publishing
Company; Columbus Ohio, 1972.

Bright, G.W. Computer Diagnosis of Errors. School Science and
Mathematics : March 1984; Vol 84(3).

Brown, J.S. & Burton, R.H. Diagnostic Models for Procedural Bugs in
Basic Maths Skills. Computer Science : 2; 1978, 155-192.

Brown, J.S. & Van-Lehn, K. Towards a Generative Theory of Bugs. In
'Computer, J.P. (ed) Addition and Subtraction : A Cognitive
Perspective Lawrence Erlbaum Ast. Publication, 1981.

Cox, L.S. Diagnosis and Remediating Systematic Errors in addition and
subtraction computations. The Arithme'jc Teacher : February 1975;
151-156.

n07



-381 -

Engelhardt, J.M. Cuing Computational Errors in Diagnostic Teaching.
The Arithmetic Teacher : April 1982; 16-19.

Knifong, J.D. Compitationul requirements of standardized word problem
tests. Journal for Research in Maths Edcuation : Jan 1980; 3-9.

Okay, J.R. Diagnostic Testing Page Off. Science Teacher : 1976, 43,

27.

Roberts, G.H. The failure strategies of third grade arithmetic pupils.
The Arithmetic Teacher : May 1968; 442-446.

Travis, B.F. & Carry, L.R. Computer Diagnosis and Remedaition
Strategies for Algorithmic Errors. Focus on Learning Problems in
Mathematics : Fall 1983; Vol 5, No. 3 & 4.

Woerner, K.L.W. Computer Based Diagnosis and Remediation or
Computational Errors with Fractions. Dissertation Abutraets
Internationa, 1980, 41, 1455A (Univeriuty Microfile No. 8021529).

408



r
o
-
o
7
;
7
i
n
g

a
n
d
 
'
x
'

o
f
 
2
 
f
r
a
c
t
i
o
n
s

'
A
'
 
a
l
g
o
r
i
t
h
m

o
f
 
2
 
f
r
a
c
t
i
o
n
s

c
o
n
c
e
p
t
 
o
f
 
'
x
'

o
f
 
7
 
f
r
a
c
t
i
o
n
s

rR
ec

ov
iti

on
o
f
 
'
+
'
 
a
n
d
 
'
x
'

C
O
N
C
E
P
T
U
A
L
 
M
O
O
E
L
 
F
O
R
 
R
O
C
D
I
A
T
I
O
M
 
O
F
 
M
U
L
T
I
P
L
I
C
A
T
I
O
N
 
O
F
 
F
R
A
C
T
I
O
N
S

'
4
'
 
a
l
g
o
r
i
t
h
m

o
f
 
2
 
f
r
a
c
t
i
o
n
s

c
o
n
c
e
p
t
 
o
f

o
r
 
2
 
C
r
e
a
t
i
o
n
s

-
C
b
m
p
a
r
i
m
m
 
o
f

2
 
m
u
l
t
i
p
l
i
c
a
t
-

i
o
n
 
a
l
g
o
r
i
t
h
m

r
a
W
A
W
x
1
3

-1
7

'
-
W
a
t
i
p
l
i
c
a
t
i
o
n

A
l
g
o
r
i
t
h
m
 
o
f

a
 
f
r
a
c
t
i
o
n
 
w
i
t
h

w
h
o
l
e
 
n
u
m
b
e
r

C
o
m
a
r
 
s
o
r
F
7
1

[

E
s
t
i
m
a
t
i
o
n
 
o
f

1
5
 
a
r
m
 
w

N

71
"

i
s
i
o
n

%
h
o
l
e
 
N
u
m
b
e
r

S
y
s
t
e
m

>
-

R
e
v
i
s
i
o
n
 
o
f

R
a
t
i
o
n
a
l

N
u
m
b
e
r
 
S
y
s
t
e
m

11
0

ra
n
R
e
c
o
g
i
i
n
g

a
n
n
d

s

D

R
e
c
o
g
n
i
t
i
o
n

o
f
 
'
x
'
 
A
 
'
-
'

B
E

S
T

 C
O

P
Y

 A
V

A
IL

A
B

LE

D
i
V
1
3
1
0
1
1
 
o
f

f
r
a
c
t
i
o
n

o
p

o
n
 
o
f

f
r
a
c
t
i
o
n
 
t
o

e
q
u
i
v
a
l
e
n
t

f
r
a
c
t
i
o
n

C
o
n
c
e
p
t
 
o
f

e
q
u
i
v
a
l
e
n
t

f
r
a
c
t
i
o
n

i
'
a
v
e
r
s
i
o
n
 
o
r

a
 
w
h
o
l
e
 
n
o
.

t
o
 
e
o
u
i
v
a
l
e
n
t

r
a
t
i
o
n
a
l
 
M
.

,
,
,
,
-
-
-



- 383

CATEGORIZATION OF FRACTION WORD PROBLEMS

Pamela Thibodeau Hardiman

University of Massachusetts

What information in a word problem does a
problem solver use to decide that it should be
solved similarly to another problem? Do

nonexperts and experts use different types of

information? This set of four studies showed

nonexpert and expert problem solvers do
categorize problems differently, nonexperts
relying more on surface feature similarity.
However, nonexperts improved judgments of
solution similarity when the problem type was

constant. The results suggest: 1) the
distinction of surface and deep features may not
be rich enough for describing categorization r'
problems, and 2) problem solvers attempt to use
all features of similarity that they perceive.

What information in a word problem does a person use in order to

decide what operation to perform to solve the problem, and how is that

information used? One way in which this question can be approached is

to ask whether a problem would be solved similarly to another problem.

Studies of problem solvers in physics (Chi, Feltovich and Glaser, 1981;

Larkin, McDermott, Simon, and Simon, 1980) suggest that novices and

experts attend to different types of information when classifying

problems according to solution similarity: novices classify problems

mainly with respect to surface similarity, whereas experts classify

problems on the basis of principle of solution. Similar observations

have been made with good and poor problem solvers in the same grade in

school: poor problem solvers are often misled by surface structure or

"pseudo" similarities (Silver, 1979, 1981). Although the product of

categorization tasks is different for nonexperts than experts, it is not

obvious that nonexperts and experts actually approach the task in

different manners. The intention of the following set of studies is to

determine whether expert and novice categorization behavior can be

explained using a single set of principles.
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I will begin by proposing the Surface Feature hypothesis and

attempt to show that it cannot account for the data. The Surface

Feature hypothesis is that in categorizing problems, nonexperts attend

to the surface structure, or storyline, while experts consider only the

deep structure, principle by which the problem should be solved. One

limitation of this hypothesis is that it provides no obvious route for

the acquisition of expewrtise: how does the nonexpert progress from

using surface features to classifying by principles? The transition

might be accomplished if one assumes that the nonexpert is capable of

categorizing on the basis of principles and does so when possible.

However, later I will argue that the correct and incorrect categor-

izations of experts and nonexperts can be accounted for by assuming that

all perceived similarities are used in the categorization process.

Two types of tasks are employed in this set of studies to infer

how the information in the problem statement is used in solving a

problem: 1) the choice of operation used to solve a problem, and 2)

judgments of the similarity between problems. Arithmetic word problems

containing fractions were chosen as the domain of investigation, since

the types of problem can be well defined, and since a large proportion

of high school students (Carpenter, et al, 1980) and adults (Watson,

1980) are unable to use rational number concepts fluently, even after a

considerable period of instruction in school. A secondary goal of these

studies was to try to understand why arithmetic word problems that

contain fractions are difficult to solve.

One plausible explanation is that all word problems are more

difficult to solve than correspondingly similar computational problems.

However, the HAEP data (Carpenter et.al., 1980) for 13 year olds,

clearly argues against this explanation, as the differences in

performance between word and computational problems of similar types are

neither constant in size nor always in the same direction.

A second explanation is that since fractions are more complex

numbers, being composed of two parts, they add incrementally to the

difficulty of a problem. Although such complexity may adversely affect

the development of computational skills, the presence of fractions in a

word problem does not neccessarily make it harder to understand the

problem situation. This is an experimental question, which will be

addressed in Study 1.

A third explanation is that number type (whole number or fraction)

influences the kinds of units allowed, and hence the possible structures

of word problems. Because of such differences, it is not always
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possible to simply substitute fractions for whole numbers (and vice

versa) and retain the structure of a word problem. In cases where there

is a lack of parallelism in problem struture, nonexperts would likely

have difficulty interpreting a problem statement. For example, consider

the following fraction multiplication problem:

"Margret had 4/5 of a gallon of ice cream. She gave 1/5 of the
ice cream to her sister, Anne Marie. How much ice cream did Anne
Marie receive?"

The basic solution approach is unaffected if Margret had 4 instead of

4/5 of a gallon of ice cream. However, the 1/5 cannot be replaced with

a whole number and hove the problem remain a multiplication problem.

This is true for all word problems in which the multiplier, or operating

number, is a fraction. In general, the structure of addition and

subtraction problems makes it possible to substitute fractions and whole

numbers without altering the meaning. Measurement division problems are

likewise unaffected, implying for all three cases little difference

between nonexperts' understanding of the whole number and fraction

operations. However, nonexperts will he likely to experience

difficulties with fraction multiplication problems because of the lack

of parallelism.

The four studies reported here concerned: 1) assessing relative

difficulties of problem understanding, 2) judgment of solution

similarity by experts and nonexperts, 3) how judgments of solution

similarity may be facilitated, and 4) replication of results with a

younger population. The subjects were two groups of college students

(N=48 and N=57) enrolled psychology classes at Mass, and one group of

eighth graders (N=52) from a local junior high school. Preliminary

analyses for each study showed no main effects or major interactions

involving sex.

In all studies, the problems had two numbers, were solved with

one-step, and the result of the operation was unknown. Two types of

word problems requiring each operation were used: Active and Passive.

Active problems involved an action integral to the problem storyline,

while Passive problems described and asked about a relationship between

the two problem elements. For example:

Hansel began the trip with 3/4 of a pound of bread. He used 1/4

of a pound of the bread to mark the trail. How much bread did
Hansel have then?

Ernest had 1/5 of a box of typing paper. George had 4/5 of a box
of typing paper. How much more paper did George have than Ernest?
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STUDY 1: ASSESSMENT OF PROBLEM TYPE DIFFICULTY

The purposes of Study 1 were to: 1) assess relative differences

in levels of understanding among the set of fraction problem types,

2) determine whether the complexity of fractional numbers could be ruled

out as an explanation for the poor performance on fraction problems, and

3) provide an index of expertise in solving fraction word problems.

The subjects were given eight fraction word problems, one of each

of the eight types, and were to indicate which one of the four

arithmetic operations should be performed on the two numbers given in

the problem in order to solve it. The group 2 adults were also given a

set of eight problems that each contained two whole numbers.

Results The mean performances (and patterns of correct answers)

for Groups 1 and 2 on the fraction problems were similar: 67% versus
69%. There were considerable differences among the four operations for

both groups, F(3,141) = 45.95, E. < .0001, and F(3,168) = 40.78, p <
.0001; the means were addition: 92%, subtraction: 86%, division: 37%,

and multiplication: 34% (all pairwise differences were significant with

a Bonferrroni test (p. < .008), except between addition and subtraction).

There were considerable differences within operations as well:

subjects did not understand equally well all problems which require the

same operation, as indicated by the significant activeness within

operation effect, F(4,188) = 9.62, p < .0001 and F(4,224) = 8.87, p <

.0001. Better performance was generally associated with the active

problems, but the size of the effect was quite variable.

If the poor results on this task with multiplication and division

problems result from a poor understanding of these operations, this

should be reflected in performance on whole number problems. However,

Group 2's performance on the whole number problems rules out this expla-

nation, since the mean percent correct was 98% (versus 69%), and ranged

from 95% to 100% correct, making the pattern of results quite different.

STUDY 2: JUDGMENT OF SOLUTION SIMILARITY

Study 2 tested the Surface Feature hypothesis: Do nonexperts

consistently categorize problems on the basis of surface features, and

do experts consistently sort on the basis of deep structure? In this

study, subjects were given a standard problem with four alternatives,

and were to determine which two of the four alternatives would be solved
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similarly to the standard. The alternatives were structured so there

was a match in: I) both surface structure and operation (2), 2) only the

operation (0), 3) only the surface structure (S). and 4) neither

dimension CD. The Surface Feature hypothesis predicts that all

subjects should choose the 8 alternative, since it has a similar

storyline and requires the si.me operation for solution as the standard.

However, for the second choice, nonexperts should consistently choose

the S alternative, while experts would always choose the 0 alternative.

The problems-varied in operation, activeness of standard, and in

the difficulty of performing the computations with the numbers in the

problems. Expert subjects were those who made zero or one mistake in

identifying the operations for solution in the study 1 task.

Results There was a main effect of error level, F(3,36) . 4.42,

EL= 0.0096; the more experts subjects (0-1 errors) performed better

overall (84% correct) than the less expert subjects (2, 3, and 4-5

errors, 66% correct), t(38, onetailed) = 3.37, p_ 4 0.001. There were no

significant differences among the three nonexpert groups.

As predicted, both experts and nonexperts frequently (89%) choose

the B alternative. It was chosen more often than the 0 alternative

(53%), F(1,36) = 94.67, p. < 0.0001, indicating that a match in surface

structure facilitates the decision that problems are solved similarly.

When one of the selections was incorrect, 62% of the time the S

alternative was chosen, indicating a tendency to judge solution

similarity on the basis of surface features. However, 47% of the time

the nonexperts did correctly choose the 0 alternative. In contrast,

experts did not consistently judge similarity on the basis of deep

structure, choosing the 0 alternative only 71% of the time. Together,

these results imply that the Surface Feature hypothesis cannot be true.

STUDY 3: FACILITING OF JUDGMENTS OF SOLUTION SIMILARITY

As study 2 has shown, judgments of solution similarity can be

facilitated by similarity of storyline. However, it is possible that

similarity in the types of words, actions, and situations that occur are

sufficient to produce such facilitation. For example, consider the

following two active multiplication problems:

Mary cooked a 3/4 pound steak for dinner. She ate 1/3 of the

steak. How much steak did she eat?

Tom found 1/4 of a bottle of glue. He used 3/4 of the glue

building a birdhouse. How much glue did he use?
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Both problems concern the size of a fraction of the original quantity

that has been consumed. In contrast, the following passive problem

involves no consumption:

7/8 of the sandwiches the waitress delivered were hamburgers. 1/4
of the hamburgers were cheeseburgers. What fraction of the
sandwiches served were cheeseburgers?

Although these problem are similar, in that they require the same

operation for solution, the similarity seems harder to recognize than

that which occurs when the problem type is the same. In study 3, the

hypothesis tested is that a match in problem type facilitates the

judgment of solution similarity.

The task was to choose which of four alternatives (requiring

addition, subtraction, multiplication, and division for solution) would

be solved similarly to a specified standard. The sets of alternatives

were structured so that: a) all alternatives were of the same type,

active or passive, and b) they had story lines that were as similar as

possible. The standard had a different story line and could either

match or mismatch the alternatives in problem type. There were 16 items

on this task: 4 operations x 2 types of standards x 2 (matching or

mismatching) sets of alternatives.

Results The results indicate that similarity of problem

structure facilitates the decision that two problems require the same

operation for solution. The main effect of match in problem type was'

highly significant, F(1, 56) = 28.00, p < .0001: subjects chose the

correct alternative more often when the problem types matched. However,

this size of this effect differed with operation, F(3,168) = 9.41,E <

0.0001. A match in problem type provided the most facilitation for

subtraction (73% vs 40%) and division (71% vs 44%) items, a smaller

facilitation for addition items (88% vs 80%), but no facilitation for

multiplication items (54% vs 54%). Thus, facilitation is greater for

problems that students have moderate difficulty understanding.

Study 3 indicates problem solvers are able to utilize features tf

similarity due to problem type to judge solution similarity. Such

features might include common patterns of actions, such as "giving-to"

or "-from" (see Kintsch and Greeno, 1985 for other types of action

patterns), similar questions, and the use of related words or phrases,

such as "gave away", "spent", and "lost." Since there was little
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overlap of key word phrases, the similarity perceived is related to the

meaning of the words, not the actual words.

STUDY 4: REPLICABILITY WITH A YOUNGER POPULATION

One objection which could be raised concerning the first three

studies is that nonexpert college students should not be considered true

novices, because they have had a considerable opportunity to practice

and apply inappropriate problem solving stratgies. To determine whether

this objection has any justification, the studies were repeated with

eighth grade students, who were the youngest students available who had

completed all instruction in fractions. It was conceivable that overall

levels of performance would be higher for the more experienced subjects,

but the trends should correspond.

Results In general, the performance of the eighth graders was

quite similar to that of the college students. In the study 1 task, the

overall performance of eighth graders was lower than that of the college

students, F(1, 105) = 20.98, 2. < 0.0001. However, there were no inter-

actions with age, indicating eighth graders had difficulty with the same

types of problems. They also tended to err in the same way as adults.

For eighth graders, the study 2 task was modified slightly, so

that performance on task 1 could be used to predict when subjects would

err on the similarity judgment task. It was predicted that subjects

would consistently confuse operations between tasks. In fact,

performance on task 1 did correlate with performance on task 2, r =

0.571, t(51) = 4.96, 2. < 0.001, suggesting subjects tend to make surface

feature errors when they do not understand the operation with fractions.

In study 3, the eighth graders performed nearly as well the adults

on the matching task (58% vs 62% adult, N.S.). The one significant

effect involving age was an interaction of age, match, and operation,

F(3,153) = 4.38, 2. = 0.0055; this seemed mainly due to eighth graders

having more difficulty distinguishing active subtraction and active

multiplication problems. In conclusion, the ways in which adults differ

from eighth graders are also ways in which thay are better than eighth

graders: nonexpert adults do not make different kinds of errors from

"true novices".

GENERAL DISCUSSION

The studies reported here imply that the strong form of the

Surface Feature hypothesis is false: nonexperts do not consistently use

similarity of surface features as a basis for a judgment of solution
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similarity. They do tend to rely on surface feature similarity if they

have difficulty understanding the concepts of the operation, but the

eighth graders performance on study 2 showed this tendency is not

consistent. Hence, even a weaker form of the Surface Feature hypothesis

would not appear to account for the data.

In fact, study 3 suggests that the surface/deep structure

distinction may not provide a sufficiently rich scheme for understanding

problem classification, since judgments of solution similarity were

facilitated by a match in problem type. Problem type must provide the

basis for a structural analysis which is intermediate between surface

and deep structure. Actually, since the deep structure must be derived

from the problem text, it is plausible that a useful level of structure

might result without a complete analysis of the deep structure. If this

is true, it also provides a reasonable explanation for why experts

occassionally err; subjects of all levels of expertise categorize

problems on the basis of the features of similarity that they perceive.

If the analysis of structure is halted before it is complete, either

because of a lack of knowledge or from falsely perceived similarity, the

subject is likely to be incorrect.

REFERENCES
Carpenter, T.P., Corbitt, M.K., Kepner, Jr., H.S., Lindquist, M.M., and

Reys, R.E. (1981) Results from the Second Mathematics
Assessment of the National Assessment of Educational
Progress, Reston, VA: National Council of Teachers of
Mathematics.

Chi, M.T.H., Feltovich, P.J., and Glaser, R. (1981) Categorization
and representation of physics problems by experts and
novices. Cognitive Science, 5, 121- 152.

Kintsch, W. and Greeno, J.G. (1985) Understanding and solving
arithmetic word problems. Psychological Review, 92,
109-129.

Larkin, J.H., McDermott, J., Simon, D.P., and Simon, M.A. (1980)
Models of competence in solving physics problems.
Cognitive Science, 4, 317-345.

Silver, E.A. (1979) Student perceptions of relatedness among
mathematical verbal problems. Journal for Research in
Mathematics Education, 10.

Silver, E.A. (1981) Recall of mathematical problem information:
Solving related problems. Journal for Research in
Mathematics Education, 12, 54-64.

Watson, W.H. (1980) Results and implications of an arithmetic test.
Mathematics in School, 9, 9-11.

417



391

COGNITIVE EFFECTS OF INSTRUCTION DESIGNED TO PROMOTE
MEANING FOR WRITTEN MATHEMATICAL SYMBOLS

James Hieberr
Diana Wearne

University of Delaware

Students in grades four, five, and six were taught
a special two-three week unit designed to assist them in
creating appropriate meanings for decimal fraction
symbols. Based on theoretical analyses, it was
hypothesized that students would acquire appropriate
meanings and would use the meanings to solve a variety
of decimal problems. Many of the students in the first
study, who were instructed in small groups, did acquire
and use semantic-based processes to solve decimal
problems, including novel transfer problems. Students

in the second study, who were instructed in a whole
classroom, largely exhibited semantic processes on the
instructed problems but they did not transfer the
processes to novel situations. Possible explanations
for the differences between samples are discussed.

One of the most widespread and persistent complaints about

students' behavior on mathematical tasks is that it is overly

mechanical and inflexible. Even when students perform well, further

analyses often show that their skills are applied in a rigid way and

are tied to particular tasks (Carpenter, Matthews, Lindquist, &

Silver, 1984; Hiebert & Wearne, 1986).

Currently we are exploring the nature of one potentially

fundamental cause for the rigidity of students' mathematical behavior

and their coincident low performance on even slightly nonrourine

tasks. Our hypothesis is that much of students' mechanical behavior

in mathematics results from drill-and-practice of symbol manipulation

rules before establishing meaning for the written symbols they

manipulate. in other words, conventional instruction is not

sufficiently sensitive to the importance of creating sound, rich

meanings for written representations at the outset. We are examining

this hypothesis by studying the effects of altered instruction on the

cognitive processes students use to solve mathematical tasks. The

domain of interest is the introduction of decimal fractions to

elementary school students.

Theoretical Context

We propose that competence with written mathematical symbols

develops through the sequential and cumulative mastery of four
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distinct cognitive processes (lliebeit, 1987). fhe tirst two

processes develop the semantics of the patticular symbol system and

the second two elaborate its syntax. rhv lour processes are: (1)

creating meaning for individual symbols by connecting Ihem with

familiar or meaningful referents; (2) developing symbol manipulation

procedures by reelecting on the meanings of the symbols; (3)

elaborating and rourinizing the procedures and rules for symbols; and

(4) using the symbols and rules as referents for building a more

abstract symbol system.

The first two processes are of most interest here because they

are the processes that we hypothesize to be crucial for further

success in mathematics and at the same rime, are processes that

apparently are not cultivated in conventional instructional programs.

Our objective was ro provide explicit opportunities for students to

acquire processes that create meaning for written symbols, and

processes that use these meanings to guide the development of simple

procedures on symbols. By monitoring students' behavior over the

special instructional sequence, it was possible to document changes

in cognitive processes and to trace the effects of these changes on

performance. In particular, it was possible ro examine the role of

semanticbased processes in developing initial competence with

written symbols.

Methodology

Samples

Two different samples were used to provide different

instructional settings. In the first study, the sample consisted of

nine students in grade four and ten students in each of grades five

and six. All fourth graders and five of the fifth graders had not

been instructed previously in decimals. Students represented

different achievement, racial, and gender groups. This sample was

used to examine the effects of Instruction in small group settings.

In the second study, the sample consisted of an entire classroom

of 10 fifth graders. Most students In the class scored between the

40th and both percentiles on recent standardized achievement rests in

mathematics; they represented a mix of gender and racial groups.

Most of the students had received brief previous instruction in

decimals. This sample was used to investigate the effects 01

Insrructinn in whole classroom settings.
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Instruction

Instruction in the two studies differed slightly so they will be

described separately. In study one, students participated in a

sequence of nine activities covered in seven to nine 25 minute

lessons taught by one of the authors. The first five activities

focused on process one--developing explicit connections between the

written notation for decimal fractions (through hundredths) and

referents that represented quantity in a concrete way. Dienes base

ten blocks were used for the referents. The last tour activities

tocused on process two in the context of addition and subtract ton.

Students were asked to use the block referents and the joining and

separating action on blocks to guide their decisions about how to

deal with the associated written symbols. They were not shown

procedural rules with symbols, such as lining up decimal points

before adding or subtracting.

In the second study, students participated in a sequence of

eleven 35 minute lessons taught by one of the authors. The first

eight lessons were similar to the nine lesson sequence employed in

study one. Lesson nine returned to process one using the number line

as a referent. The aim here was to enrich the meanings students

could connect with written symbols by providing another visual

representation of decimal fraction quantities. Lessons ten and

eleven focused on process two in the context of ordering decimals and

changing between decimal and common fraction form. Again, students

were not shown rules for manipulating symbols but were asked to use

what they knew about decimal fractions to deal with the symbols

appropriately.

Evaluation

Two kinds of measures were used to assess the effects of

instruction on students' performance and on the processes responsibi

for performance. Direct measures were tasks like those used during

instruction; they assessed in a straightforward way whether students

had acquired processes one and two. Transfer measures were tasks

that had not been introduced or discussed during instruction but

could be solved by a flexible application of processes one and two.

The evaluation schedules and specific assessment instruments

differed between studies. All students in study one were interviewed

individually before instruction and six weeks after instruction.
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After completing each task, students were asked to explain how they

decided what to do and what they were thinking while they solved the

task. Verbal explanatiots were coded In terms of whether they

appealed to quantitative meanings of the written symbols (semantic

processes), whether they indicated only a recall and application of

previously learned symbol manipulation rules (syntactic processes),

or wi'ether they were ambiguous (uncodable). lnterrater agreement in

coding student protocols was above 90 percent.

Evaluation 4n study two was structured so that the effects of

particular subsets of Instructional activities could be traced more

precisely. Before instruction, all students received a written test

containing both direct and transfer measures. Six target students

also received individual interviews similar to those conducted with

sample one. Forms of the written test were readministered after

lessons four, eight, and eleven, and six weeks later. Interviews

were conducted again with the same six students after lessons four

and nine, and six weeks after instruction,

Results

Study One

Results from the first study only will be summarized here; some

of these data are described in more detail in other manuscripts

(Hearne & Hiebert, 1986). Two types of direct measures were included

in the interviews--tasks assessing connections between Dienes block

and written representations of decimal fractions, and addition

problems presented with symbols written in horizontal form. On the

representation task, performance improved from 3 of the 29 students

correct before instruction to 24 students correct after instruction.

On the addition problems, the primary concern was the process used to

complete the tasks. Before instruction, 2 of the 29 students used

semantic processes (considered the meanings of the symbols, i.e., the

quantitative values of the digits) in deciding how to add 2.3 + .62

or 5 + .3. After instruction, 19 students did so. From these

results it appears that, given appropriate instruction, most students

can acquire the semantic processes, processes one and two in the

theoretical description summarized earlier.

A critical question is whether students can use the processes

flexibly. Transfer tasks involved ordering decimal fractions (choose

the larger of .5 and .42) and changing between common fraction and
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decimal form (write .7 as a fraction and write 8/10U as a decimal).

Ot the 19 students who used semantic processes on the addition

problems, 11 students transferred these processes to at least two of

the three novel tasks.

Transfer of fundamental cognitive reasoning processes by nearly

60 percent of the students who acquired them is notable given the

long-standing difficulty of inducing transfer in learning

experiments. The result is especially interesting given the

relatively brief instructional sequence (not much longer than is

ordinarily spent practicing rules for solving these problems) and the

tact that many students had never seen these kinds of problems and

certainly had not used semantic reasoning processes to solve them.

The hypothesis that overly syntactic behavior results from

drill-and-practice before establishing meaning for symbols is

tentatively supported by findings which suggest that early

routinisation of syntactic rules may inhibit students lrom developing

semantic processes. For the 15 students who had received previous

instruction, who had been taught rules for adding decimal numbers, Si

percent of the responses to the addition items changed over our

instruction from syntactic-like or uncodable to semantic-based

responses. In contrast, 64 percent of the responses by the 14

students who had nor yet been taught decimals changed to semantic-

based responses. The sample of students and tasks is too small to

draw definitive conclusions, but it appears that the question of when

instruction should focus on the meaning of written symbols is worth

pursuing further.

Study_ Two

Assessments were given more frequently than in study one, and

particular measures changed roles (from transfer measures to direct

measures) as students received direct instruction on the topic.

Tasks like those in the first study were used in the second study,

both in the interviews and on the written tests.

After students had received instruction on a particular kind of

task, an average of four-five of the six interviewed students used

semantic processes to solve the task. None of the students had used

such processes before our instruction began. These findings are

consistent with those in study one.

However, most of the target students did not use semantic
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processes on the items until similar irems were discussed during

instruction. That is, most of the students (five of the six on most

tasks) did not extend or transfer the semantic processes that they

had discussed early in instruction to novel tasks, tasks that

appeared later in the instructional activities. The lack of transfer

is at odds with the results of study one.

Assuming the six target students are representative of the

class, we can predict that performance on the written tests will be

relatively high on the direct measures but quite low on the transfer

measures. The prediction assumes that semantic processes yield

correct performance and nonsemantic processes do not, at least on

transfer measures. Based on other analyses, the assumption is not

unreasonable (Wearne & Hiebert, 1986). The percentages from the

written tests, as related below, largely confirm the predictions.

Before our instruction began, an average of 9 percent of the

responses to decimal tasks were correct. After students had received

some instruction, but just prior to instruction on a particular type

of task, an average of 18 percent of the responses were correct.

This can be considered a measure of transfer because these tasks were

administered before students had considered them during instruction,

but after students had been provided opportunities to engage in

process one (connect symbols with referents). In contrast, after

students discussed the use of semantic processes on similar tasks,

and had seen such processes modeled, an average of 69 percent of the

responses were correct.

Discussion

A finding of particular interest was the difference between the two

samples in process use on the transfer items. There are three viable

explanations for the differences, all of which we currently are

investigating further. The first explanation, and perhaps the most

obvious, is that acquiring and applying semantic processes is not an all

or none phenomenon, and students in the second study simply did not

acquire the processes as completely or as deeply as those in the first.

study. This certainly is possible given the more difficult

instructional setting and the likely accompanying effects-eductd

attention, less engaged time, etc.

The second potential explanation for the differences between

samples is that most of the fifth graders in the second study had
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already studied decimals in grade tour. Although it is not clear how

much they had practiced symbol manipulation rules, a number of the

interviewed students persisted in citing rules like you always have to

line up the decimal points" ro justify their behavior. The special

instructional activities that might have provided a meaningful rationale

for the rules failed to do so. I: seems that it is ditticult for

students to penetrate their own routinized procedures with meaningful

information (see also Resnick & Omanson, 1987).

The third possible explanation for the low transfer of semantic

processes by the students in study two overlaps with the firs two but

is worth considering separately. It may be that students had acquired

the semantic processes but did not recognize their applicability in

novel situations, or for some reason chose not to use them. VanLeuvan-

Letevr. (1987) reports a related result. Second graders who had

devetopel relatively rich tonceptual knowledge of traction symbols

(through process one) did not use the knowledge in novet situations.

Using Greeoo, kiley, & Gelmatiii (1984) term, students oio for actitite

utilization competence. P. that's instruction needs to attend as

carefully to the ,npropriate use of semantic processes as to their

acquisition.
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REGIONS, NUMBER LINES, AND RULERS AS MODELS FOR FRACTIONS

Carol Novillis Larson
University of Arizona

This study investigated the measure subconstruct of the
rational number concept by contrasting students' knowledge
of two exemplars of this subconstruct, an eighth-inch
ruler and the number line. Students' proficiency with an
area model (part-whole subconstruct) was also compared to
their proficiency with the two measure models.

The concept of rational numbers has been analyzed by various

researchers into a number of various components that are usually

referred to as subconstructs in accordance with Kieren's analysis

(1976). Two of these agreed upon subconstructs of the rational

number concept identified by Kieren (1976) are part-whole and measure.

The part-whole subconstruct is acknowledged by Behr, Lesh, Post and

Silver (1983) as being fundamental to all other interpretations of

rational numbers. The measure subconstruct as represented by

associating fractions with points on number lines of length 1 and

greater has been shown to be difficult for elementary and junior high

school students (Novillis, 1976; Larson, 1980; Behr et al., 1983;

Behr and Bright, 1984; Armstrong and Larson, 1985). Identifying the

unit on a number line has been mentioned by most of these researchers

as being one area of difficulty for students. Students sometimes

disregard the scaling and treat the whole number line as the unit.

Another variable that increases the difficulty of the number line

model is the number of segments in each unit as related to the

denominator. When the number of segments is a multiple of the

denominator, students seem unable to disregard the extra points in

order to associate a reduced equivalent fraction with the correct

point on the number line.

The principal purpose of this study was to further investigate

intermediate grade students' understanding of the measure subconstruct

of the rational number concept. The major question addressed in this

study related to this purpose was: Are intermediate grade students

equally proficient in relating fractions to the number line as they are
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in relating fractions to a ruler scaled to the eighth-inch? The

measure subconstruct in the past has mostly been associated with the

number line model. The ruler is another representation that is very

similar to the number line in that both contain a scale and involve

the measure of length. The main difference is that the eighth-inch

ruler is a common measuring instrument that is found in and out of

school. In terms of Lesh's (1976) five representational systems, the

number line would be classified as a "picture" (static figural model),

but using a ruler would be classified 6.s a "real world situation".

Another difference is that fractional parts on an eighth-inch ruler

are limited to halves, fourths, and eighths.

Since in all previous rational number research students at

this age have been most successful with area models these were also

included in the study for purposes of comparison. It was assumed that

the students would be more successful on the area model tasks across

all types of fractions than on the number line tasks. Of major

interest was the difficulty of the ruler model as compared to the area

and number line models.

METHOD

Seventy-three fifth-graders and 48 sixth-graders were

administered an 84 item Fraction Test in two parts in October, 1985.

The students comprised all of the fifth- and sixth-graders in one

school who returned parental approval forms. The school is in a lor

to middle socio-economic area in Tucson, Arizont, and contains many

minority students.

The Fraction Test contained 40 multiple choice and 44 open-

ended items. It measured the students' ability to associate proper

fractions, improper fractions and mixed numerals with area models

It-octangular regions), points on number lines, and line segments

measured with an eighth-inch ruler. Equivalence was also tested by

partiti,:ping the unit into twice as many parts as the denominator of

the related fraction. Each type of fraction associated with each type

of model was tested by the following four types of test items:

a) given a model, the students selected the appropriate fraction;

b) given a fraction, students selected the appropriate model; c) given

a model, students wrote the appropriate ft act ion; and d) given a

traction, students indicated that fractional part of the model.
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Another portion of the test contained items at the abstract level to

measure students' ability to recognize and to produce equivalent

fractions, to reduce fractions to lowest terms, to produce a missing

numerator or denominator in a pair of equivalent fractions, and to

equate and to produce related improper fractions and mixed numerals.

RESULTS AND DISCUSSION

The Fraction Test can be divided into a number of various

subtests by considering the following variables: type of model, type

of fraction, and type of test item. The means for the subtests based

on the three models investigated and the abstract portion of the test

are presented in Table 1.

Table 1

Means for Four Subtests: Area Model, Number. Line, Ruler, and Folstract

Number of

Area
Model

Number
Line

Ruler Abstract Total
Test

Items 20 24 20 20 84

Grade 5
n=73

24% 8% 23% 18% 18%

Grade 6
n=48

27% 9% 31% 30% 23%

Total 25% 9% 26% 23% 20%

The means for the total test and each subtest were very low.

From previous research, it was expected that the scores on the area

model subtest would be higher (Novillis, 1976; Armstrong & Larson,

1985). As expected the number line model was more difficult than was

the area model. An unexpected result was that students' overall

scores on the area model and ruler subtests were approximately the

same. In past research, students were more successful with area

part-whole models than with measure models. Even though the students

had similar mean scores on these two subtests, there was a difference

in their success in associating the different types of fractions with
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these two models. The means for the four types of fractions for each

type of model are presented in Table 2.

Table 2

Means for Type of Fraction for Each Type of Model

Type of Fraction

Area Model
Gr5 Gr6

Number Line
Gr5 Gr6

Ruler
Gr5 0r6

Abstract
Gr5 Gr6

Proper Fractions 63% 56% 8% 10% 21% 30% N/A

(4 items) (8 items) (4 items)

Equivalent 5% 10% 4% 4% 21% 24% 25% 43%

Fractions (8 items) (8 items) (3 items) (12 items)

Mixed Numerals 39% 44% 17% 20% 30% 38% N/A

(4 items) (4 items) (8 items)

Improper 7% 14% 9% 5% 11% 17% N/A

Fractions (4 items) (4 items) (4 items)

Relationship of Improper Fractions

and Mixed Numerals

6% 11%

(8 items)

Students were more successful in associating proper fractions

with area models than they were with associating mixed numerals with

area models. But when using the eighth-inch ruler, students were more

successful with mixed numerals than they were with proper fractions.

Even though the scores were lower the same pattern exists for the

number line model as for the ruler. In order to be successful on a

mixed numeral task, students must first associate the whole number

purtion of the mixed numeral to these models and then find the

fractional part. The second step is all that is required in order to

associate a proper fraction to the number line or ruler. Is it more

difficult to associate a proper fraction than a mixed numeral to a

measure model because the unit is the interval from 0 to 1? Why

would the interval from 0 to 1, when partitioned into fractional parts,

be more difficult than other
partitioned intervals, e.g., 1 to 2 and

2 to 3? Some errors made on the mixed numeral tasks involved

selecting the incorrect fractional part
after correctly selecting the

whole number part. Such errors indicate that some students are

familiar with the syntax of mixed numerals but are having problems

with the semantics of the fractional part of the mixed numeral.

42



- 402 -

Another difference to be noted between the area model and the

ruler is the level of success with equivalent fractions as compared

to proper fractions. When associating these two types of fractions

with the ruler students scored at approximately the same level.

Whereas, with the area model there was a large difference in their

success rate with both types of fractions. When considering these

four subtests, students were most successful in associating proper

fractions with area models and least successful in associating reduced

equivalent fractions with area models. Students' increased success

with associating reduced equivalent fractions with the ruler might be

due to the fact that halves and fourths are the only equivalent

fractions that appear on an eighth-inch ruler. Also, the fractional

parts of each inch in the ruler are marked by vertical lines of

differing lengths that serve as visual cues to the various equivalent

fractions associated with each mark. Both of these task variables

probably contribute to students' increased success with equivalent

fractions when using a ruler compared to area and number line models.

Most of the students were unable to recognize models for

equivalent fractions--the means for associating equivalent fractions

with the three models were 7% for fifth-graders and 10% for sixth-

graders. Yet the sixth-graders had their third highest score on the

subtest that tested equivalent fractions at the abstract level. On

this 12 item subtest, students supplied or recognized an equivalent

fraction, reduced fractions to lowest terms, and found a missing

numerator or denominator in a pair of equivalent fractions. The

greatest difference in achievement between the two grade levels

occurred on this subtest. The sixth-graders' increase in competence

in identifying and generating equivalent fractions at the abstract

level without a parallel increase in their ability to associate

equivalent fractions with appropriate models could be indicative of

mathematics instruction that fucuses on symbol manipulation without

concept development.
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CONCLUDING REMARKS

In textbooks, rulers and other measurement tools that contain

fractional parts of units are generally located in the "Measurement

Chapter." Students are introduced to a specific fractional part of

a unit (e.g.. a half-hour, half-cup, half-inch. quarter hour, fourth

of a cup, fourth-inch) and are then involved in practice activities

to learn to identify that fractional part on the appropriate scale.

On these textbook pages there is little reference to the more general

fraction concept. In the "Fraction Chapters" area and set models and

to a lesser degree number line models are used to develop meaning for

the various types of fractions. One usually thinks of the use of

fractional sub-units on measurement scales as an application of the

general fraction concept but this might not be the case for some

students.

Consideration of the above description of the curriculum and

the results from this study might explain why some children are more

successful with the ruler than with the number line. When using the

ruler they might not be applying a generalized fraction concept but

instead learned specific sub-units--half-inch, fourth-inch and

eighth-inch--in the same way that they identify previously learned

units such as, inch and foot. This would explain their increased

success with equivalent fractions when using the ruler.

In order to help students recognize and integrate the common

aspects of specific measurement scales and the number line model for

rational numbers these should be related in instruction. The

relationship of rulers calibrated in different sub-units to number

lines similarly partitioned might be a key it. helping students

understand number line models. Also, it could aid students in

interpreting measurement scales calibrated to fractional parts other

than halves and fourths. Additional research is needed to investigate

this proposal.
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FREE PRODUCTION OF FRACTION MONOGRAPHS

L.STREEFLAND

FtESEARCHGROUP OW & OC, UTRECHT

Une recherche de developpement a die entreprise pendant la periode du
septembre 1983 au fevrier 1986 en vue de la creation d'un cows dc ten-

dance 'realism' stir les fractions et de la formation d'une theorie
d'enseignement et d'apprentissage annexe, suivant le cadre theorique tel

qu'il a at devekippe par Treffers pour l'enseignement mathematique

'realism' en general. Notre contribution presentera ce quo nous appellons

'les productions fibres' des caves qui cat parmipe 3 ceue recherche, en

particulier par rapport au dressage de 'monographies de fractions'.

1 DEVELOPMENTAL RESEARCH

The research took place from September '83 to February '86 and was guided by two main objectives:

a. developing new course material for fractions aimed at children from 9.12;

b. developing a theory for teaching and learning fractions within the broader framework of a theory

for realistic mathematics education.
A teaching experiment was therefore arranged, interspersed regularly by (clinical) interviews, in order

to trace long tcnn individual learning processes III.

A tentative elaboration of the course was based on former development and research 121. It had to be

provisional. For instance, tSere was no experience with children's own free productions, which is an

essential tenet of realistic mathematics education (cf. section 2). With respect to this the research was

intended to produce hypotheses.
In order to realize our objectives, a continual shifting from the teaching process to the individual

learning processes and vice-versa was necessary.
The researchgroup was small (19 pupils) and came from a 'simulation schoot., which means that an

extra teacher was present because of the socio-economic status of the parents, i.e. untrained labourers

or members of ethnic minorities.

2 THEORETICAL FRAMEWORK

The background was formed by the theory of realistic mathematics education composed by Treffers

13). He distinguished as its dimensions:
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2.1 The Van Hick levels

'Thinking is continued acting. ... At the higher level the acting of the lower level becomes an
object of analysis' 141.

At the first level, the objects of mathematical thought arc embedded in operations with material .tor
fractions for instance. visible models and figures. At the second level, relations between fracuonal
numbers and figures are explored and, as a result, those numbers and figures become symbols for pro-

perties. At the third level, the relations themselvcs, such as the equivalence of fractions for instance,
become objects of mathematical thought; their nature and interrelated properues are ascertained, which
makes it possible to derive them from each other.

'The organisation now fits into a logical and connected system. The bonds between the various

levels across different courses are fairly complex. So the third level of the arithmetic system
represents the concrete basis for the first level in algebra instruction and the third level of
'fractions' is the basis for 'probability' according to Van Hide.' 151

2.2 Didactical phenomenology

This is the second dimension. This type of analysis considers mathematical concepts, operations and

so on as organizational tools for phenomena with an eye to their mental constitution in learning
processes. This method is therefore in opposition to concept attainment by concrete embodiments [61.

Its consequences for fractions I have already explained elsewhere. (71

2.3 Progressive mathematisation

This third dimension is guided by the following instructional principles:
a. the dominating place occupied by context problems, serving both as a source and as a field of

application of mathematical concepts;
b. the great amount of attention payed to (the development ol) situation models, schemes and sym-

bolising (cf. (71);
c. the large contribution children make to the course by their own productions and constructions,

which lead them fmm the informal to the formal methods;
d the interactive character of the learning process;
e. the (inn intertwining of (related) learning strands 181.

Tenet (c) is the heart of our matter. It will be considered with respect to:

3 PRODUCING FRACTION MONOGRAPHS

3 I Analysts

A monograph describes the process of fair sharing and itS outcome in situations like 'share 3 clio

rotate bars among 4 children'. (91

f ir Af level

a Example. I)stribution performed and described.

Each will get bar/ /4 1

EG 153 3 x

ckc.k fig.I of

110 (a3

C *
r h.

4 Q
3
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A child's observation of facts like 'two quarters hide in one half' signals the transition to the next

level. In the research the children invented terms like 'hidenaine', or 'pseudonym'. The last

term was chosen 'officially' for this phenomenon.
I t t

A monograph like ( + + 3 a + ) as purely descriptive at this stage. As such it
4 4' 4' 2 4'

replaces descriptions from every day life like 'each one gets one quarter and one quarter ...'

By way of inversion one can ask to write in full the numbersemences as well as to reconstruct the dis-

tribution situation. As a consequence the concrete source, every day language of repeated halving and

the budding application of numbcrsymbots for fractions will be connected firmly.

b. Like a. The different ways of sharing (cf. lig.1 and 2) and their outcomes are registered in symbols

successively.

E.g. (fig.l) After 1 bar: each A.

After 2 bars: each i+i=2xi. 1 . 2.

c. Like a., but now a reconstruction of the situation with more divers material.

E.g. Each one got: 711 + + + ; 1 - -i. How much is it? Which story of fair sharing fits?

So the mathematical material strongly refers to (imaginary) distribution situations. The methods of

sharing (unit by unit, global) arc the principles of production behind the monographs.

Second level
Concrete stories of fair sharing as principles of production gradually melt into the background. Other

methods of production will supplement these methods and later replace them, e.g. the twosided appli

cation of pseudonyms, that is replacing a fraction by a pseudonym and also considering a given frac-

tion as a pseudonym for (an)other fraction(s). The commutative laws for addition and multiplication

may also become methods of production.

Instead of describing concrete stories of fair sharing, the ::;.dries change into the composition and

decomposition of real fractions according to production methods as mentioned above. However, it is

preferably not to wipe out all the traces of the concrete foundation. It can be very productive to start

with the decomposition in unit - fractions based on the unit by unit division.

511111
E.& 3-7+3+3+3+7

= 5 x
6 6

x5

3

6

2

-6-

5

6
. X1

6
5

2 3

6 TS.

1 +
1

3

+ and so on.
2

Eased on activities like this, the pupils will become able to prepare and develop their own methods of

operating with fractions. The understanding of equivalence can increase considerably in this way.

Another striking feature is that laws such as that of the commutativity do not put their seal on the sys-

tem of fractions afterwards as tools of formalization; on the contrary, these laws arc developed horn

within the system in order to be able to organise it formally with progressive refinement.

Third level
Once again, a change of sight will have to be made in order to reach this level. The rules for the

composition and decomposition of fractions will become the objects of mathematical thought which

holds, too, for their character and the way they arc connected. The methods of production which turn

out to be the most efficient might become standard procedures or algorithms.
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E.g. 4. + -if. To which monograph does this sentence belong? Explain your rule to make a decision
about it.

14 -4 Rule: both fractions are probably pseudonyms for other fractions. Produce these 'other Lac-

dons'

3

I I 2 3 I I 2dons' like ... and and aim at the first nary in common, or perhaps Me2 2, ' 4 6' 3 3 6
.110,11.4.

3.2 Resea;ch results

13 Pupils followed the complete course. Only their results will be considered. They applied four
methods of production with increasing consciousness and consistency.

a. starting with the decomposition in unit fractions

a_

3,
4 4 Li Li 4 1, , L ,1 ,1( 3 -67, 6- '3

z, 14. o
LI 4 '1 et _ LI '2. - 4-

-63 V'11

Li )(671 1.g -2-.9 4 1..1

s
u

1.
4 9

Example of pupils work.

Four pupils behaved this way consistently and the other.; incidentally.

b. varying the operation
The group differentiatied as follows:

prefered operations number of pupils

+, 2

+, x 2

+, x 6

+, x, : 2

c. twosided application of pseudonyms

11 pupils behaved this way in general. The remaining two confined themselves to the equivalence

of the simplest fractions within the system of repeated halving, like 4- and+. +.
d. application of laws like commutativity

Seven pupils applied laws like a + b = b + a, a xb= bx a and a x b = 2a x Zb (a, b, e Q) sys-
tcmaucally. Moreover, a x b = (a p) x b + pb, a b = (a + p) - (b + p), a : b = pa : pb and
other forms of composed number sentences were used.

Some striking aspects of the learning processes were:

the increasing skill of all the pupils in producing equivalent fractions;

the initial dominance of addition and the gradual increase in the use of other operations; division
however, reinanted somewhat of an exception;

the general dominance of the elementary laws for operations as methods of production.
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The results contain sufficient evidence to assume that giving the opportunity to produce monographs

is a means for making progress in vertical mathematisation for all the pupils. That is, provided these

productions will be alternated with interactive lessons in which individual methods of production are

discussed and interchanged (at the conterence an example will be elaborated upon).

4 CONCLUSION

It should be clear that only a corner of the veil could be lifted.

In general free productions possess a double evaluative function.

a. They reflect the teaching process and as such shed light on, for instance, the subordinate role

played in it by division. On the other hand, the phenomenon of making Ndistractorfailures

occurred very rarely. This means that fighting against them was rather successful 1101.

b. They also force pupils to reflect on their own learning processes 1111.

And - finally - producing monographs seems to be a promising first step into rJgebra.
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LA NOTION DE GROUPEMENTS CHEZ PIAGET: PROLONGEMENTS FORMELS ET

APPLICATION A LA GENESE DU CONCEPT DE FRACTION

LoTc THERIEN, Universite de Sherbrooke

La notion de groupement occupe une place centrale dans
la theorie structuraliste du developpemem. cognitif chez
Piaget. Elle expliquerait, selon ce dernier, l'emergence
du concept de nombre come provenant de la combinaison

des groupements lies i la seriation et i la classifica-
tion, de menu que la formation des principales conserva-
tions physiques. Elle ne decrit cependaOt que l'etape
finale dans la formation d'un concept. A partir de la

formalisation mathematique de E.Wittmann, nous avons ela-

bore un modele mathematique qui tente de cerner cette
notion, c'est-i-dire sa genise at ses prolongements. Par

la suite, nous avons teste ce modele a diverses formations
de concepts, en particulier 5 celle de la notion de frac-
tion chez l'enfant de 6 5 16 ans, en nous guidant sur une
experimentation menee par G. Noelting.

1. It211sEPresel enerale_q_

1.1 Problematisue

Peu de psychologues et de didacliciens savent 5 quel point la

notion de groupement, et plus generalement celle de structure mathe-

matique, jouent un role central dans les theories de la connaissance

echafaudees par Piaget. Cela s'explique en grande partie par la

confusion dans la presentation et l'exploitation de ce concept chez

ce dernier. Plusieurs, conscients de son importance, ont tente de

clarifier cette notion en lui donnant une forme mathematique plus

intelligible: citons, J.B. Grize (1960), G. Granger (1965), K. Witz

(1971), H. Wermus (1972) et enfin E. Wittmann (1973, 1975, 1982).

Bien que la formulation de Wittmann dans le cadre du langage des

categories donne une prise excellente sur cette notion, it n'en reste

pas moins que cette derniere ne formalise que l'etape finale de l'ac-

quisition d'un concept. Du point de vue epistemologique, si nous

desirons penetrer 5 l'interieur du mecanisme de construction des

connaissances, ce sont les etapes conduisant 5 cette structuration

qui demeurent les plus interessantes, de mime que les etapes ulte-

rieures combinant ou perfectionnant ces structurations finales pour
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acceder i des connaissances plus complexes ou plus profondes. Pia-

get, dans ses etudes sur la genise du nombre, fournit bien mala-

droitement et de facon erronee des pistes de ces itapes preliminai-

res i la formation de groupements qu'il denomme "groupements de clas-

se et de siriation" et dont la mvsterieuse combinaison expliquerait,

selon lui, l'eclosion du concept de nombre.

L'objectif que nous avons poursuivi a ete de retracer ces eta-

pes, anterieures et posterieures au groupement, et de les formaliser

dans un modile mathematique general englobant la definition de Witt-

mann. Chemin faisant, notre problematique s'est elargie 3 la criti-

que de la theorie structuraliste de Piaget et de l'utilisation abusi-

ve et souvent fausse de la mathematique dans ses ecrits, concretisee,

entre autres, dans le groupe INRC.

1.2 Reponse i la problematique

Nous avons ete ainsi amene a construire et a definir dans le

langage des categories et des graphes des notions preliminaires au

groupement, come celles de scheme, de fragment de groupement, de

sous- groupement, de groupement engendre par un fragment, etc, et des

notions posterieures comme celles d'isomorphisme et d'union de grou-

pements, de groupement libre, de groupement-quotient, etc, et, fina-

lement, la notion centrale de produit amalgame de groupements. Cet

outillage nous a alors servi a mieux cerner et decrire dans un modele

unique les liens implicites etablis par Piaget entre les concepts de

scheme, de groupement, de mecanisme cognitif (assimilation, accomoda-

Lion, abstraction reflechissante, etc.) et de structures cognitives

associees aux divers stades du developpement intellectuel.

1.3 Application du modele

Nous nous restreindrons ici 3 une seule application de notre

modele, a savoir celle de in genese de la notion de fraction dont les

etapes ont eti si joliment mises en evidence par G. Noelting (1978).

Nous montrerons comment les notions developpees peuvent servir

decrire les groupements, leur genese, leur developpement ou leur

abandon, ainsi que leurs interactions, intervenant dans in resolution

du probleme consistant a comparer deux fractions quelconques.
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2. Description sommaire de ]'experimentation de G. Noelting sur les

fractions (cf [1])

Apres une demonstration concrete, on presente a l'enfant (ou 5

la classe) 25 dessins du type suivant:

n
oil les figures pleines representent des verres de jus d'orange et les

figures vides, des verres d'eau.

On demande alors si, apres avoir melange chaque groupe de verres

dans un seul grand verre, le groupe de gauche aura plus ou moins ou

autant le goat de jus d'orange que le groupe de droite; en d'autres

mots, on demande de comparer (3,1) i (1,4). L'enfant dolt de plus

justifier sa reponse.

L'analyse des reponses sur un grand nombre d'enfants fait res-

sortir deg strategies se complexifiant avec l'Sge jusgu'a la strate-

gie finale. Ainsi, a 3 ans et 6 mois (Sge moyen), l'enfant fonde sa

reponse sur la seule comparaison des numerateurs (le nombre de verres

de jus); 5 6 ans et 4 mois, a numerateurs egaux, it compare les deno-

minateurs (la quantite d'eau); 5 7 ans, l'idee de rapport apparait

(plus de jus que d'eau, par exemple); a 8 ans et 1 mois, it reconnect

les fractions equivalentes du type (a,a); 5 10 ans et 5 mois, it

acquiert la notion generale de fraction equivalente; 5 12 ans et 2

mois, it salt comparer certaines fractions apres avoir ramene ]'une

d'elles au meme denominateur que l'autre par equivalence; enfin, a 15

ans et 10 mois, it salt resoudre le probleme ginera1 en modifiant,

s'il y a lieu, les deux fractions pour comparer ensuite lours numera-

teurs.

3. La notion de groupement

3.1 Definition de Piaget

Selon Piaget, l'enfant construit ses connaissances par le biais

d'actions, d'abord concretes, ensuite interiorisees et finalement

organisees en une structure, nominee groupement, qui lui permet de les

inverser et de les combiner. Cette capacite d'organisation apparaf-

trait vers 7 ou 8 ans et donnerait lieu a un certain nombre de
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groupements fondamentaux a l'origine, entre autres, du nombre et des

principales conservations physiques. Cette structure obeit globale-

ment aux rigles suivantes:

deux actions interiorisees ("operations") voisines peuvent

etre combinees pour donner lieu i une operation plus com-

plexe;

toute operation est inversible;

la combinaison d'une operation et de son inverse resulte en

l'operation nulle;

- la combinaison d'operations est associative, au sens mathema-

tique du terme.

La formation de ces groupements assurerait 5 l'enfant un equili-

bre cognitif ou une adaptation cognitive resultant de l'application

sur le plan intellectuel des micanismes d'assimilation et d'accemn-

dation. On trouvera, par exemple, en (2] une description elaboree de

ces idees.

Notre but n'est pas de discuter ici du bien-fonde de ces hypo-

theses ni de la theorie structuraliste qui en decoule. Nous referons

pour cela le lecteur a (3]. (dais nous retenons l'idee que la notion

de groupement, sous sa forme generale, est un modele utile pour de-

crire la formation d'un concept ou d'une habilete intellectuelle.

3.2 Definition de Nittmann (legerement modifee)

Un groupement est un quadruplet (S,T,C,o) 011 S est un ensemble

d'etats, T est un ensemble d'operations, C est un sous-ensemble de T

dont les elements sont appeles s2seleroeratioinentaires et o est une

loi de composition partielle sur T.

Ce quadruplet obeit aux lois suivantes:

1. (S,T,o) est une categorie Da tout morphisme est inversible;

2. T est engendre par C au sens suivant:

pour tout fET, F=glog2o ogn ou gi CUC-1

4. Description somneire du modele mathematique

Quelles sont les etapes identifiables precedant la formation

d'un groupement? Comment un concept descriptible en terme de groupe-

ment peut-il resulter de la combinaison de deux autres groupements?

Comment un groupement decrivant un concept peut-il donner lieu a un
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groupement decrivant un concept plus fin? Des le moment oa l'on

accepte, comae le fait Piaget, .qu'un concept come celui de nombre

naturel peut se decrire en termes de groupements, les questions price-

dentes se posent. Ainsi, peut-on decrire a l'aide d'un modele math-6-

matique coherent la genese des composantes numerale et quantitative

du nombre, leur combinaison et, par exemple, la conception des nom-

bres pairs?

Les definitions qui suivent proviennent du modele que nous avons

elabore pour repondre a ces questions. 11 s'agit, bien sur, d'une

description tres sommaire et partielle; nous referons le lecteur a f31

pour les tetails et les autres parties du modele.

Soient G1= (51,T1,C1,o1) et G2: (S2,T2,C2,o2) deux groupements.

4.1 Un foncteur de groupements F entre les groupements Gi et G2

est un foncteur entre les categories (51,7101) et (S2,T2,o2) tel

qu'il existe ncfl avec F(COC:Ajq.
At.

4.2 Un foncteur de groupements F: G1 G2 est dit un isomorphisirle

de groupements s'il est une double bijection sur les etats et les

operations et si F(C1).C2.

4.3 Un sous-groupement G'i de Gi est un quadruplet

(S'i, T'1, C'1, o'i) au S'ic:Si, Cic:Ci, o'i= oi restreint A

T.
l'

et qui est lui-meme un groupement.

4.4 F'
1
= (S'1, T'

1,
Cl 0'

1

) est dit fragment de groupement de

Gi si * S'1 C: Si, C'15:C1, CSC TiC:71 et oi restreint a Ti,

ou Ci porte sur Si et Ci est la fermeture reflexo-symetro-transitive

de C'
1.

4.5 L'union de G et G sera le fragment de groupement:

GIUG2.(S1US2, T1UT2, C1UC2, olUo2)

4.6 Si F1 est un fragment de Gi, le sous-youpement de Gi engendre

par F1 sera le "plus petit" sous-groupement contenant Fi comae frag-

ment (au sens de la relation d'ordre: "est sous-groupement").

4.7 Soit (S,C) un graphe sans point isole. Le groupement Libre

engendre par (S,C) note G (C), sera le groupement (S,T,C,o) ou

(S,T,o) est la categoric Tibre engendree par CUC-1.
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4.8 Soient G=(S,T,C,o) un groupement et R une fonction qui assigne

a tout couple d'etats (a,b), a,bES, une relation d'equivalencellia,b

sur l'ensemble.des morphismes de a vers b. Nous appellerons qroupement

quotient, note G/R le groupement (S,T.,C.,o') ou (S',7',o') est

la categorie-quotient obtenue de (S,T,o) et de R et 00 C' est lien-

semble des classes d'kquivalence de C.

Nous noterons G/R=(S,T/R,C/R,o/R).

Nous noterons R
I
la lonction qui assigne A tout couple (a,b) la

relation d'equivalence triviale qui identifie toutes les fleches de

a vers b.

4.9 La fusion de G
1
et G2, notee G ,462 sera le fragment:

G
I
ta

2
= (S

I
US

2'
T

I

UT
2
/R C1UC2 /R1, o1Uo2 /R1)

4.10 Le produit amalgams de G1 et U2, note GI * G2, sera le groupement

libre engendre par le graphe (S1US2, C1UC2) quotients par R1, c'est-a-

dire,

GI * G2 = G L(ClUC2)/R1

4.11 G'= (S',1",C'01) est dit sous-groupement large de G si

S' C S, T' C T, o'=o restreint a T'.

4.12 Si Gl= (S',T',C',ol) est un sous-groupement large de G, it sera

dit sous-groupement direct s'il existe n C N tel que C.C:AV

4.13 Un scheme sera represents par un graphe (S,C) ou C est un ensem-

ble de fleches orientees.

5. Application du modele au concept de fraction

5.1 Schemes et groupements intervenant dans la comparaison des frac-

tions.

L'analyse, sous Tangle des groupements de l'experimentation de

G. Noelting nous a permis d'identifier divers fragments, sous-groupe-

ments et groupements correspondant aux diffirentes stapes menant i la

comparaison generale des fractions; elle nous a aussi permis de ca-

racteriser l'etape finale i l'aide d'un produit amalgams de deux

groupements, et, finalement, de decrire l'enchafnement des groupe-

ments conduisant a cette derniere etape. Voici tres schematiquement

et partiellement, pour chacune de ces stapes, les schemes et groupe-

ments tires des reponses et des explications des enfants (Gi desi-

gne un groupement et Ci le scheme qui l'engendre).
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fire &tape

Go : associe i la comparaison du nombre de verres de jus (sans

tenir compte de l'eau).

Co :
"ajouter un verre de jus pour accentuer le goat en modifiant

ou non le nombre de verres d'eau".

Go est isomorphe 5 un sous-groupement du groupement correspondant a

la composante numerate du nombre.

Go et Co se raffinent lors de cette etape pour donner lieu a:

G1 :
associe i la comparaison du nombre de verres de jus en lais-

sant l'eau inchangee.

Cl :
"ajouter un verre de jus pour accentuer le goQt en laissant

inchange le nombre de verres d'eau".

G1 est un sous-groupement de Go.

2e etape

G2 : associe i la comparaison du nombre de verres d'eau en lais-

sant le jus inchange.

C2 :
"enlever un verre d'eau pour accentuer le goOt du jus en

laissant le jus constant".

G2 est un groupement isomorphe au
groupement dual de G1.

3e etape

G3 :
associe 5 la comparaison de couples (a,b) et (c,d) du type

asb et c>d (ou alb et cid)

C3 : "comparer le nombre de verres de jus au nombre de verres

d'eau dans le premier couple; s'il est inferieur, relier

(pour accentuer le goOt) aux cas ou c'est superieur ou egal;

s'il est egal, relier aux cas ou c'est superieur".

C3 resulte de la tentative de combiner CI et C2.

4e etape

G4 :
associe a la conservation dos rapports pour les couples du

type (a,a).

C4 :
"ajouter un verre de jus et un verre d'eau pour ne pas modi-

fier le rapport et consequemment le goat".

C4 est la combinaison de Cl et de Cl.
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5e etape

G5 : associe i la conservation generale des rapports.

C5 : "multiplier par m le nombre de verres de jus et le nombre de

verres d'eau pour conserver le goat".

G4 est isomorphe 5 un sous-groupement large de G5 qui en devient

ainsi le prolongement.

6e etape

G6 associe S la comparaison de fractions en ne modifiant que

l'une d'elles par equivalence.

C6 : "rendre equivalent 5 une fraction ayant meme numerateur (ou

denominateur) et comparer les denominateurs (numerateurs)".

C6 est obtenu de la combinaison de C5, C1 et C2.

7e etape

G7 : associe 3 la comparaison generale de fraction;

C7 : "remplacer les deux couples par des couples equivalents ayant

mem denominateur et comparer les numerateurs".

C7 est obtenu de la combinaison de C5 et de Cl.

G7 = GI * G5; GI et G5 sont des sous-groupements de G7.

5.2 Enchainement des groupements

G2,,,,...

Gc --------N A
G 3.) G 4 ----) G .:> G .).- G *G

5 fi.:.2--, 1 5----* G , _ .(composante 0 --__ r-

numrale
1

du nombre)

-----
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THE. DEVELOPMENT OF CONCEPTUAL UNDERSTANDING OF THE RELATIONSHIPS

AND PROCEDURAL KNOWLEDGE OF THE TRANISTION BETWEEN THE SYSTEMS

OF COMMON FRACTIONS AND DECIMAL RATIONALS

Ytzak Tomer, Nelly Wolf, and Ron Hoz

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Forty seven 6 to 9 graders of average mathematical ability

were tested on the systems of common fractions and

decimals and their relationships. Development was slight

and misconceptions and procedural bugs were found in

almost every aspect: the identification of common fraction

with their equivalent decimal rationals and vice versa,

the translation of common fractions into their decimal

equivalents, and the reverse operation when the

denominators were not 10 exponents. The observed

difficulties were accounted by textbooks that (1) enable

rote learning of procedures without prior acquisition of

the underlying conceptual knowledge, and (2) use the

equivalence between the two systems without establishing

the meanings of common and decimal notation and their

relationships.

A widespread way in which students are introduced to the system

of decimal fractions is via the common fraction system. It is

characterized by the establishment of and capitalizing on the

representational equivalence between the systems of decimal and common

fractions, and by shuffling between them. This instruction attempts to

form a conceptual model (Mesh, Landau, and Hamilton, 1983) of the

rationals, and it is simultaneously based on and aming at all four

parts of a conceptual model. It renders the learning of the system of

decimal rationals greatly contingent on the mastery of certain

prerequisite conceptual and procedural knowledge of the system of

common fractions: At least relational understanding of the common

fractions system and mastery of the procedures applicable in It; the

availability of procedural knowledge for transitions between the two

systems whose development starts with the initial acquisition of

procedures and ends with the skill of making these transitions; the

understanding of the relationship that is being established between

the two systems that consisits of the gradual comprehension of the
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egivalence or corespondence between the systems; and the understanding

of the new system that is being constructed, namely, its concepts,

procedures, relationships between the two and the symbols designated

to them.

A variety of deficiencies in the conceptual and procedural

knowledge regarding each of the systems of common fractions and

decimal rationals was reported over the years but only a small portion

of it dealt directly with the conceptual and the procedural knowledge

pertaining to the relationship between the two systems. The present

study deals with the relationship between the two systems and the

procedures employed for the shuffling between them. It has three

objectives:

a. To identify the conceptual and procedural knowldege that sixth to

ninth graders have in each of the representation systems for fractions

and to specify how it is used to make transitions between the systems.

b. To characterize the development of that knowledge from the sixth to

ninth grade.

c. To identify possible sources for deficiencies in conceptual or

procedural knowledge.

METHOD

The subjects were fourty seven 6 to 9 graders with average

mathematical ability that were randomly selected from two schools in

Beer-Sheva. The first study involved 6 students in each grade level

and the second involved 6 students in grades 6-8 and 5 in grade 9.

The study comprised two parts, each using a different test that

were administered individually. In each test the student first solved

individually all test items and wrote down his or her answers. Then a

clinical interview was conducted in which he or she further explained
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the answers and were thoroughly interrogated. The interview was also

used to test certain interpretations and hypotheses regarding the

answers. The tests related to each of the systems of common and

decimal fractions and their relationships and in some problems the

student was required to make transitions between these systems.

The first test comprised 13 items that are described later on.

The second test comprised 12 problems that centered around 3 topics:

The understanding of common fraction and decimal notations and mutual

transformations between the two systems, expressing by decimal a given

proportion of a continuous quantity and vice versa, and locating

common and decimal numbers on the number line. To attain the major

goal of this test, most problems demanded (a) that the same task be

proformed in both types of numbers, and (b) to trasnform fractions

from one representation to the other one.

RESULTS AND DISCUSSION

The results of the first test show that most students did not

acquire mastery in most of the topics, only slight development

occurred, and most deficiencies and misconceptions persisted from

grade 6 to 9. Failure rates were between 50% and 100% in grade 6, and

between 33% and 50% in grade 9, pointing at serious deficiencies in

both declarative and procedural knowledge within each of the systems

and their coordination. Three topics were not acquired by most

students and did not develop from grade 6 to 9: Ordering decimals and

common fractions, determining a proportion (different from the well

known 0.25 and 0.5) of one quantity out another (both continuous and

discrete), and increasing and decreasing decimal numbers by 10

exponents. In seven topics slight development was observed, but they
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were not acquired by all students: Marking common and decimal numbers

on the number line; expressing proportions (different from 0.25 and

0.5) between continuous quantities (line . snts) by common fraction

and decimal notation; comparison of lengths (in meters and

kilometers), and of weihgts (in grams and kilograms); number of

tenths, hundredths, and thousandths in decimals; comparing common

fraction and percent operators; continuing common and decimal series;

and using distance, time and speed relationship with whole, decimals,

and common fractions values. Only one topic was fully mastered at all

grade levels: ordering times expressed as common fractions hours and

whole numbers of minutes. Lack of deveopmental effects were reprted

for other topics in that domain as well (e.g., Lesh et al., 1983;

Post, Behr, Lesh, and Wachsmuth, 1985).

The identified deficiencies in declarative and procedural

knowledge regarding the two systems are as follows:

1. Ordering and comparison of decimals were performed on the basis of

their standard notation with no reference to common fractions or to

concrete models, and two opposite well documented (Nesher and Peled,

1985; Hoz and Gorodetsky, in press) incorrect procedures were used.

(a) "The longer the part to the right of the decimal period the larger

the number", and (b) "the longer the part to the right of the decimal

period the smaller the number". Three incorrect procedures were used

to order common fractions. (a) "The larger the denominator the smaller

the fraction, but the size of the fraction is not influenced by the

size of numerator." (b) "If in one fraction the complement to 1 is

larger than that of a second fraction then the first fraction is

larger than the second." This misunderstanding of the concept

"complement" points to the lack of the part-whole schema with regard

to the 1 and the difference between it and the given fraction. (c)
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"One fraction is larger than another if its numerator and denominator

are larger, respectively, from those of the other fraction." This rule

resembles a combination of two common fraction comparison rules, each

of which pertains to either the numerator or the denominator. This

combination works in some but not all cases.

2. Misinterpretation of the decimal and common fraction notations and

lack of ability to judge equivalence between these representations

were revealed in the performance on several tasks. (i) A decimal

fraction was characterized as a string of numbers with a decimal

period or as a common fraction with a 10 exponent. (ii) The zeros on

both sides of the period were ignored and only nonzero digits were

considered. (iii) 0.8 and 0.10 were written as the next terms in the

series 0.2, 0.4 A whole numbers rule was employed only to the

mantissa and the meaning of the period was distorted. (iv) Confusion

arose regarding the direction in which to move the period and the

number of places to increase or decrease decimals by 10 exponents. (It

should be noted that the need to choose the operation was clearly a

hinderance in the test problems since the students were not told

whether to multiply or divide by the 10 exponent.) (v) The numerator

and denominator of a common fraction considered separately when these

were to be conceived of as one unit. Similar difficulties were also

reported by Post et al. (1985). (vi) The decimal and common fraction

notations could not be used to designate proportions. (vii)

Translations were made between the decimal and common fraction systems

employing several incorrect transformations (e.g., 4/12 is 4.12, 12.4,

4.8, or 8.4) apparently without resorting to any concrete model.

Moreover, the translations were made without any attempt to check the

obtained fraction (e.g., applying a known transformation procedure).

Knowledge of the two systems was rather poor, but that of the

4



- 424 -

common fractions was mastered more fully than that of the decimal

system, and the former system was clearly insufficiently learned to

base the latter system on it.

The location of common fractions and decimals on the number line

with only whole numbers indicated on it was done satisfactori)y with

numbers smaller than 1 but was very difficult with numbers larger than

1 (e.g., 1.75).

The only procedure used (regardless of its success) to transform

a common fraction into a decimal was to extend the fraction so to make

its denominator a 10 exponent and then to place the period in its

position in numerator. The reverse transition was achieved by writing

the mantissa as numerator and a 10 exponent as denominator, with only

few students reducing the obtained common fraction. These procedures

were employed very seldom so that conclusions regarding the

understanding of the relationship among the systems could not be

reached. The second test was designed to help determine additional

deficiencies regarding the relationship between the systems and

provide more precise descriptions of procedural bugs in the transition

between them.

The results of this test replicate and strengthen those of the

first one. (a) Development was observed in very few topics and

deficiencies in conceptual knowledge and bugs in procedural knowledge

persisted from grade 6 to 9. (b) About 65L of the students failed to

acquire the meaning of common and decimal notations, to identify the

common fraction names of decimal rationale and vice versa, and to

transform into decimal rationals common fractions whose denominators

were not 10 exponents. The only procedure used to translate a common

fraction into a decimal one was to transform the denominator into a 10

exponent. Most failures occurred when this could not be achieved
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(e.g., 4/12). (c) About 80% of tne stu, failed to locate poi As an

the number line and to create the decimal and common fraction nhaes of

these points.

These results emphasize the necessity of having a' lable

knowledge of each system in order to be able to more fully un!%:siand

the other system, a fact that may explain why the instructior lid not

achieve its objectives regarding the four components of the concepi.ual

model of rational numbers. Examination of the relevant IsrE.eli

texUsooks points that (1) the majority of them devote relatively

little time to the establishment of the system of decimal ritionals,

(2) on one hand they utilize the equivalence between the tw( system:3

but on the other hand deemphasize the weaning° of common and decimal.

notations and their relationships, and (3) they enable students to

rote learn procedures without first establishing the underlying

conceptual knowledge.

These results may be important for mathematics educators who

attempt to base the instruction of the system of decimal rationale on

that of the common fractions or to draw parallels between these

systems.
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LANGUAGE: ACTION: FRACTION

Reflections on Fractional Number
Research Papers

Thomas E Kieren
University of Alberta

To be useful personal knowledge in mathematics must serve to
organize methematicully oriented phenomena for its knower. For
young persons such knowledge manifests Itself in LANGUAGE which

o person can validate in the world of intuition or everyday actions.
Using concepts developed by Frye, language can be seen to be used at
four levels. The first two uses heiroglgphic and metaphoric are
immanent. Heiroglyphic language use calls one's attention to action
in the presence of the action itself, while metaphoric language is
'put for action. While this latter use can occur without the
conceal/dant action, it is driven by the action. Metonymic language

use is at a higher level reflecting language and the related thinking
as analogs of action. Here thought is independent of action but can
be referenced to it. The language is analytic or demotic in nature;
it is neither dependent on action nor does it even presuppose
existing related action.

As children build rational number knowledge what kinds of

"things" ore indicated by the language which they use? The

fractional number research studies above, although very diverse,
test for or show children (and the researchers) using language in a

variety of wags. These reflections attempt to Inter-relate these
reports by attending to the role of the LANGUAGE used, the role of

MATHEMATICAL ACTIONS, and the attendant fractional number
knowledge.

Bergeron and Herscovics study the quantification of the part
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whole relationships considering a set of related action/language

pertaining to unit fractions of a continuous whole. Although their

research tasks are not school tasks, they relate to school learned

language in that children's responses are based on pre-given

Partitions or results of partitions (pieces called fifths, sevenths,

and quarters) which might well be named in a heiroglyphic or

metaphoric sense by children. In general, Bergeron and Herscovics

observe that after grade four children can in this context identify

parts from a partitioned whole and reconstitute wholes from given

parts. In the latter, it is interesting that the researchers give a

part and then ask 'how many?' parts make a whole, thus orienting

the student to a learned counting relationship. The invariance items

are done in quarters (seen in other research to be well known by

children), but equipartition results are different from those seen

elsewhere. Here again the researchers use language -quarters" for

the piece in each trial case. Does this language provoke the children

to make a response which goes beyond the perceptual?

The above results on unit fractions of a whole ore not generally

at variance with other studies (eg: Noelting) which suggest an early

control of even more general notions of unit fractions. What is of

interest is that the researchers attended to this notion through a

set of related tasks which can be seen as related to the groupment

notion of Therien. Although not given in the brief paper it would

appear that the children's language/action exhibited a unit fraction

groupment in the domain of part-whole (as opposed to a more

dynamic unit notion).

The Figueras et al research also looked at the relationship of

spatial perception and fraction knowing but with older children and

more sophisticated tasks. Their students were not as unifonnally
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successful as those in the Bergeron /Herecovics study. Some of the

behaviors, for example in finding one third of a triangle, indicated

that some students faced with these tasks illustrated Therlen's

Stage 1 behaviours of fixing on one of the two elements in the

fractional task. Other results vividly show the role of language use.

One task asked students to show of 5/20 of a starlike figure. If one

metaphorically put 5/20 for 5 of 20 pieces this task would be

difficult (as it is for many). If one thought 5/20 of u figure as a

quantitative part (1/4) then the task was easy.

Several of the studies reflected on the fact that traditional

instruction makes an early and probably unwarranted emphasis on

symbolic manipulation and computation with common or decimal

fractions. To the extent that this is true children are probably

forced to treat these symbols as concrete objects in and of

themselves and hence build knowledge based inappropriately on

patterns in the symbols ("count decimal places", like
denominators, or generate purely nominal knowledge.

The presence of largely nominal knowledge is vividly llustrated

in the paper by Tomer, Wolf, and Fioz. With the exception of a half

and a quarter (language which controls actions usually well known

to children), their sample of 11-14 year olds exhibited many

instances of a focus on decimal symbols as patterns in and of

themselves. Unless these symbols ore tied to a personal conceptual

base prior to instructions on procedural manipulations, it appears

that there are serious limitations in the useful fractional

knowledge of these children and young adults.

Even when pictoral representations ore used in fraction number

instruction, the conseqences are not always positive. From Novillis

Larson's study, it is evident that while measurement models would
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be useful perticulerily in work with fractions greater then one and

equivalent fractions, students could handle the fractions on a ruler

much better than they could perform with a number line

measurement representation. It would appear that children could

use fraction language somewhat accurately as metaphors for

measures indicated on a ruler. The static number line seemed to

present a conflict with whole number knowledge. If instruction is

to use the number line as en intuitive model for fractions, attention

must be paid in performing fractional actions in this context and

tying language to them.

The paper by Hiebert and Weerno Grtd that of Streefland provide

evidence that programs of instruction based on the premise of tying

language to significant mathematical object/actions are both

possible end have the desired effect. The Hiebert end Wearne paper

tests a carefully developed theory of symbolic knowledge building.

In this model meaning of individual symbols is built on meaningful

referents (in this case base 10 blocks used to illustrate some

decimal fractions) Although the authors do not mention it in their

theory it seems critical to note that the reference base and

exercises allow decimal language to be used in a manner which

illustrates the quotient relationship between the unit and a decimal

fraction at least in a limited sense. Referring to the Therien theory

the referent system used in the Hiebert/Weerne instruction admits

the structure of a groupment at least up to the level of common

denominators. In both studies reported by Hiebert and Weerne

students used appropriate semantic processes after instruction.

However, in the full classroom group, the level of transfer to

related decomel tasks before direct instruction was low. Hiebert

and Weenie suggest that learning in the more complex setting was
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less complete and hence less transferable. In terms of language use

this might mean that the children's use of language in the second

group was more Immanent and thus tied to the particular objects in

the particular setting. While for at least some students in the

smell group decimal language reflected their ideas about actions,

that is language called an abstraction to attention, in the large

group student language still referred directly to objects.

In the Streefland study of fraction monograph production, he

makes explicit reference to a levelling in which language, image,

end action form a base for fraction language development where

mathematical fraction language first simply replaces everyday

language. This is followed by levels of language and rule 'play-

where the language can be validated back in an object-world

familiar to the child.

The Kheong paper presents a model of fractional knowledge based

on symbolic computations with fractions. The resultant computer

diegnoLtic system would appear effective in dealing with nominal

fractional number knowledge. It would appear that the analysis is

based on exhausting categorization of symbolc error and direct error

correction. Whet it does not do is examine the meaning of the

language used. Thus the remedial system takes no cognizance of the

semantic processes underlying operations on fractional numbers.

Finally the paper by Herdiman presented some very interesting

results on simple word problems with fractions. Two things stand

out in the findings. If fractions can be interpreted in a who whole

number problems. Secondly, language use surrounding the

multiplicative aspects of fractional numbers is confounding both to

the subjects and the basic thrust of the surface structure/deep

structure research.
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SUMMARY

What seems clear form the above cited studies is that a fraction

curriculum in which symbols ore not tied to meaningful object

actions has inhibiting effects. While object image based instruction

con lead to some systematic fraction knowledge, it is important to

examine these environments to see if they actually can support a

full dgmnamic fractional number knowledge system. It would

appear that the richer environments and systematic attention to

growth in language development lead to robust fractional number

knowledge. Therien reminds that such knowledge has a systematic

structure itself, a chain of groupments. However, because in some

settings fractional numbers can refer directly to quantities, the

kinds of component groupments needed to explain actual child

behavior may well be very different than those posed by Therien.
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SIMILARITY:

UNRAVELING A CONCEPTUAL KNOT WITN THE AID OF TLCHNOLOCY

Daniel Chazan

Education Development Center, Inc.

Edw:ational Technology Center, Harvard Graduate School of Education

Previous work has identified three areas of difficulty that
students seem to have with the topic of similarity:
proportional reasoning, dimensional growth relationships,
and correspondences in right triangle similarity. A unit

addressing these three difficulties WAS constructed for ase

with the GEOMETRIC SUPPOSER. Students were observed as they

learned similarity with this unit. From these observations,

clarification of the three part characterization of student
difficulties will be sought. The use of technology,

specifically the GEOMETRIC SUFPOSER, provides two benefits.

First, it supports a pedagogy which seeks to directly attack
the students difficulties in understanding similarity.
Second, the lab setting allows researchers as well as
teachers to directly examine student thought processes.

INTRODUCTION

Teachers in the Educational Technology Center's 1985-86 geometry study

(reported at the eighth PME-NA) considered similarity the most difficult

topic in the curriculum for their students to understand. :om

experiences in these classrooms, students' initial conceptions about

similarity were characterized, as well as the difficulties they

experienced in learning about the topic. Based on these insights and on

a review of the pertinent literature, three areas of difficulty with the

topic ware identified. A unit of problems for use with the GEOMETRIC

SUPPOSER was then designed. The unit asks students to explore

*The research was conducted at Education Development Center under a
subcontract from the Educational Technology Center of the Harvard

Graduate School of Education. It was supported by the Office of

Educational Research and Improvement contract 0400-83-0041.
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constructions involving similarity and, where possible, tries to force a

confrontation between their naive theories and contrary evidence.

THREE DIFFICULTIES IN LEARNING ABOUT SIMILARITY

The first and foremost difficulty that students experienced in the

1985-86 study involves a crucial part of the definition of similarity,

ratio and proportion. For example, students seamed to think that by

extending the sides of a triangle by equal lengths they would always get

a similar triangle. This conception was very resistant to change and

appears to be related to similar additive strategies exhibited by

students on ratio tasks (Hart, 1984).

The literature oe similarity also indicates that an understanding of

the relationship of area growth in similar plane figures and the

generalized problem of dimensional growth in higher dimensional similar

objects is difficult for students to acquire (Friedlander et al.,

unpublished). Similarity is confounded with dimension; students are

suprised to see that area does not grow in the same ratio as sides do.

The majority of research on this difficulty focuses on the relationship

between linear and area growth and was done with junior high school

students.

A third difficulty is associated with the mean proportional

relationships found in right triangles with an altitude drawn from the

right angle vertex. The students experienced difficulties solving

problems that demanded the use of these ratios and the correct

identification of the correspondences and proportions among the segments

involved. This difficulty seemed to have two major components beyond

bookkeeping difficulties. First, in order to develop the correct

proportions, students must be able to match the corresponding sides of

the three triangles in the construction. Such a matching is difficult

since one of the triangles must be mentally flipped (not just rotated)

in order to make the correspondence. It is not clear that students

understand that flipping twodimensional figures does not change the

figures. Second, in these proportions, the same segment plays different

roles in three triangles. For example, in the mean proportion involving

the altitude, the altitude is the short leg of one right triangle and

the long leg of another, as well as the altitude of a third.
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PURPOSE

The purpose of this paper is to further examine the typology of the

three areas of difficulty in the learning of similarity. Preliminary

results related to this purpose are reported below.

Specifically, there are three sets of questions which will be

examined:

1. Is students' preference for additive versus multiplicative
strategies to create similarity a replicable phenomenon? If so,
does it seem to be difficulty in working with ratios or is it
geometric difficulty?

2. At the end of their studies about similarity, can students
recognise linear, area and volume growth relationships in solids?
If so, how do they manage the conflict between the descriptions?

3. With right triangles, does the students' difficulty stem from
the fact that the similar triangles are rotated or flipped?
Alternatively, does the difficulty stem from the fact that the same
segment, the altitude, is both the small leg of one triangle and the
large leg of another triangle as well as the altitude of a third?

METHODS

Intervention

The unit consisted of eight computer tasks that students did in the

computer lab during class time. Students also learned about similarity

in their regular classroom. The unit was used by four geometry classes,

two in one location and two in another. The classes in thi. first

location had no prior experience with the SUPPOSER; the classes in the

second location had used the SUPPOSER from September until March prior

to beginning the unit.

Data Collection

Observers visited the experimental and comparison classes while the

topic of similarity was taught. Students' computer assignments were

collected from the experimental classes. Final tests on similarity were

collected from all classes.

The performance of students In these four experimental classes was

compared with the performance of students in two comparison cl

The measures used were a pretest of fraction ability and ratio and
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proportion skills, and a posttest of ratio and proportion skills and

understanding of similarity.

Tour students from each of the experimental and comparieon classes

were also interviewed. The interviews focused on the three areas of

difficulty outlined above.

The majority of the results reported below are from the data collected

at the site where students did not have previous experience with the

Supposer. The date from the other site have not yet been completely

analysed; they will be reported at the PME conference.

PRELIMINARY RESULTS

Additive versus Multiplicative Strategics

Early In their work last year with the SUPPOSER, a group of students

in one of the classes developed the notion of "resealed" triangles,

triangles that have the same angles but are different sizes. The name

derive. from the "Scale Change" option that is present in the SUPPOSER.

The students were convinced that in order to get the resealed version

from the smaller version, one should add a set amount to the length of

each side. They stuck to this opinion in the face of counter evidence.

This phenomenon wee not recreated in any of the experimental cl

this year. When asked to explain how one could create a resealed

version of a triangle, students used proportions im their explanations.

However, one of the computer tasks in the unit brought to light evidence

that suggests that the studeats preference for multiplicative strategies

was not strongly rooted.

In this task, students were asked to create a triangle similar to a

given triangle, by extending two of its sides. In two of the four

experimental el , students were first given the option of choosing

additive or multiplicative strategies. Their choices were very

different in the two classes. In one class, where this task was given

the same day that students investigated figures whose sides were

proportionate, eight out of eleven working groups chose a multiplicative

strategy. In the other class, where a weekend intervened between the

Side-Side-Side activity and the task of extending the two sides, eight

out of eleven groups tried additive strategies. The two groups had

scored similarly on the ratio and proportion pretest. The "multipliers"
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had 5 out of 16 students at Hart's fourth level of ratio understanding;

12 students used additive strategies on her test. The "adders" had 3

out of 16 students at level four; 12 students used additive strategies

in the ratio and proportion pretest.

On the next day, the teacher followed up the twooption task with a

task that did not allow choice. In this version, a student is asked to

investigate an additive strategy and then a multiplicative strategy.

The class that previously had used multiplicative strategies now

expressed surprise that en additive strategy would not work. It took

the students half of the period to connect this phenomenon to their

previous assignment. In the "additive" class, the students immedi.tely

explained that the activity was the same as the activity that they had

done earlier.

In the other two experimental cl , students had done much better

on Hart's test of ratio understanding. In one class 14 out of 23 scored

at level 4 with 6 using additive strategies, while in the other class 15

out of 22 scored at that level with only 2 using additive strategies.

In these classes, students were not given choices; they were told to

first construct additively and then multiplicatively. In both classes,

many students didn't bother measuring to check their conjectures. They

were positive that an additive strategy would yield similar figures.

Only when they tried a multiplicative strategy on the same figure did

they feel the need to go back and make measurements. They expressed

mud, consternation when they found that extending by equal lengths did

not necessarily yield parallel lines. Thus, even those students who

show an understanding of ratio, may not exhibit that understanding in

certain geometric contexts.

Side, Area and Volume Growth Relationships in Similar Solids

At the end of the similarity unit intervention, we interviewed twelve

students at one of the sites four from each of the two experimental

classes and two from each comparison class. One of the tasks on the

interviews involved two similar rectangular solids. The dimensions of

one of the solids were twice the dimensions of the other. Students were

asked to describe how much larger the large solid was than the small

solid.

No student responded with an additive strategy. All twelve students

interviewed responded with at least one multiplicative strategy (either

comparison of sides or of volumes), while five students suggested

exactly two strategies (usually sides and volume). Four students also
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noted r third possibility (comparison of areas).

Oni. As of the students wno suggested more than one strategy

expressed surprise. This student thought that the area relationship

should be the same as the sides relationship. He counted and then

revised his opinion to 2:1 for sides and 4:1 for area.

When asked to explain the possibility of different answers or when

asked to choose between two answers they had given. eight of nine

students responded that both or all three descriptions were true. Only

one of the students was disconcerted by the fact that two different

descriptions seemed to hold. He settled on the volume relationship as

truer than the relationship between sides. The more articulate students

suggested that "the answer depends on the question" or that "the

quantities being measured are different."

Only two of the students explicitly mentioned that the solids were

similar. Only one student had an explanation for why the volume

relationship Is 8:1. She explained that since it is cube, one cubes

the ratio of the sides. No student was moved to make any generalization

about dimensions.

Corresponding Ratios in Right Triangles

During these same interviews, two of the other tasks were structured

to test two hypotheses about students' difficulties with proportions in

right Lriangles. First, we tested the notion that students do not

identify the similarity of the triangles because of the flipping

involved. This was accomplished as part of a task that asked students

to identify similar shapes. Some of the figures needed to be flipped in

order to recognize that they were indeed similar. Nine out of the

twelve students had no difficulties performing the necessary flips and

recognizing the similar figures. Three students missed one or two of a

total of five ne y flips.

On the second task, students were given 6 metal pieces (two of equal

size) that were cut into lengths that could be joined end to end to make

two similar right triangles. These two triangles can then be joined to

make a third similar right triangle. Students were first given the six

pieces and asked to create two similar right triangles. After they had

done so, one of the two equalsized pieces was removed and students were

asked to create two or three similar right triangles with the remaining

five pieces by connecting them end to end.

The students' performance was very hard to analyze, but in general

students did not seem to have a problem with the notion that one metal
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piece would have to function as a member of two or three triangles.

PRELIMINARY DISCUSSION

The phenomenon of using additive strategies to construct similar

triangles was replicated. Whether this is a difficulty with ratio

reasoning or with geometric reasoning is a difficult question. However,

it does seem that the context of extending two sides of a triangle to

make a similar triangle encourages additive understandings of

proportions even among those students who have already come to a

multiplicative understanding of proportions.

Students in general were able to recognize the different

relationships, area being the most elusive. They eso tended not to

experiti:e conflict between the different descriptions, although they

were not able to explicitly coordinate the descriptions. They did not

generalize the relationships between sides, areas and volumes.

The evidence from the interviews does not strongly support either of

the two hypotheses. Few students had difficulties flipping geometric

shapes. The students did not see this as an inappropriate action.

Students also did not have difficulties with the notion that one rod

could be a part of two or three triangles. No one was stymied by the

task of making similar right triangle, with the five remaining pieces.
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TEUtGREME DE THALES ET MICRO-ORDINATEUR
Elisabeth GALLOU-DUMIEL - Institut Fourier

ABSTRACT. The theorem of Tha les enables mathematicians
to calculate large lengths by means of computations on small
le-lights and realises in this way a change of space. The use of the
theorem of Thaler changes a geometric approach of a problem into
a numeric one where proportionality corresponds to parallelism.
The object of this research is to investigate the difficulties for
the pupils when using the theorem of Thal& in the solution of a
problem. It was carried out in two environments :
- a computer environment
- a paper-pencil environment.
The modification of the pupil's strategies due to the computer is

also investigated.

Introduction. Le I/tor/me de Thalia est une notion charniere des mathema-

tiques at de lour enseignement an France en fin de college (14-15 ins). 11 permet

un passage du cadre geometrique an cadre oumerique oil le parallelisme eat mis
en relation avec la proportionnaliti IDOUADY 18851. Les difficult& i. son sujet

soot de diarents types. Elks sont cependant beaucoup plus importantes quand le
resultat demands est non pas auroirique, cos pour lequel le changement de cadre
apparait d'emblee nkessaire, maim une propriete geornetrique i demontrer.

Problematique du thioreme de Thal4s. Historiquement A l'epoque de
Thal& (mesure des pyramides) actuellement encore pour des problemes concrete

(par exemple le cubage d'un sapin our pied) le theorime de Thal& (*) permet de
calculer une longueur qua lion ne pout pas mesurer directement i cause de sa taille

importante at de difficult& techniques i partir d'autres longueurs.

On pent distiriguer trois espaces dans lesquels les problemes ne se poaent pas de in

mime !icon puce gulls ne mettent pas en jeu les mimes possibilita de contrale
(BROUSSEAU 1283). Ce sont :

- le micro-espace : l'espace des objets qu'on pent &placer sur une table;

- le meso-espace : entre 0.5 at 50 foie la Leine du - ujet;
- le macro-espace qui met en jeu des problemes de reperage et d'orientation

(LABORDE 1986).
Thalia permet, pour les mesures de longueurs, un passage de l'un quelconque i

l'autre de ces trois espaces.
Quand on cherche It conferer une structure d'espace vectoriel 1 R2 ou Rs, on utilise

Thal& pour difinir la multiplication par un scalaire dans ('ensemble des classes
d'equivalence de bipoints du plan ou de l'espace.

Thales, aussi Bien historiquement, quo dans sa presentation dans l'enseignement

ou son emploi dans des problem& apparait done comma un outil (DOUADY 19851,

En particulier Thalia permet de transformer une class. de problemes oi: intervient

le parallelism. dans no cadre giometrique en une classe de problem& oil intervient

la proportionnalitE dans un cadre numerique.

(1 punt de maIntenant nous dirons Thalts pour le th4ortme de Tholes
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Objectif de l'ittlde. Nous avons choisi d'etudier lee difficult& pour les Cleves
concernant ka problernes de la clause de troisieme de college (14-15 ans) nicessitant
rutilisation de Thal& ou de sa reciproque. Dans un tel problime se produisent
different& phases :
1. decision d'utiliser Thal& ou sa reciproque comme Clement de Is solution;
2. reconnaissance des configurations oO le theoreme a lieu d'être applique;
3. determination des rapporte utilises que j'appellerai choix de la forme

de Thalia ou de sa reciproque;
4. maniement des rapport.;
5. calcul algebrique.

Choix dee variables des problem& poses aux eleven. Nous appellerons
variables lea elements du problime dont un changement de valour entraine un
changement de strategic des eaves. L'Ctude des different& phases de resolution
de problerae et des observations faites avant l'experimentation nous permettent
d'etablir Is liste des variables concernant he texte de la facon suivante :

La premiere variable concerne Se type de niponse demandif. Soit relive dolt realiser
un calcul (calcul dune longneur, d'un rapport de tnesures algibrigues) soft relive
dolt realiser :me demonstration de propriet& geometriques.
La seconde variable est cells de configuration. Elle se decompose en une 'Erie de
sous-variables qui sont lee suivs.ntes :

presence ou non de figures reconnues et nombre de ces figures. Cellos -ci peuvent
etre des paralielograrnmes, des trapezes, des triangles;

utilisation de Thal& ou de sa reciproque dans to triangle. Il y a slots deux cas
particullers qui sont lee suivants :
1) le theoreme employe quand on applique Thales est en fait le theoreme du milieu :
dans un triangle une paraliele 1 uu dote peasant par le milieu d'un autre cote passe
par It milieu du troisieme cote;
2) un des rapporte utilimis est le rapport d'un cote sun Is longueur du segment
decoupe our une parallele par les deux autres cote..

A

(uthwation du rapport BC
Wrdi AB',

AB

On dirs. shore que l'on utilise Is deuxiime forme de Thalia dans It triangle.
direction des paralleles.
nombre de segments composant Is figure.

La variable suivante concerne l'utilisation de Thal4s. Elle se decompose de Is facon
suivante

nombre de foie oil Thalia ou sa reciproque est appliqué;
nombre de differentes formes de Thalia ou de sa reciproque utilisies ,
sous-variable directs ou reciproque uivant que it theoreme appliqué est Thales
ou sa reciproque.

Nous avons une variable mesure algebrique et une variable calcul algebrique prenant
la valour vraie si un calcul autre que Is simple ecriture des rapporte doit etre fait.
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Enfin, now definisions In variable changamont dispace qui prend valeur vraie si
Thalia permit le passage d'un mecro-espace.. un meso -espace ou d'un meso-apace

un micro-apace.
On pourrait penes qu'il faut definir une variable vecteur qui prendrait la valeur

vraie si des vecaeurs iguraient dans Penance. Now ne Is (irons pas cur alors ce
east pas Thalia qui est utilise male Is propriete de l'espace qui est de pouf/der

use structure d'espace mane aseocie i un espace vectorial.

U nous est apparu ensuite que les modalitis de In situation de resolution de
problime avalent un rale important ijouer.

Hypothen de travail it choix d'un dispositit. Le travail qui suit est
fonds sue l'hypotbles qu'une dm difficultis lee plus importantes dans la mice en

oeuvre de Thalia set is decomposition de In figure en groups dllements a it peut
titre applique. liabituellement, pour asoudre un problIme de /*mettle, lea elves
cont places dans des condition. dites papier crayon. Now rvons cherche I voir si
l'introduction d'un logiciel de trace avec certaines facilites de modification de In

figure que ne pasuatent pas les conditions pspkr-crayon faciliterait in resolution

des phases can, deux et trots.
Le logiciel cholla eet Mae Draw sue Macintosh. Les actions de trace, indiquees aux
Cava/ pour modifier iventuellanant In figure sent :
1 - is trace d'un segment d'un point a can aid!.

- In tfansintiou dim/ esgment
3 - Is changer/lent d'ipairew des traits d'un segment
4 - Is suppression d'un segment
5 - la mite in place d'un quadrillsge.
Lee actions de trace 2 it 3 permettent d'isoler rapidement des grouper: d'elements
de figure it de la rendre ainsi dynunique. Nous definluons des variables de
modalitis qui sold les suivantes :

la variable de dispositif qui prendra les valeun suivantes :
- Macintosh avec Mac Draw
- papier-crayon avec rigle, compas, equenre, rapporteur.

la variable de trace de In figure.

Experimentation. Un choix de neuf enoncis presentant un echantillonnage
des valeurs dee variables a ete fait. Les nonce. ont ate couples par2. Un .nonce
ea pr./ deux fois, parcequ'il semble presenter le plus de difficulth pour les eleven.
On a associe quand cela Etait possible des enonces pasentant des types de repoiuses

differentes et sinon des formes different.. de Thalia. Noun donnons ice un exemple

d'enonee :

ItIVIERE

OA .4 Iarea
cc ail eiaa
4[1 Ia aa Ins to
CMmMrU.leWar
EA la mien
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Valeur des variables. Le type de reponse do-
mande est nurn4rique. La configuration presente
2 triangles. La figure actuelle compte 7 seg-
ments. Les paralliles sont obliques. II y a une
seule utilisation du theorime de Valdes sous ea
deuxiime forme dans le triangle. Les variables
mesure algebrique it calcul algebrique prennent In

valeur vraie. La figure prennte des segments man-
) quanta et la traits wont d'epaitsieure different..
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Les eaves travaillaient par deux pendant une heure. La consign. keit de rediger

par &lit une solution en utiiisant uniquement, pour le, eaves travaillant sur
Macintosh, Ia figure de 116cran. Celle-ci etait susceptible d'etre modifiee grace

aux actions de trace indiquees pricedemrnent. L'experimentation a eu lieu dans

une classe de troisiirae technique d'un college de la banlieue grenobloise (19

Alive' de 15 1 17 ans) et dans une classe de trolsilme clasique du mime college

(24 eleven de 14-15 ans). 10 paires provenant de different.. classes 4.:
troisiime classique d'autree colleges de l'agglorneration grenoblaise ont egalement

participe aux experimentations. Par suite, cheque groupe de deux textes a etc
donne (dans ce type de conditions) 18 pairs. d'elives differentes. Un seul text.

a etc cherche douse foie. Une seule Cave, provenant de la troisiime technique,

a travaille individuellement. Cheque problem. a ate realise Egalement par deux

paires d'elives de Same ciassique travaillant dans les conditions papier-crayon .

clan.`tea b reis...J*11...es ayant shorde
1 problem.

ayant abode
2 problems

ayant /horde
3 problimes

3eme tochniqua 19 4 12 3

Semi classique 24 4 20

Mr** d'autris Mna
chraictuaa

20 e 14

&vas dans 1as conditions
papiar-crayon

8 12

Role du dispositif den

MA& tflOOM4011.11.

A

C

Solt un !well/Swam* (ASCO).
Mint M (Al).

On wAtos W tile welleln (M),
all, coon (A0) en a
On wArd w M Is perellils (AC).
el le alum (K) on*
On ni4no w II Is isrellala (OD),

AIN coups (DC) en I
wl-so Mrs flu owdritatkellIe0

le processus de resolution.
La presence de traits d'epalsseurs differentes apparalt
eseentielle chee des Civet ayant reconnu que la reso-

lution du problime nicessitait !'utilisation de Thalia.
Pour lee Olives travaillant dam, le type de condi-
tion Macintosh avec Male Draw pour certainee figures

comae PARALLELOGRAMME.B oh Thalia ou sa
reciproque sont employes un grand nombre de fois,
c'est la decomposition de la figure realist* en changeant
Pepaisseur de certain, traits qui 'et systematiquement
utilise*. Pour d'autres figures on volt egalement des

mists en evidence de configurations obtenues par Ia
translation des segments inutile'.
Its Eleven commencent systematiquement par lire le
texts en reperant lee traces sur 'Wren quand ils y
sont deji en ajoutanteventuellement lee segments man-
quanta. Les segments superfine ne sont jamais effaces.

Cette tiche remplace celle de trace de la figure dans lee conditions papier-crayon et

semble jouer un rale analogue. Ensuite, its recherchent une strategic globale. La

decision d'appliquer Thalia ou d'utiliser des projection* est declencht* par la vision

de paralliles. Alors seulement lee Oyes isolent un groupe &elements de is figure.

Par rapport aux conditions papier-crayon lee eaves patient aloe plus facilement

en revue lee differentes formes de Thalis ou c e se reciproque pourdecider laquelle

utiliser et font ensuite sans difficulte lee entree decompositions eventuelles de Is

figure pour les applications successives de Thalia ou de sa riciproque.
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L'effet dee variables concernant k nombre de lois oh Thalia est applique it lenombre de formes de Thalia est attinue par rapport i ce (lege passe dens lesconditions papier-crayon . Comm. Mac Draw facilite en pratique la decomposition
des figures, les procedures de resolution component plusieurs emplois differentsiventualkusent de Thalia ne sort pas raises i Pecan comme dam les conditionspapler-crayon . La difficulti provenant de Pintereection des 'Acute' entre leaparaTheles not Melnik par Is poseibilite avec Mac Draw de translater une secant..Par contre la difficulti concernant !'utilisation de parallilat horizontal.. subsiste.Cette difficulti cat en rapport avec !'absence de presentation de ce type de figuredans lea manuele.

Role dos variables dans is processue de resolution.
Variable comernant la forme de Thal& Nous constatorus dans tous les cas unenfermement dans une forme de Thaler qui eat k ittiviutte :

A'

B'

B C'

C

La forme de Thalia qui presente la plus grande difficulte est la deuxiime forme deThalia dans k triangle

711Y
ripporto utilisayd = firei

Solution d'Une pair. d'Altoto
pow SIVIUSS2

(.14 //Liz)

V.per, .014Otihs

tick% , 11,4

14% It'

WO S

Nous constatons dans cette production
Pintroduction du rapport g

qui correspond it la forme usuelle d'uti-
lisation de Thalia avec une tentative
d'utilisation de se deuxiime forme dans
le triangle qui devrait dormer

MD RD

C'est dans la clause de troisieme technologique que ('utilisation de la deuxameforme de Thalia dans le triangle s'est produite avec le temp. de recherche le plusfaible it le mins d'erreurs de rapport.
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Th &rime de Thalia at theorems du milieu.

1111111414441

0.411 hut lee14 (AWL
rt 14 0.111404,10C1

t oultore t. IAA
On Wet la Iv 111111 4 (Ma proo1
KIN moo NC/ 40 11
In km In w11141. I (A1:1M111115 Os
gas etsaa (lC) Ml

honing M/ .IIM 41/00010 lo
11110.1.1 fl

11110411.4.4

0 ft

nail 101 IMMO* OW1
/1111n11455111C1.

1,0 14451 M OA/
On wee is eta ial 151111151.4 55,
111. toven MCI VI

Vo45 H 101111111 1.40) mown w
4114 la*. OKI to ft

fluntr44 M 11 ant 10 neuLrItos M 11
WWI IR

Les deux problemes precedents ne different que par le fait qua dans TRIANCLE,B,
P eoit le milieu de AM. Cette proprieti qui n'est pas necessaire dana lea hypotheses
pour resoudre le probleme, permet de remplacer dens la resolution du probleme le
theorem° de Thales per le theoreme du milieu. Ce dernier theoreme a Ai appris
Panne° precedente en classe de quatrieme de college. lfl evite par ailleurs, d'utiliser
lea rapport. de mesures algebriques. Un peu plus de Is moitie .eulement des eleves
appliquent le theoreme du milieu pour TRIANCLE.B. Le rate des eleves, ce qui
ne constitue pea une proportion negligeable, applique le theoreme de Thaler deux
foie en ecrivant

HAI AM CM

Variable mesure algebrique et variable ealcut algebrique. Nous remarquons
que plus de Is moltie des &yes remplacent lea mutual algebriques par des
longucurs. Pour lee eleves ayant conserves lee minium algebriques noun voyons
frequemment dans Is resolution de TRIANGLE.0 : M milieu de IBC) entraine

= -MC. Pour PARALLELOGRAMME.B 2 pairee d'ileves ont utilise des
comma au lieu de rapporte at ont Ecrit ainei la solution : en appliquant Thales
AQ + AD = + AB = CN +C13- = CP +CD; en appliquant la reciproque de
Thalia on obtient (QP) parallele 1 (AC).

Variable type de reponse et variable dimension.
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Dana les deux types de condition Macintosh avec Mac Draw it papier-crayon ces
variable paraiseent fondarnentales. Las eaves ont une reticence a realier un pas-
sage du cadre geornitrique au ca,lre numerique quand It type de la reponse conune
lea hypotheses appartiennent au cadre geometrique ce qui nkessite un double pas-
sage. La primence de changement d'espace semble une condition favoriente pour
la decision cremploi de Thaler.
Dana le type de condition Macintosh avec Mac Draw, pour PEUPLIER.A it
TRIANGLE.A lea elev.e prennent rapidement la decision d'utiliser Thal& it
recherchent les formes d'utilisation. Per contre TRAPEZE.A est /a figure qui
a ate placee deux foie dans le inonces parce qu'elle semble presenter le plus
de difficult/a pour les sieves. Pourtant PEUPLIER.A et TRIANGLE.A sant les
problems dont Ise resolutions comportent le plus grand nombre d'utilisation de
Thalia sous differemtes formes et dont la figure comporte le plus grand nombre de
segments it de configurations possible. dans lesquelles Thalia peut etre applique.
Nous remarquerona que lee eleves progreasent plus rapidement dans la resolution
de PEUPLIER.A qui presents en cas de changement d'espace que dans celle de
TRIANGLE.A.
La presence de paralieles mod& 1 la demande d'une mature de longueur semble
etre un critere pour la decision d'utiliser Thalia. Son efficacite est renforcCe par la
presence d'un changement d'espact.

Conclusion. Le theoreme de Thaler apparait comme une notion possedant
un vaste champ conceptual. A Peeve en situation de resolution de probleme cela
impose d'une part

de disposer de criteres portant stir la figure it It texte permettant de determiner
si le theorem de Thaler ou ea rkiproque ont lieu d'etre appliques at sous quelle
forms;

d'autre part de savoir mettra oeuvre dee mithodes de resolution de problemes,
algebriques it geometriques.
L'utilisation du logiciel Mac Draw our Macintosh permit de favoriser lee procedures
comportant different= dkompositions de la figure. Gels a permis une plus
grand. facilite de resolution quand Thal& ou Si rtklproque devait titre employe
plusleurs foie ou quand Tholes n'apparaiaeait pas sous sa forme melte. Lee
difficultes regents. sont cones concernant la direction des paralieles, l'utilisation
de la detudeme forme de Thal& dans le triangle it lee difficult& Rees au calcul
algebrique.
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SEEING WHAT MATTERS: DEVELOPING AN UNDERSTANDING OF THE CONCEPT

OF PARALLELOGRAM THROUGH A LOGO MICROWORLD

Celia Hoyles and Richard Noss
University of London Institute of Education

Abstract We report the results of a study in which pupils
engaged in mathematical activity through interaction in a
Logo microworld based on the concept of a parallelogram.
The -objective was to identify ways in which the pupils
progressively became aware of and generalised the
embedded relationships within parallelograms. The data was
analysed from the perspective of a general model for
learning mathematics within functional and meaningful
situations. The analysis of the data has provided insight into
the ways in which a structured Logo environment can
provide a context in which concepts can be first usel and
later stood. based on the interaction between symbolic
and visual modes of thinking, the partial layers of
discrimination which are constructed, and the way in which
the computer acts as cognitive scaffolding for the learner.

Our starting point is that pupils should learn mathematics by engaging in
functional mathematical activity. We suggest that the major difficulties
which confront school mathematics are :

1. the separation of mathematics from any sort of meaningful
activity, and

1i. the separation of pupils' conceptions from their formalisation
(for a further elaboration of these points see Hoyles 1985; Noss, in press).

We aim to construct learning environments in which mathematical ideas
and operations are applied as tools. In such circumstances the learners
attention is focussed on the use or outcome, and It is evident that she may
not be aware in any explicit sense of the mathematical concepts and

relationships embedded in the activity. The problem therefore is to raise

these implicit mathematical structures to conscious awareness.

With this background In mind, a model for learning mathematics has been

proposed which involves the dynamically related components of using,

discriminating, generalising and synthesising (abbreviated to UDGS). The

components of the model (see Hoyles 1986) are as follows:
Wog: where a concept is used as a tool for functional purposes to

achieve particular goals;
Discriminating: where the different parts of the structure of a

507



18 -

concept used as a tool are progressively made explicit;
Generalising; where the range of application of the concept used as a

too; is consciously extended from a particular to a more general case;
Untben: where the range of application of the concept used as

a tool is consciously integrated with other contexts of application that
Is, where multiple representations of the same knowledge in different
symbolic forms derived from different domains, are reformulated into an
integral whole.

A fundamental criterion of the UDGS model's applicability lies in the
extent 20 which exploration and experimentation are provided for within
the learning situation. It therefore fits rather well in the context of
interactive computer environments, at least those In which the learner is
both engaged In the construction of executable symbolic representations
and is provided with informative feedback. We would claim that
computer-based environments of this kind can provide a special learning
situation which can aid in the restructuring of the pupil's knowledge from
its initial basis within 'theorems In action' (Vergnaud 1982), to more
abstract cognitive structures. Our image of the computer is as an
intellectual resource for provoking the child to use mathematical
ideas, explore situations, and to pose and solve problems. Viewed In
this light, the computer may be seen to act as a collaborator which can
stimulate changes in the representation of a problem and thus make
possible their solution. This perspective owes much to Vygotsky who
acknowledged the discrepancy between solitary and collaborative
problem solving. Vygotsky argued that cognitive development occurs as the
inter-psychological processes found In social interactions become
internalised as Intra-psychological functions. Here we investigate
whether this process might occur during interaction with the computer
and how the ontogenesis of individual representations might be a function
of this interaction.

OBJECTIVES

We set out to provide a small number of children with a Logo-based
parallelogram microworld consisting of a structured set of tasks, some of
which were to be attempted off the computer and some on the computer.
Our hope was that these activies would enable us to gain insight into the
development of the children's understanding of the 'essence' of a

parallelogram, and in particular how the computer served as a catalyst in
this development by affecting both the way the concept was
represented and the range of methods of task solution available. In terms
of the theoretical framework of the UDGS model, we planned to investigate
the cycle in which children:
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1. used a given Logo program for a parallelogram and learned to see

Its outcome as a totality;
11. progressively discriminated the function of its component parts;

separated these component parts Into cognitive units: that Is

perceived the semantic meaning of the units and connected these with

visual outcomes;
Iv. generalised both the program and their understanding of the

mathematical concepts embedded within it;
v, synthesised conceptions developed in the Logo microworld with

those developed in other contexts.

In this paper, we report findings only rioting to the first three issues.
(for a fuller discussion see Hoy les and Noss, in press). As well as
describing the pupils' mathematical activity within each particular phase

of the cycle, we also hoped to gain insight Into how transitions came about

between the components of the UDGS model; that Is, how and why change

occurred.

METHODOLOGY

We have been working with a group of seven children aged between 13 and

14 years with considerable Logo experience (around 120 hours over four

years). During the year 1985-6, we collected together a series of case

studies of their Logo activities within their mathematics classroom,

which provided the background for the formulation of the set of tasks
which are the basis of this paper. These tasks were undertaken during a

two-hour session in our computing laboratory. Data was obtained by

reference to the dribble files (which record all pupil-computer
interactions automatically) of the pupils work, the researchers' notes

(both researchers were present during the activity but no Interventions
were made by them), and the written work of the pdpils. This background

case study material was also used to aid in the interpretation of the data.

Pupils were given the following procedure:

TO SHAPE :SIDE I :SIDE2
FD :SIDE I RT 40
FD:SIDE2 RT 140
FD :SIDE1 RT 40
FD:SIDE2 RT 140
END

The pupils were Initially encouraged to play with the procedure by using It

In the construction of a tiling pattern. This activity was intended to reveal
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pupils' initial conceptions. By constraints built into subsequent tasks, It
was planned that the pupils' attention would be progressively drawn to the
meanings and implicit relationships in the procedure's code which were
necessary for the output to be a parallelogram i.e.:

a) that -the inputs to the procedure (SIDE I and SIDE2) represented
the lengths of the two sides of the figure.

b) that SIDE] and SIDE2 were each called twice and alternately;
c) that the Inputs to RT represented the turtle turn between the

drawing of the sides;
d) that the sum of the two turtle turns (If both in the same

direction) between adjacent sides, was a constant which was equal to 180.

We were interested in investigating whether pupils were able to Identify
the parts of the program that might be changed to produce a given figure
and the laws determining 'correct' changes. Specifically we wanted to
know whether by finding and using pairs of turns that 'worked' (that is
produced a required parallelogram) pupils were able to abstract the
relationship between their sizes, and whether they were provoked to make
this relationship explicit in a Logo program (i.e. articulate it in symbolic
form). We also wished to explore how the pupils made links between the
Logo program and its graphical output; that is between the values of SIDE I
and SIDE2 and the inputs to RT in one mode of representation, and the
lengths of the sides of the parallelogram and the angles between them in
the other.

RESULTS

Competing frames: Logo versus pencil-and-paper mathematics
The results Illustrate the ways in which the pupils switched, or failed to
switch, between two competing frames -- namely Logo and pencil & paper
'maths'. This confusion was illustrated In the pupils' responses to the first
question, where they were asked to predict on paper what SHAPE 150 200
would produce, and label the sizes of the sides and angles of their figure.
Four of the seven children used what we have termed 'Logo labels' for
angles as Illustrated in Figure 1.

RI 40/1 RT 40

Figure I Figure 2,
An example of a 'Logo label' Hoel's 'combined labels
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This type of labelling indicated that the children were identifying with the
turtle and thinking about turtle turn. They were not however, making any
attempt to relate this notion of to turn to the angles of their drawing.
Two of the remaining children (probably the most able of the group)

labelled the interior angle of their drawings as 40 and 140 respectively.
The remaining pupil, Noel, did both that is, he labelled 40 as the
interior angle of his parallelogram and used a Logo label (see Figure 2).

Using procedures to generate itgnllctt generalisations
Our results show how pupils come to use mathematical relationships quite
spontaneously in order to fulfill the requirements of a task; how these

relationships are at first merely routines and implicit parts of the
activity, but subsequently can form the basis of more conscious reflection.
For example, in answer to a question which Invited the construction of a
variety of parallelograms, Nicola worked In direct mode. She found, by
trial and error, three pairs of turtle turns that could be used to produce

the shapes 90 90, 45 135, and 70 110 and she was able to generate

more pairs by adding or subtracting equal amounts to each input. Nicola's

direct drive solution allowed her to succeed, at least at a

product-oriented level. It seems that building up a figure In action in this

way maintains a close relationship between the figure and the symbolic
code, but does not guarantee an awareness of the relationships at a
conscious level (in this case that RT :A .... RT 180 :A). It is our feeling
that such an awareness will not necessarily happen without intervention
although the possibility of the pupil developing fragmented pieces of
knowledge which can be subsequently used cannot be ruled out. We should

recognise that even this relatively unsophisticated 'add and subtract'

strategy does imply a feeling for invariance; it captures the Igo of a
theorem if not the theorem itself (after all, the fact that the sum is
actually 180 is only a matter of conventloni).

Discrimination is not 'all or nothing'
Our analysis of the pupils' responses within the parallelogram microworld

leads us to suggest that there are various layers in the discrimination
process. For example, It had seemed evident from Mathew's early

responses that he 'knew' that the first two turns to form a parallelogram

must add up to 180; that is he had indentified the meaning of parts of the

procedure and used a quantitative relationship between these parts.

However, his later work indicated that he had not discriminated the limits

of apolicability of this invariant sum relationship, in that he applied his

rule even when the first turn merely served to orient the parallelogram
correctly. While concentrating solely on the symbolic representation he

inappropriately applied his relationship without thinking through its
meaning In terms of its visual output.
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This and other examples lead us to conclude that there are three
identifiable stages of discrimination in which the following are present:

1. discrimination of the features of the figure without regard to its
available symbolic represention(s);

discrimination within the symbolic representation; that is
perceiving its structure and pattern without regard to the visual outcome.

lit. discriminations which can be transferred between contexts, and
relationships isolated when represented in different forms. This would
constitute a first step towards a more explicit synthesis.

WinglasonderAucaffactIng
Our data indicates that the symbolic representation of a computer program
can act as a form of scaffolding which allows the learner to sketch out the
whole problem as she sees it, and then attend to the elements of the
concept on which work still needs to be done. Viewed in this light, the
issue of scaffolding is intimately bound up with the idea of the synthesis
between visual and symbolic modes. As an example, Nicola wanted to
make a more general procedure to use for her tiling than SHAPE. She wrote
the procedure SHAPE1 (1.e. TO SHAPE1 :SIDE1 :SIDE2 :MOVE), Introducing
one new input (MOVE) for all the turns so that all her turns were RT
This procedure showed discrimination of the 'opposite lengths are ewe
rule. A casual observer might assume that Nicola believed that all the
turtle turns to form a parallelogram must be equal. However she
Immediately edited her procedure (without running It) to add an extra
input MOVE1, which was then used as a distinct input to the appropriate
(second and fourth) RT commands. Our interpretation of Nicola's work is
that initially she did not want to focus on the turns but on the overall
Ingram structure; she simply wanted to put down a marker that they
should vary. The computer allowed her to do this and then to return and
'correct the details'.

CONCLUSION

Our analysis has provided a key for understanding the processes by which
children make their way around the UDGS model while working In a Logo
environment; that Is the extent to which the pupil, through interaction In a
Logo m1croworld, is able:

1. to synthesise the symbolic descriptions In terms of programs (or
fragments of programs) with the geometric Image on paper or on the
screen, and

it to use the computer as scaffolding for the construction of
generalisations.
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Synthesising Other contexts
of application

Figure 3. The UDGS model

From this perspective, the model can be characterised diagramatically as
in Figure 3. We would maintain that the need for formalisation implied by
the programming environment underpins progression from both U to D and
from U to G. More specifically, discrimination involves a synthesis
between the geometric and symbolic representations of some part of the
concept facilitated by the Logo environment, while generalisation is aided
by the scaffolding role of the computer in the way described above.

The study indicates that there is considerably more that we need to learn
about the ways In which the presence of the computer can both Influence
children's mathematical conceptions, and provide a context in which
concepts can be first vsey and later tjnarstood. We think that we have
begun to isolate some of the components of these transitions: the
interaction between symbolic and visual modes of thinking, the partial
layers of discrimination which are constructed, and way In which the
computer acts as cognitive scaffolding for the learner. Before we can
synthesise these into a coherent theory, more attention will need to be
focussed on children's existing conceptions and on their levels of
understanding within the UDGS framework, in both Logo and non-Logo
contexts.
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THE EFFECTS OF LOGO-BASED LEARNING EKTIRIENCIS
ON STUDENTS' NON-VERBAL COGNITIVE ABILITIES

John Olive I. Cheryl A. Lankenau
University of Georgia & Emory University

This paper reports on specific cognitive abilities which say
be Influenced by a LOGO Learning Environment designed for
exploration of geometric relationships. When comparing LOGO
students to comparison groups, results suggest that the LOGO
experience may very well enhance the abilities assessed.
This impact seems to be dependent, In part, on the improved
training and skills of teachers who are well versed in the
philosophy of a LOGO educational culture.

INTRoDucrics

This research study is part of a larger project investigating the

teaching and understanding of geometric relationships through LOGO.

The focus of the larger project is the development of LOGO learning

experiences designed to give ninth grade students opportunities to

explore various geometric relationships in order to enhance their

study of formal geometry in tenth grade. This report examines

specific non-verbal cognitive abilities believed to be related to the

goals of the LOGO class and the subsequent understanding of geometric

relationships. These non-verbal abilities were assessed using

subtexts of the Cognitive Abilities Test (CogAT) published by

Riverside (1905).

CisnaulPralat...11sacriall9n

During a two year period (1984-1996) several mathematics teachers

from two urban high schools were given training in using LOGO to teach

geometric relationships. In the 1905-86 school year two LOGO classes

(one per school) were taught each 'semester and became the main focus

for project research. The same teacher at each school taught both

semesters. Consistent with the developmental focus of the Project.

feedback from the first semester LOGO classes was used to improve both

the learning experiences and instructional strategies for the second

semester classes. It was predicted that in each semester at each

school the LOGO class would demonstrate higher gains than the

comparison group on project measures. This difference was expected to

be greater in the second semester.
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RESEARCH METHODOLOGY

RiNarch rocue

The ward) concern of the project was to explore geometric

understanding and subsequently, through the use of LOGO, enhance

students' ability to succeed in their high school geometry course. An

aspect of this interest focuses on the question, 'What Impact might a

LOGO Learning Experience have on certain non-verbal cognitive

abilities which aro believed to be related to success in foemal

geometry coArsework?'

ul&
In each semester at each school, a Pre/Post-test Comparison

Groups design was used to address the above questions regarding the

effects of the L030 Learning Experience. In order to form the main

sample for the study, an attempt was made to identify all ninth grade

students enrolled in Algebra I Car Its equivalent) at the two

participating high schools. Non-random LOGO classes and comparison

groups were formed from this sample. Selection for the LOGO classes

was based on students' scheduling requirements and willingness to take

the LOGO course. All other students In the main sample were

considered part of the comparison groups.

.rlot,gn of the

The Project classes were taught at two city high schools, one

with an all black population and the other with an equal distribution

of black and white students. The LOGO classes consisted of between 12

and 21 ninth grade algebra students who were on track for tenth grade

geometry. The LOGO course was an elective carrying graduation credit

In computer science. It was taught once each semester for

approximately 16 weeks, with classes meeting every day for a 50 minute

period. Project equipment for each classroom Included 14

microcomputers, at least one printer, one graphic plotter and a modem.

The equipment at each school was housed In computer laboratories.

Students generally worked In pairs on the computers. There were

opportunitlei, however, for individuals to work alone. Student pairs

were generally self-chosen and of the same sex. Students were

encouraged to discuss their work within pairs and to rotate the role

of computer operator. Pairs of students were also encouraged to look
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at the work of other pairs and to share ideas. There was frequently a

background level of student verbal interaction within and across

pairs.

The teacher at School 1 (the all black school) was a black male

with 16 years teaching experience at School 1 in grades 9 - 12. He

had taught all mathematics courses for those grade levels In addition

to computer science courses. The teacher at School 2 was a white

female with only four years teaching experience. She had previously

worked as a computer programmer in industry. She had taught most

mathematics courses (except geometry) and WIC programming courses.

The role of both LOGO teachers was at various times that of motivator,

instructor, coach, co-explorer, and evaluator.

Qurriculum Someone

Although a general curriculum outline was developed, it was not

the intention of the Project to standardize curriculum but rather to

offer guidelines and materials which the teacher could use in his or

her own way to best meet the needs of specific students. The

curriculum at both schools was more focused on geometric relationships

during the second semester than dicing the first. It should be noted,

however, that the sequence of topics taught in each classroom was not

identical. Classes at both schools attempted to start from students'

intuitive knowledge of motion. direction, angles, and geometric

shapes. They then used LOGO to build on these Intuitive notions - to

explore the relationships within and among regular polygons,

rectangles, parallelogram, and cirGles. They explored geometric

transformations (slides, rotations and reflections). A more detailed

description of the LOGO classes and activities can be found in the

Project Interim Report (Olive, Lankenau I Scally, 1906).

tammenaLaLfraanlilitilallitin

Pour subtests from the Cognitive Abilities Test were administered

to all project students (10124) In the fall of 1986 prior to the first

LOGO class. The same four subtests were administered at the end of

each semester (January and May. 1906) as poet -tests for the designated

groups (see Table 1). The four subtests were chosen because they

appeared to be assessing abilities which were believed to be enhanced

by the LOGO experiences. The Figure Classification subtext deals with

the ability to identify the common element of several geometric

figures and to select another figure that shares the same property.
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Similarly, the LOGO activities involved the classification of

seaoatric properties. The Figure Analogies subtest assesses the

ability to determine a relationship between two figures and to then

identify the missing figure of a second pair which would demonstrate

the same relationship. Working with commonalities between figures was

an integral part of the LOGO experience. The figure Analysis subtest

assesses the ability to make mental transformations of a figure. Many

of the LOGO activities involved transformations of geometric figure.

and the ability to anticipate results of such transformations. The

Equation Building subtest deals with the ability to construct

relationships between numbers and arithmetic operations; the LOGO

curriculum also emphasized the construction of relationships (both

arithmetic and geometric) in the programming tasks.

TABLE 1: TESTING SCHEDULE
Cognitive Abilities Test

1stlem.
Pt

lst Sem. 2nd t

P
2nd Sem.

oet

9th Grade 9tb Grade 9th Gra& lattLargdi

Cl Cl -- Cl
LI LI LI
C2 -- C2 C2
L2 -- L2 L2

C COMPARISON GROUP 1 1ST SEMESTER GROUP
L LOGO CLASS GROUP 2 2ND SEMESTER GROUP

Agailsoillonurataka

Data on pre-treatment characteristics have also been collected

and will be used to assess comparability of groups. These Include

standard achievement measures, a learning styles Inventory, surveys of

attitudes towards mathematics and computers. Post-treatment data have

also been collected from a variety of other sources,including algebra

grades, geometry tests and grades. Final post-testing of all students

will take place at the end of their tenth grade year (Nay, 1987).

Documentation of the LOGO experiences time from interviews,

observations and dribble files of LOGO students' work.

RESEARCH RESULTS

Analyses of covariance were performed on the data on each of the

four subteate. The post-test scores were the dependent variables with

pre-test scores used as covariates. Separate analyses between the

LOGO and Comparison Groups were computed for each semester for each

school. See Table 2 for the statistical results discussed below.

517



TAILD21

-28-

121(OL 1 31310112

C2MOMS: ms) LI

'MUSTS:
frOINICIM11.14144H111111111HHHIMF1114111114111HCHIHIliiiiHtlifit141111111111111141HHICHIMMINH4
MANT1TATIVI(Nal kora 15)

I 14 7 19 1 t? 1 2

Pil 11:
(2.99) (1.40) (1.77)

7.00 7.57 6.51
(1.94)

7.18

PONT 7.07 6.43 6.04 11.06

(S1)
r

(3.83) (2,76) (2.46)
.60 .27 .51

(2.11) -

2-Tallrd p .03 .56 .03 .13 .

r-

12 aCI LI
t-

C2 12

PAIMML_
AIU.PISTNIMIS 5.94 7.02

NAININTICT !(lA). 1.04pa .32

HillIMIHIRIMIffilliftliiilliff411111HfillitHiHIMIHRHH44114111111H1.111411111tHil 1411111M11111111111111111111
116121 CLIASIFICATION (Total Sore 25)

N IS 10 21 21 14 26 11MUM 8.07 7.50 7.05 9.05 10.14 9.96 10.27
(4.54) (.42)
9.

(2.73) (3.06) (3.70) (3.76) (3.00)i

( )

r

(4. ) (4. 111)
MY

11: ) 1

19 13.14 12.58 15.27
. :43)

.63

(4.ii) (4.68) (4.10)
.71 .39 .70.70 .66

2-Talled p .00 .03 .09 .00 .17 .00 .03

AICOVAI

AMU. POST NM 0.57 10.53 10.44 12.76 12.66 15.08
MAIN STET - 1(1,30) 1.94 0(1,32) 4.00 0(1,34) 4.07

p - .17 .05 .05
triattaariarimmmoommitritrmortiiiimmmairriturrauritmmituriimmitimmurmitirirriimnitrr
Ill= 11111.M183 (Total OCCIN a X)

A 15 10 21

res 01160 10.67 8.40 10.71
(am) (3.63) (3.78) (4.04)WWI 12.60 11.50 13.00
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School 1

first Semester: because there were insufficient numbers of ninth

grade algebra students at School 1 to have a comparison group for each
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semester, all non-LOGO students were assigned to the second semester

comparison group. Consequently between group analyses are not

available for the first semester.

Second Semester: The LOGO group made slightly larger gains than

the comparison group on all subtexts except Figure Analogies. This

subtest was the one instance where adjusting for the covariate

actually reversed the raw score post-test results, showing the

comparison group at having made a slightly higher gain.

First Semester: Analyses indicate that the LOGO group at School

2 made slightly larger gains between pre and post-tests than the

comparison group on both Figure Classification and Figure Analogies.

Although the LOGO group did score higher than the comparison group on

the post-test for Figure Analysis, adjustment for the pre-test

difference equalized the two groups. An analysis of the Equation

Building subtest was not possible at School 2 as only one ccoparison

student took both the pre and post for this subtext.

aggedlimmatacl Again, no analysis was possible for the

Equation Building subtest as only three students were present for both

the pre and post administrational at School 2. There were significant

main effects for groups for both the Figure Classification and Figure

Analogies uubtests. This effect was in favor of the LOGO group.

Although not statistically significant, the LOGO group made greater

gains on the Figure Analysis, as well.

SUMMARY DISCUSSION

Although statistical significance (alpha so .05) for differences

between groups was usually not obtained for all of the analyses, the

trend clearly shows that the LOGO groups scored higher across the

non-verbal cognitive subtexts. The gains were particularly noteworthy

foc the Figure Classification and Analogies subtests at School 2. The

second semester LOGO group at School I also appears to have maintained

the trend of larger gains on the quantitative Equation Building

subtest.

Imo' leationtAnalimAilualsWII

The first implication of these results is that the LOGO

experiences may well be enhancing students' non-verbal cognitive
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abilities. The second implication is that the second semester LOGO
classes may have had more effect

on those abilities than the first
semester claws. Thus, the improved activites and teacher expertise
evidenced in the second semester LOGO classes appear to be important
factors. This supports evidence from other project investigations

that the potential value of LOGO may lie in the effectiveness of

teacher development relative to classroom climate, instructional

txpertles and educational philosophy, as well as the degree to which

student-student interaction is encouraged.

The comparison of first semester and second semester remits for
'both LOGO and Comparison groups at School 2 also suggests the

poesibility of a 'developmental effect.' Both seconl semester

comparison and LOGO groups scored higher on the post-tests of all

three special subtlests than their first semester counterparts at
School 2. This develomental Influence could explain the apparent lack
of difference between the first semester L000 group at School 1 and
the second semester comparison

group which was post-tested more than
for months later. In addition to general maturation, school

experiences common to both LOGO and Comparison groups, such as the
Algebra course, could also have influenced the second semester
post-test mores.

An obvious question arising from these results is whether or not
thid apparent gain in spacial abilities evidenced by the LOGO groups
will help with their subsequent studies In geometry. initial data on
enrollment In ctosetry courser, indicates that a such larger proportion
of the LOGO students have enrolled In geometry this year than the
Comparison students and that the difference is greater for the second
semester groups. The final testing of students' non-verbal cognitive
abilities will take place at the and of their tenth grade year (May,
1987). With this additional data we will explore the relationships

between students' LOGO experiences,
their geometry experiences and

non-verbal cognitive abilities.
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L'OUTIL INCORMATIQUZ ET
WENSEIGNEKENT DZ La GEOMETRXE

DANS L'ESPACX

I.OSTA

Equipe de Didactique des Mathematiques et de l'Informatique de

Grenoble

(conference will be in English)

L'outil informatique
peut-il aider A surmonter les

problemes poses par la representation plane d'objets

apaciaux, dans le cadre de l'enseignement de la geometrie

de l'espace? pent-il contribuer &
l'evolution at au

contrele de 1' "activite
perceptive", lore de la lecture

ou de la production de dessins illuatrant un problem. de

geometric dans l'espace?
Cette recherche esaaie d'utiliser lee posaibilites

d'action qu'offre
l'informatique pour creer une situation

d'enseignement oil le traitement dynamique de dessins est

le moyen de resolution d'un problem*, qui Passe evoluer

certaines connaissances geometriquea.

La recherche exposee
ici se veut comma un oeeai d'exploration et,

jusqu'i certaines
limites, de remediation I certains problemes poses

par la perception,
lore de la lecture et de is production de

representations graphiques,
dans le cadre de

l'enseignement de la

geometrie de l'espace. En effet, une des
difficultes de la geometrie

dans l'espace reaulte
du fait que Vannes aux situations spatiales

se fait A travers des representations planes. Certaines

caracteristiques de la configuration representee
sont alors absentee

ou modifides, d'ot la necesaite d'un code de representation. Bien

qu'il soit necessaire,
ce code ne peut etre suffisant pour surmonter

lee difficultea de
coordination et de construction de rapporta entre

espace graphique at espace physique. Un contrele de la perception

est indispensable
d une telle fin: or la perception ne consiste pas,

aelon PIAGET, en une simple lecture des donnees senaorielles, meta

comporte une
organisation active, de plus en plus

influences par le

developpement de l'intelligence: cette mactivit6 perceptive", au

sena de VURPILLOT, doit etre control6e par des connaissances

geometriques anterieures,
et sera conduite de falcon de plus en plus

61abor6s, an fonction de ',elaboration de la connaissance des objets

impliques, at des relations spatiales qui lee regissent.

Co travail n'aurait pas
pu Atre realis4 sans

l'aide pvicieume is Annie BESSOT at

Madeleine EBERHARD,
de l'iquips de

Grenoble, qui ont bion voulu partioiper aux

expiorimentations, at dont le oonseils itaient
toujours pertinents.

Jo lour

expriee ici ma reconnaissance.

52!



En partant de l'hypothese d'une interaction entre la maltrise desrepresentations planes de certains objets it la connaissance desproprietea geometriques de ces objets, notre recherche *elude dedeveloppor une problimatique de is
representation graphique quirends nicessaires

certaines connaissances de la geometric pour laconstruction de dessins, et qui faase du deasin un problem° dont laresolution contribuo A l'evolution de cos connait.sances.

Deux stquences
d'enseiguement ont 6t6 construites it realisoes,dana le cadre d'un
atelier d'informatique,

avec une class. de 3 itune classe de CPPN (616ves en difficult6,
1 -16 ans). Lea *limestrvaillent par binemes, ce qui a permis
d'exterioriser leuradimarches, it di crier des conflits, qui lea obligent

A formuler desarguments pour soutenir un point de vue. Au coure de cetteexperience, on a enregistr* les differentes 6tapes du travail deseleves, ainsi que tour lours propos, en vue d'une
analyse cliniquede l'ivolution de leura strategies.

Notre demarche sat de construire
des situations-problemes

oil,d'une part, l'ordinateur
joue un retie

important comma outil d'aide,par la puissance d'action qu'il amen au traitement derepresentations graphiques, it oil, d'autre part, on tents demultiplier de plus en plus lea ambiguites
perceptives, pour inciterles *levee A mettre en oeuvre des

moyens de controle qui se basentsur des recasts
giometriques: he but principal eat de aurmonter heproblems de la vision dans l'ispace,

en destabilisant la confianceen la perception,
pour orienter vets des strategies operatives,base.' Bur la miss in rapport et la coordination des constituents deis configuration

spatial., par opposition
au proc6d6 figuratif, baseBur la perception

intuitive it statique. Pour ce fairs, on a adopt6un type particulier
de representations

far= RICIARRAWNTATTIMM xpnvm

Etant par excellence
is moyen de

reproaentation adopt6 dana lesmanuels sColaires it la pratique de
l'enseignement, et dans leaateliers de formation

technique it professionnelle, le modele de laperspective cavaliers s'est impose.
D'autres raisons ont aussi guidece choixt supposant

un point de vue
imaginaire, rejet6 l l'infini,la perspective

cavaliers implique,
par opposition A la perspectiveconique, une limitation dee modifications interims par lesdeplactments du point de vue: A une alrection de vue donnee, on aune souls representation

en perspective cavaliere d'un objet donne.
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D'autre part, le critere de notre choix 6tant le degre d'ambiguites

perceptivea introduites, is perspective cavalier* repond A cette
exigence; an effet, la perspective cavalier. transparent." eat une

representation polysemique: un dessin pout &vaguer, soit plusieurs

objets, soit le mema objet associe A plusieurs directions de vue.

En nous appuyant sur une typologic des perspectives cavalieres

salon les degree d'ambiguite qu'elles induisent, nous avons adopt6
un type particulier de perspective, ayant lea caracteristiques
suivantes: (fig.l)

perspective cavalier° frontale,

* aMbigiie par l'alignement des segments AC at BD, representant

deux crates situees dana deux plans frontaux differents, at A des

niveaux do hauteur differente,

* les quatre points A, B, C et D, qui representent quatre amulets

situ6s, deux A deux, A deux niveaux differents de profondeur, sont

alignes, et partagent le segment DA en trots segments de mese

longueur. Ceci implique de& coincidences at des aligJements qui

multiplient l'ambiguit6, dans les cas oil on aurait plusieurs cubes

juxtaposes.

* le segment BC joue un role bivalent : it fait partie des deux

orates AC at BD; par consequent, ii n'est efface dana aucune des

deux representations de cube opaque.

Cubs en perspective
cavaliers 'dote*
en haut:

ripresentationdu
cube transparent

en bas :
2 representations
poasibles de cube
opaque qui en
repultent

coaparai3ondesdiiiii
d'ambiguiteindmit, par
is representation de 2
Cubes : en perspective
adoptie etenperspectivet
cavaliers normalises I Perap. adoptee
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come pour toute perspective cavaliers, la representation d'un

cube transparent peut 6voquer, salon les aretes qu'on consider*

come cantatas, deux cubes opaque;. Une des particularities de la

perspective adoptee reside dans le fait que cette non-univocite est

multipli6e A partir du cas oil on a une representation de deux cubes,

come is montre is comparaison dans is fig.2: d'apres une

representation de deux cubes transparents avec is perspective

adopt6e, on peut deduire quatre configurations de deux cubes opaques

qui, avec is perspective cavaliere normalis6e, necessiteraient deux

representations "transparentes* differentes.

rnmx nu onarrs REPRIMINTFA

De par sM place comme une unite constitutive de l'espace

physique, is configuration cube" est la base du monde d'objets

impliques dans notre situation. Cea objets, qui sont des assemblages

de cubes (reels ou virtuols) de Mime taille, relevant du

micro-eapace, et constituent une premiere miss en ordre de

micro-espace: organisation melon Is structure du triedre euclidien

trirectangle. Notons que, dans une representation graphique, lee

ambiguities perceptives resultant de la juxtaposition de plusieurs

cubes ne se reduisent pas A is some de cellea impliquees par chacun

des cubes; ells* is depassent pour mettre en jeu des problemes

provenant de coincidences et d'alignementa entre lee representations

des diffirrents constituents de is configuration (voir fig.2).

111 11.1 I .1. .

L'ordinatsur intervient dans cette situation comma outil d'aide A

l'enseignement; l'informatiqua, n'est donc pas notre objet

d'enseignement, pas plus que l'entrainement A l'utilisation is

logiciels. Notre recherche s'interesse, dans is cadre de la

resolution des problemes poses, aux proceasua d'adaptation ou

devolution des strategies des eleves, dans is contexts de leur

confrontation aux logiciels utilises, bases sur d'autres systemes de

connaissance et de traitement de l'information, qui ne suivent pas

necessairemont is selme logique de fonctionnement que l'eleve.

Deux logiciela de dessin graphique sont utilises: Mac Paint et

Mac Space.

is premier permet un traitement de figures planes, A l'aide

d'outils graphique, asses proches de ceux qu'on utilise dans une

situation habitualle de dessin: un crayon, une game, une
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le deuxieme permet d'obtenir, dans une fenettre de controle nonaccessible au traitement, la perspective cavaliere d'une
configuration, A partir de aes trois vues qu'on peut construire dans
trois autres fenetres (names du dessin technique).

Dans ce cadre, une categoric
des diffitultes liees au graphisme

(trace:, Corrects de lignes,
paralltliame, angles droits,...) sont

ocartees, par la donnee des outils disponibles dans le contexte de
chacun des deux logiciels. D'autre part, l'informatique permet un
traitement dynamique des informations: on peut agir sur le dessin,
le modifier, le corriger, tout en sachant qu'A tout moment on peut
recupbrer le dessin de depart, ou des dessins intermediaires qu'on
aurait enregistres. Le dessin n'est plus, comme c'est souvent le
cas, un support statique de

representation de l'objet, il est au
coeur du probleme, et c'est E travers lui que se manifestent et
evoluent lea conceptions des Eleves.

Finalement, l'outil informatique intervient dans cette situation
par deux ensembles de contraintes,

impostes par deux conceptions
differentes des objets: une conception des representations fondee,
dans Mac .Space, sur une geometrie particuliere, qu'on pourrait
appeler "geometrie des facettes", et qu'on espere developper dans un
travail ulterieur, et, dans Mac Paint, sur le traitement direct de
la representation en perspective. L'importance de cet outil se
revele aurtout au niveau du transfert de dessins: de l'environnement
du logiciel Mac Space, oil lee dessins sont reconnus comme des
representations d'objets spatiaux, A travers un lien permanent entre
espace physique et espace graphique, vers l'environnement du
logiciel Mac Paint, oil ce lien rompu doit etre restaure par les
eleves (fig.3). C'est donc un transfert d'un environnement oil les
transformations affectent l'objet lui-meme, done, oil le dessin est
operatif (Mac Space), yore un autre, oil les modifications ne peuvent
se traduire en transformations spatiales, donc, od le dessin n'est
que figuratif (Mac Paint).

Figures planes
Hoc Representetions''

ZINC@ de l'espuce
crobJets4--

if ig.3

tramefert: de l'uni.vers des reproleentationa
de 1' espace physique yens 1' espace graphique
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. 11.1. O. ';.,

En nous situant dans cc cadre theorique, nous analyserons une

situation-problema, dans is tours de notre sequence.

Au debut de nett* activit6, les (dimes disposent d'un type de

reperage lie A l'objet, oa la configuration "cube" eat l'unite, at

oil un cube de l'assemblage consider6 joue le role de "cube- origin ".

La tithe present, a pour objectif la passage A un autre type de

repCrage, qui approche le reperage sous-jacent A Mac Space, qu'ils

utiliseront dans une activite ultorieure. Ce passage se fera A

travers dos strategies de depasasment du conflit entre perception at

connaissances giosetriques (voir la consigns dans la fig.4).

Commigna:i partir d'un dessin d'un assemblage
de cab's transparent', et en VOUS servant de
1lac Paint, Bonner tout*, lea ropresontationa
possibles do 6 cubes opaques.

Representation "transperente" propose* aux
eleves :4 configurations spatial.. de 6 cubes
opaques sont possible., en faimult des
effacement, d'arAtea adequats

La tech(' presente set les 616ves dans une situation de: decodage

d'un dessin en perspective "transparent*" poly/sem/quo, et

transformation de ce dessin pour montrer A autrui le plus grand

nombre possible d'assemblages de cubes qu'il peut raprisenter. La

tithe exige une stabilit6 des representations, qui sera fragilia6e

par les ambiguites perceptive., resultant d'une part de la

"transparence", et d'autre part de coincidences, alignments at

superpositions trompeurs lies au type de perspective. Ce n'e't que

par 1'61aboration de relations geometriques entre lea elements de la

configuration qua les 616ves pourront surmonter cette instabilite.

Ile seront obliges A mettre en oeuvre des:

relations d'incidence, d'adjacence, d'alignement,de coplanarit6

at d'intersaction entre les differents elements de la configuration

represent6e,

* relations d'ordre spatial: davant, derriere, deasus, d.ssous,...
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* relations d'appartenance (de points A des crates ou des faces)

et do conteinance (de segments dana des faces),

* rapport& permanents entre Is dessin of is configuration

representee.

).'analyse des strategies dos isleves, A partir de lours

productions (fig.5), is long do la resolution de ce problems, a

montre qu'olles suivent un cours devolution general qui va do

i'analyae locale vers l'analyse globale:

1-lea premieres strategies consistent A traitor lea segments

aisparement. Se revelant tree cotteuses, et aboutisaant A des

productions tensile*, ces strategies seront remplaceea par d'autres:

2-1161eveossaie d' "opacifier* localement un ou plusiours cubes,

et d'integrer ces parties par rapport au dessin global, co qui nest

pas toujours possible.

3-reconnaissance de portions de planar comma entities unifiees du

dessin: des referantiels locaux, par rapport auxquels seront repeats

des ensembles d'elemonts do %la configuration, of testes, par suite,

d'un &mil coup, des ensembles de traits.

Cos strategies ont 6t6 evaluees par rapport A une strategic

optima's que nous considererons comma l'aboutissement theorique de

lour evolution; elle eat bases sur is disconcerts de referentiels

globe= *les plans equidistants paralleles au plan horizontal. Dans

cettm classe, un plan particulier: la face (lessens do l'objet,

*lea plans equidistants paralleles au plan vertical frontal.

Dans cette classes, un plan particulier: is face devant de l'objet,

*les plans equidistants parallelss au plan vertical,

perpendiculaire au plan frontal. Dana cette clasae, un plan

particulier; la face de droite de l'objet.

Ces troia plans particuliers constituent, en fait, un triedre

trirectengle, qui est is base do l'espace euclidien; it aura un role

fonctionnel dana la strategic optimale qui consists, pour le pave

par example (fig.6), A: reperer le plan represontant is face devant

d'une configuration, et nettoyer lea carrels qui Is constituent,

rill:sister is memo operation pour is face dessus et la face de droite

de l'objet. Particulier au pave, cet algorithms de fonctionnement

pout 6tre adapt() A d'autres configurations.

Cos fonctions de controls developpees par les *levee A dza

niveaux plus ou coins elabores peuvent 6tre analysees du point de

vue d'un reperage dans l'espace, oil l'entite "cube" est distrult.fl,

pour laisser is place A des objets geometriques plus abstraitn, qui

quadrillznt l'espace par des plans structures en trois classes. Ce

reperage fonctionno come un moyen de contrOle at de depassement de

la pe-ception.
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V1951

Strategies d'analyse locale, dormant des dessins de
configurations impossibles salon is perspective cavalier.

(deux codes differents de is perspective regissent les

parties du &mein)

Examples de representations de configurations spatialea,

corrects du point do 4u. du code de is perspective, main

qui ne font pas pantie de l'univers des objets concernes:

assemblages de cubes non-accrochables.

Debuts d'applications locales

de is strategic optimal

MA/IN/II
AINNWAWAA
155VArnandrAi rr
WAVirrer
Strategic optiaals, bases our is atructuration de pespacs

Arlin A VAINV,4

AVA1555.4111//a

11111111111111111r
en triedre trirectangle

[t4. 61
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LES liABILETES PERCEPTIVES D'OBJETS POLYEDRIOUES

Richard PALLASC 10
Richard ALLAIRE

RESUME

L 'objectit general de la recherche Mail cretudier comment un
environnement ordineteur de type L000 pout perreettre de developper les habiletes
peroeptives robservation", (Iabstraction" et de "communication", correspondent
aux operations respectives de -visualisation", de "structuretton" et de

"transfiguration", ciitintes dans le cadre dune typologie globale de la perception
structurele d'cbjets glemetrtques, qua nous evens Unite aux polyteres, pour
r instant.

Le rapport qui suit presents des elements de la problematique, la

methodologie suivie, :Ansi qua quelques resultats obtenus en 1985-86. L'experience
se poursuit au niveau de deux sutras habiletis ditinies dens la typologie.

PROBLEMAT IOUE

L'envirannement ordlnateur

Nous avons cherche un environnement ordinateur de type

LOGO af in de retrouver un certain contexte Tapprentissage propre
aux enfants-programmeurs. Cette contrainte nous a obliges a
initier les sieves du groupe experimental aux rudiments du

langage LOGO: primitives graphiques, definition de procedures et

modularisation de celles-cl, notion de variables, repetition .. Le

progiciel retenu fut Tabord EXPERLOGO, puts MAC LOGO, qui

roulent sur un appareil Macintosh et qui contiennent deja les
fonctions de base slmulant l'espace tridimensionnel au moyen
Tune projection centrale et permettant consequemment les

rotations autour des axes x, y et z
Le systeme LOGO fournit un langage de base qui,

augmente de fonctions pertinentes, fournit un excellent moyen

pour pallier a des deficlences linguistiques Tabard, macs aussi

manipulatolres, car intervenir physiquement sur des objets
tridimensionneis et leur transformation nest pas chose alsoe.
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La typologie des habiletes perceptives

Depuis plusieurs annees, nous affinons tine typologie
d'operations et d'habiletes correspondantes permettant de definir
d'un point de vue operatoire la perception spatiale [11. La presente
recherche s'est concentree stir les trots premieres operations de
la typologie, a savoir la visualisation, la structuration et la
transfiguration, correspondant aux habiletes respectives
d'observatlon, d'abstractIon et de communication. Ces trois
premieres etapes se situent au niveau de la comprehension de
robJet glut& que de sa transformation, au niveau de l'imagerie
mentale que robjet suggere plut6t que de son invention, au niveau
cognitif plut6t que createur et enf in au niveau analytique plutet
que synthetique, par opposition aux trots dernieres operations de
la typologie.

Le developpement d'hablletes perceptives d'objets
geometrigues a l'aide d'un environnement ordlnateur

L'arrivee des micro-ordinateurs dans les ecoles permet
d'entrevoir is possibilite de se servir de cet Instrument
crapprentissage pour que Venfant puisse construire ses propres
structures cognitIves au moment de sa vie oi) 11 est peut-etre le
plus interroge par le reel stir le plan des relations spatiales et
des proprletes geometrIques afferentes. En se basant sur la
typologie des habiletes en cause dans la perception structurale
d'un espace geometrique 00 IntervIent entre autres le primat
plagetien du topologique (2], et sur rapport d'un langage
Informatique evolue, interactif et modulaire, permettant l'aJout
de primitives fonctionnelles et leur utilisation dans les
programmes de Jeunes eleves, la problematique se situe donc
essentlellement au plan de retude des Interactions qul facilitent
la structuratIon progressive du monde des Images, au centre de la
triade dynamlque de Caleb Gattegno: Pensee Image Action.

Bien qu'exploratoire, notre recherche visait a etablIr le
critere de verge de l'hypothese centrale suivante: renvironnement
ordinateur de type LOGO, Incluant les logiclels pertinents
permettant d'extensionner les primitives originales du langage,
permet de developper les premieres hablletes perceptives de
l'espace.
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METHODOLOGIE

Les logiciels

Pour developper les habiletes dela citees d'observat Ion,

d'abstraction et de communication, nous nous sommes situes dans

un contexte radical, celul d'un environnement ordinateur, excluant

totalement les formes tridimensionnelles elles-memes. Nous

avons donc du elaborer un certain nombre de logiciels permettant

de simuler des polyedres recran, en les dessinant dans une
projection centrale et en permettant la rotation de l'objet
represente, comme s'il tournait vraiment devant nos yeux. Les

logiciels devaient donc permettre aux sujets de modifier la
presentation des objets dessines, selon des rotations autour des

axes x, y et z, les trois axes orthogonaux dans R3.

LOGI vise A developper l'habilete d'observation en se
servant d'activites de visualisation. La fenetre centrale du bas

va donc faire apparaitre au hasard une des trois formes du haut et

la representer dans une projection centrale fixe, qui ne sera
jamais identique A celles que l'eleve peut obtenir par la rotation

des formes dont 11 peut changer la perspective. Chaque forme peut

d'ai I ieurs etre representee par 46 656 positions differentes, I e

3b 3 positions possibles Le problems consiste donc a trouver
lequel des trois dessins du haut represente la meme forme que

celul den bas.
L0G2 vise a developper l'habilete d'abstraction par

l'intermedialre d'activites de structuration. Le probleme
resoudre va consister a identifier lequel des dessins du haut

represente une forme qui n'entre pas clans la construction de la

forme representee par le dessin du centre en bas. Avant de faire

son choix, l'eleve peut de nouveau simuier a volonte la rotation
des trots formes representees par les dessins du haut.

LOG3 implique rhabilete de communication, miss de

!'avant par des operations de transfiguration. Deux sortes de

transferts ont ete retenus, en concordance avec la nature de
l'outil didactique utilise: le dessin topologique (ou diagramme de

Schlegel) et la definition litteraire. Dans les deux cas, 11 s'aglt

pour: releve d'Identif ler le dessin representant la forme (Write,
soit par une definition, soft par son graphe topologique.
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Les groupes de sujets

Les 15 enfants du groupe experimental &talent de
niveau 56 annee (9 et 10 ans) et provenaient de deux ecoles de Ia
Rive-Sud de Montreal. Ils ont d'abord ete inities au langage LOGO,
a raison de deux heures par semaine, partir d'octobre jusqu*A Ia
mi-decembre 1985. A Ia fin, les sujets &talent en mesure de
reallser de petites procedures Indicees, de les appeler entre elles,
d'utIllser la repetition d'un certain nombre de commandes,
d'utiliser les changements angulaires facllement et, bien sOr, de
gerer leurs fichiers. En janvier 1986, Ils furent In 'ties A
I'apparell Macintosh, ainsi qu'au langage EXPERLOGO, selon le
meme rythme horalre.

Le 3 reviler, les sujets du groupe experimental passerent
le pre-test. Ensulte, au rythme d'un par mots, les logiciels
d'entralnement LOGI, L0G2 et L0G3 furent presentes aux enfants,
stir lesquels Its purent travailler suffisamment de temps. En
moyenne, chaque enfant a travaille tine heure par semaine stir les
logiciels d'entrainement. Des grilles d'observation ont permit.;
egalement aux animateurs de relever certalns faits signif Icatifs.
Le 12 mat, les sujets passalent le test de relance.

Tant qu'a eux, les 15 eleves du groupe controle, du
memo age et de Ia meme region, n'avatent pas acces
l'entrainement decrit precedemment. Seuls leurs apprentissages
scolaires normaux, en geornetrie par exemple, ainsi que la periode
de temps entre le pre-test (31 Janvier) et le test de relance (20
mal), impliquant une certain maturation naturel le, pouvalent agir
stir leur developpement perceptif.

Le test-entrevue

Le pre-test et le test de relance furent Identiques. Les
cent Ours et plus qui les separaient, justirialent cette decision.
La forme retenue rut celle du test-entrevue. Pour demontrer
l'efficacite de l'environnement ordinateur, 11 s'averalt necessaire
de construire un test en utIlisant de veritables objets, et non
seulement leurs representations stir papier. Le test collectlf etalt
donc exclu. Chaque entrevue durait de 20 A 25 minutes.
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COMPORTEMENTS OBSERVES

Un des buts de cette recherche &Wit de comprendre
comment les eleves arrivent faire des choix et quelle est
revolution de leurs comportements dans le developpement des
hablletes perceptives concernees. L'analyse qualitative a porte

sur des observations recueillies lors de l'appropriatIon par les
eieves des trots logIclels: LOGI, LOG2 et LOGS. Les observations
recuelIlles furent consignees dans un Journal de bord. Les eleves

ont pratiquement touJours travaille en equipe de deux, ce qui a

permis des echanges et des discussions qui se sont averes
fructueux pour racquisitIon des habiletes perceptives impliquees

dans ces trots logiclels.
Lors des activites d'apprentissage, nous avons observe un

certain nombre de comportements deveioppes par les eleves.

C'est revolut; a de ces comportements qui leur ont permis de

faire des choix de plus en plus rationnnels. Les strategies de
decision se sont elaborees au fur et A mesure des acquis et des

experiences vecus avec les logiciels. Nous relatons, a partir de
chacun des logiciels, revolution de cette prise de decision faite

par les Cleves.

LOG I (hab I lete d'observat ion)
Dans un premier temps les eleves cholsissaient au

hasard af in de finlr les premiers. Nous sommes revenus a is
charge a deux reprises en InsIstant sur le falt qu'lls devalent
faire un choix a partir de criteres qu'lls devalent se donner.

Le premier crItere choisl rut lap Irence generale du

sollde. Etalt-11 petit ou grand iv rapport aux autres,

contenalt-II une forme particullere telle un cube, une pyramide

ou un prisme triangulaire, etc? Ce choix port& sur rune ou rautre

des figures permettait une elimination. Le raisonnement sulvant

prenalt si ce nest pas celui-cl, donc c'est run de ces
deux-la. Ainsi, par deductions successives, Its arrivalent A faire

un choix plus Judlcieux. II demeure que ce crltere etalt tres
primitlf et qu'l I fut la cause de plusieurs choix Infructueux.
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1062 (habilete d'abstraction)
Lorsque les eleves ont commence a travailler avec le

deuxieme logiciel, ils ont eu tendance a utiliser le hasard
nouveau, mats its se sont vite rendus compte des difflcultes
encourues, a cause de la frequence des mauvais choix. Suite a des
discussions entre eux, et plus Interesses a faire des choix
corrects, ils se sont mis a analyser les polyedres plus en detail.
Its se sont fixes de nouveaux criteres. La forme des faces des
solides representes a pris de l'importance. s'agisse de
triangles, de carres, dnexagones ou d'autres figures. Le nombre
de faces fut aussi choisi comme critere additionnel. Les erreurs
dans le choix du solide approprie se sont averees plus rares et le
temps de decision plus long, laissant plus de place a retude de ces
solides.

L063 (habllete de communication)
A ce niveau le choix des eleves a ete, de facon generale,

beaucoup plus deductif qu'aleatoire ou inductif comme au debut
des activites. Pour chaque probleme, ils ont discrimine a partir
des proprietes des polyedres qui leur &talent connues . Le nombre
de sommets et le nombre d'aretes furent des criteres
importants dans !NJ,' prise de decision. Certaines regularItes dans
la structure de robjet telle que pour le rhombicuboctaedre ont
aussi servi de critere. Dans ce logIciel, it y avast deux media
utilises: la definition caracterisant run des solldes et la
representation de robjet a l'alde du dlagramme de Schlegel.

A ce stade, on a observe une etude plus fine, de la part
des eleves. Les criteres de discrimination s'addltionnent et
donnent a la prise de decision une mei I leur justification. L'analyse
quAls font des objets en regard des premieres activites 00 le
hasard joualt un rOle de premier rang, denote une plus grande
comprehension de la structure des objet etudies. Ces types de
comportement sont les resultats dune plus grande appropriation
des hablletes perceptives. II est a noter que cette typologie des
habiletes perceptives est hlearchisee.

Ces criteres developpes par les eleves eux memes, sont
percus, lors d'un choix a faire, comme etant curnulatifs. C'est la
conjonct ion d'un ensemble de proprietes qui permet de prendre une
decision plus juste. Ces observations nous amenent ainsi au coeur
du triplet pensee Image action.
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QUELQUES RESULTATS

Les performances de ('ensemble des sujets au pre-test

ont confirme la hierarchie des habiletes impliquees dans Ia

perception des formes geornetriques, A savoir ('observation,

l'atstraction et Ia communication, correspondant respectivement

aux activites de visualisation, de structuration et de

transfiguration.
Alors qu'au pre-test, c'est uniquement au niveau de Ia

visualisation que les sujets du groupe control& performaient
signif icativement moans que ceux du groupe experimental, c'est

precisement de nouveau a ce seul merne niveau que ceux-la ont

augment& leur performance moyenne entre les deux tests, de tel le

sorte que sans aucun entrainment, Its se replacent au meme

niveau de performance que les sujets du groupe experimental, lors

du pre-test.
Tant qu'au groupe experimental, ses performances ont

augmente significativement partout (p < 0,02) et se distancent
signif icativement de celles du groupe contrele egalement partout

(p < 0,06). line analyse selon le sexe revele que ce sont surtout les

garcons du groupe experimental qui ont contribue l'amelloration

des performances de ce groupe entre les deux tests.

Enf in, ('analyse des correspondances a revele

('importance des trois (3) premieres actIvites, quant a leur

capacite de discriminer les sujets entre eux, eu egard A leur sexe

(axe I: f Iles et observation tactile versus garcons et observation

visuel le), ou a leur performance en structuration (axe 2: dessin en

perspective et faible structuration et axe 3: dessin topologique et

forte structuratlon).
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THE UflCTS Of LEANINO LOGO ON NINTH GRADE STUDENTS'
UNDERSTANDING OF GEOMETRIC RELATIONS

Susan Peal: Scally
Emory University

The literature suggests that students do not have the
necessary prerequisite experiences at the third van Hiele
level - that of geometric relationships - to succeed in
their formal axiomatic study of tenth grade geometry. In
this project a LOGO learning environment was proposed as a
means of providing these experiences. The environment was
established and its effects analyzed in a variety of ways.
In this study, students' van Biel, levels of geometric
thought were assessed by analyzing transcripts of clinical
interviews using a pre- poet- comparison groups design. The
paper describes the angle tasks and van Hirle level
descriptors which were developed. Results indicated that
there were few between groups levels differences on either
the pre- or post-interviews. When the Interviews were
analyzed for within subjects levels differences, though, the
LOGO students evidenced more gains than their counterparts.

RATIONALE

The van Hiele model of geometric thought development suggests
that prior informal explorations of relationships between or among

geometric properties and relations are necessary for students to be

able to work with the formal deductive
geometry encountered in high

school. The standard elementary and middle school geometry curricula
in the United States do not provide adequate experiences that foster

students' thinking at the third van Hiele level - that of

relationships.

The Turtle geometry of LOGO provides a learning environment that

encourages students to explore and thereby acquire understanding of
certain geometric relationships. The study reported here Is part of a
larger project whose overall purpose was to investigate the effects of
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a LOGO learning environment on ninth grade students' understanding of

geometric relationships.

A course In Turtle geometry was taught to one ninth grade class

each semester (sixteen weeks per class) in two urban high schools

during the past academic year. Approximately 20 students enrolled in

each class. (A more complete description of teacher and student

characteristics, and of the LOGO curriculum may be found In Olive I&

Lankenau, elsewhere In these proceedings.) In this part of the

project, the effects of the course on students' van Niel. levels of

reasoning were assessed using a clinical interview technique.

DESIGN OF THE STUDY

Interview items were developed for the topic of angles, modeled

OA those developed by Burger and Shaughnessy (1906) for triangles and

quadrilaterals. At the beginning and end of each semester, one-to-one

interviews of approximately 50 minutes length were administered to a

sample of ninth grade LOGO students and to a sample of similar

students who had not had the LOGO experience. Student responses were

audiotaped, and the audlotapes were used to analyze the effects of the

LOGO course on students' van Hiele levels of geometric reasoning.

Follow-up interviews will be conducted when the students complete

their tenth grade geometry courses.

Anaalitakin

On the first task students are asked to draw an angle, then

another that Is different, and another that is still different in an

attempt to discover which properties of the angle the student

identifies as significant and to explore whether the student believes

the number of possible angles to be limitless. In the next task they

are asked to identify angles In two contexts (the first a 'real life'

drawing of a building, and the second a page of 'textbook' drawings of

angles), to Justify their Identifications, and to tell what they would

have a friend look for to make similar identifications. This task

explores definitions and class inclusions. In the third teak students

sort cut out models of angles and explain how they are alike or

different to determine the properties the students identify for the

angles. Next the students estimate the number of degrees and in which

direction to turn an arrow in order to aim it at a target ball, then
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are asked to predict the degree of turn In the opposite direction as

well. This task explores anwle relations. Assessment of students'

understanding of angle relations continues In the fifth task which

explores complementary, supplementary, and congruent angles. The

final task, which asks students to Justify the interior sum of the

angles In a triangle, provides an opportunity for the students to

generate an informal proof.

haallassarlaitaca

Operationalizing the levels for the angle topic was a necessary

stop in analyzing the interviews. That endeavor involved making

decisions both about the nature of the tasks in which the students

WA engaged and about the characteristics of the levels themselves.

Students In thief sample were not expected to perform at the fourth or

fifth van Hist, levels. therefore only the first three were

considered. The following descriptors of student behaviors regarding

angles are a synthesis of the Oregon State (Burger 1962) and Brooklyn

College (Nye & Geddes, 1966) descriptors of level indicators and of

observations of student behaviors on the angle tasks. Where the

Oregon State and Brooklyn College descriptors differed slightly, the

investigator chose to match angle descriptors to the Brooklyn College

descriptors because they were referenced so closely to translations of

the van Hieles' writings.

Zirstlaul
In general, the student identifies, characterizes, and operates

on angles according to their appearance. Specifically the student:

1) Draws angles independently.

2) Identifies angles in a simple drawing or more complex figure.

3) Names or labels angles and uses standard and/or non-standard

names appropriately.

4) Includes irrelevant attributes when describing angles.

6) Excludes relevant attributes when characterizing angles, such

as straightness.

6) Compares and sorts angles on the basis of their appearance as

a whole, specifically not having the 90 degree referent for the

sortings, making inconsistent sortings, or sorting by an Inappropriate

attribute.
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7) Pairs congruent, complimentary, and
supplementary angles on a

looks-like basis.

8) Does not conceive of an infinite number of angles.

9) Does not think of properties as characterizing angles.

10) Does not make generalizations about angles.

Second Level

In general, the student establishes properties of angles and uses

properties to solve problems. Specifically, the student:

1) Analyzes and compares angles in terms of their properties.

2) Identifies and tests relationships among ahgles within

figures.

3) Recalls and uses appropriate vocabulary for relationships,

such as corresponding angles are congruent.

4) States a litany of properties rather than determining

necessary and sufficient properties when describing angles.

5) 1s able to decentrate when trying to decide whether to turn a

spinner to the left or right to aim at a target ball In a task to

estimate turning angle. (Whether a student can orient turning

relative to a spinner's position or whether the student orients

turning relative to his or her own body's position is called the

ability to decentrate.)

6) Accurately estimates angle measure by using known properties

(such as right angles measure 90 degrees) or by insightful approaches.

7) Formulates and uses generalizations about properties of angles

In problem solving situations and uses related language (all, every,

none) but a) does not explain how properties are Interrelated, b) does

not use formal textbook definitions,
c) does not explain subclass

relations, d) does not see a need for legical explanations of such

generalizations and does not use language related to explanations

(if-then).

Third Level

In general the student formulates and uses definitions, gives

informal arguments that order previously discovered properties, and

follows and gives deductive arguments.
Specifically the student:

1) Identifies necessary and sufficient properties that

characterize angles.
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2) Formulates and uses complete definitions, a) explicitly

referring to them, b) accepting equivalent forms of definitions, and

c) immediately accepting definitions of new concepts.

3) explicitly describes relationships between properties,

Including sub-class relations.

4) Presents an informal argument or informal proof, justifying

the conclusion using logical relationships, a) orders properties, b)

interrelates several properties, and discovers new properties by

deduction.

5) Recognizes the role of deductive

problems in a deductive manner.

6) explicitly uses 'If', 'then' stet

7) Forms correct informal deductive

such logical ford as the chain rule and

not grasp the meaning of deduction In an

formally distinguish between a statement

confuses the roles of axiom and theorem.

bagman

argument and approaches

ements.

arguments (implicitly using

modus ponens), but a) does

axiomatic sense, b) dots not

and Its converse, and c)

For each individual's pre- and post-interview a matrix was

completed Indicating incidence of occurrence of each van Miele level

descriptor on each angle task. Student movement, either within or

between levels was then documented by comparing the analyses of the

two Interviews. Two types of movement were documenteds gain, and

moderate gain.

Movement was judged to be a gain from pre- to post-interview when

progress was documented between levels, or within levels when the

student provided more correct answers on several questions within a

given task. Gain also occurred within levels when a student employed

a new strategy successfully in a problem solving situation, or

provided several instances of increased accurate use of vocabulary.

Moderate gain was noted when a student engaged a task, perhaps

with limited success, that s/he was unable to engage on the first

interview, or when s/he employed a previously used strategy more

successfully on the poet - interview. Gain was also considered moderate

when the student provided more correct answers on only a few questions

within a given task, or when answers to questions were not

substantively different from the pre - interview, but were provided more
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efficiently and confidently on the post-interview. Occasional

Instances of increased vocabulary were considered moderate gains.

As will happen in field research, Ail of the first semester

comparison students who were interviewed enrolled in LOGO during the

second semester. For the purposes of the longitudinal study, then,

there are no first semester comparison students. Results of the

analyses of the second semester students' interviews are reported

below.

RESULTS

Incidence of gain on van Mole aseesement of angle tasks by student.

Note: < symbol moans angle, L refers to LOGO, and C to cnmparison.

Stedeat i Ink 1 Teak 2 Teak 3 Task 4

1

Task 5 I Talk 6 I Totals

1 Dead < Idsetify Set < < Sewn < Asiatics I< Dedictionl

Gall

1

I Moderate I

LI I

L 2 I Gain Gain Gila Gain I Moderate I

L 3 1 Gale Gala Moderate Moderate I Moderate I

L 4 1 Gain Moderate Gain Moderate 1 1

L5 1 Mode rate Moderate Moderate I I

L 6 1 Moderate Gale I Moderate I

1-
I --I

St total i 4 (1 mod) 2 (2 sod) 2 6 (2 Jodi 4 (3 led) 1 4 (4 sod) 122 (12 sod)

1

1 1

C1 I Moderate Gain 1 Moderate I

C2 I

C3 I
Gain I

C 4 1 Moderate Moderate 1

C 5 I Gale Moderate Nods-ate Moderate Moderate 1 1

C 6 1 Moderate
1 1

-1-

Subtotal! 3 (2 soil 2 (2 sod) 2 (2 sod) 1 (1 sod) 3 (I sod) 1 I (1 sod) 112 (9 sod)

Discussion

The results of this study are descriptive. When the Interviews

were analyzed for between groups performance on van /Bele levels,

there appeared to be no differences In level performance on either

measure for the LOGO and Comparison students. The vast majority of

student responses on both pre- and post-interviews were at the first

and second van Mete levels. Only two students, one LOGO and one

Comparison, evidenced third level behaviors. Within subjects changes

In level performance were then analyzed for evidence of treatment
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effects (see table). Across tasks the LOGO students evidenced 22

gains, 12 of them moderate. The Comparimin students evidenced 12

gains, 9 of them moderate. Both qualitatively and quantitatively,

then, the LOGO students evidenced more gains overall. Within task

differences In favor of the LOGO students were noted for task 4, angle

measure. task 5, angle relations, and task 6, angle deduction. These

tasks are closely related to topics in the LOGO curriculum, which

focused on geometric relationships. The purpose of the overall

Project is to assess whether experience in a LOGO learning environment

enhances students' understanding of geometric relations. In this

study, qualitative analyses of van Miele levels for this sample of

students indicates that it very well may. Further analyses are

planned, along with follow -up interviews when the students complete

their tenth gradi geometry studies.

By characterizing the van Miele levels for the topic of angles

the work has served to further operationalize the levels. Given that

there Is a student need to understand geometric relationships prior to

undertaking high school geometry courses, the van Miele model and

interview instrument developed In this Protect may assist educators In

assessing such understanding. The application of the model to assess

the impact of a LOGO experience should not only enhance understanding

of students' thought processes In geometry but also provide necessary

Information about improving educational methods of promoting such

understanding.
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EFFECTIVE PROBLEM POSING IN AN INQUIRY ENVIRONMENT:

A CASE STUDY USING THE GEOMETRIC SUPPOSER

Hichal Yerushalmy, Daniel Chazan

Education Development Center, Inc.

Educational Technology Center, Harvard Graduate School of Education

The paper closely examines three considerations which must

be taken into account in posing problems for use with the

GEOMETRIC SUPPOSER in high school geometry classrooms: the

kind and size of task, the amount of process instructions

and the nature of the specification of the construction.

The discussion is based on the work of three high school

classes during 1985-86 where geometry was taught in a guided

inquiry approach aided by technology. In the conclusion,

the issue of students' geometric knowledge is also

discussed.

INTRODUCTION

For the past four years, members of our group have taught high school

geometry courses with the aid of the GEOMETRIC SUPPOSER, a microcomputer

program. We characterize our approach to teaching geometry with the

SUPPOSER as "guided inquiry" to distinguish it both from traditional

instruction that relies on lectures and from "discoveryoriented"

teaching.

As in traditional teaching, our approach includes class sessions

during which a teacher introduces new material. However, we also use

lab periods and class discussion periods where students must take a more

active role in their learning. During a lab period students are given a

task to work on, usually in pairs. Discussion periods are devoted to

sharing data, conjectures, and supporting arguments that students

generated in response to the lab task. Unlike a "discovery"

*The research wee conducted at Education Development Center under a

subcontract from the Educational Technology Center of the Harvard

Graduate School of Education. It was supported by the Office of

Educational Research and Improvement contract #400-83-0041.
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approach, students in our classes are not expected to generate all of

the theorems that they will use during the year. They are given
theorems and gain understanding by applying their knowledge of these
theorems to the lab tasks.

We quickly realized that the tasks posed to students in the lab are
the main engine of the learning process in this type of approach.

Therefore, we spent a lot of time designing "good" problems. In the
course of writing these problems, we developed a set of principles which

are delicately poised between guidance and student inquiry. For
example, we concluded that the task should be rich and should yield more
than a single, easily defined answer. It should not aka a student to
rephrase or prove a given assertion. We also concluded that the

instructions should be explicit without providing tap-by-step
directions and should suggest mechanisms for organizing and summarizing
results.

To write this paper, we stood back from creating problems, analysed

the activities that we used, and drew conclusions about the types of
problems that have been most useful and effective in conjunction with
the SUPPOSER. Thic analysis was based on problems used by three high
school geometry teachers during 1985-86, collected student work and
classroom observations.

Since the goal of analyzing our experiences with posing problems was
very large, in the spirit of induction, to first limited our analysis to
one type of SUPPOSER problemconstruction

problems or problems whose
endproduct is a construction. As a result of the analysis of

construction problems, we identified three important issues in posing
problems: kind and size of task, the nature of the process

instructions, and the way in which the construction is specified. We
then sharpened our understanding of these three issues in light of our
experiences with non-construction problems. In this paper, we use theme
three issues as a framework to present observations about students'

responses to both construction and non-construction problems.

OBSERVATIONS

1. KIND AND "SIZE" OF TASK

There are different types of problems that can be posed in a SUPPOSER
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environment. One way to categorize problems is to group them by their

endproducts. There are problems that ask for r specific construction,

others request a solution to a construction proW.em that will work in

many cases, still others request conjectures, w. a fourth type of

problem focuses on the presentation of an argument or a proof.

Some of these kinds of tasks are more difficult than others. To

illustrate, let us consider two type. of construction, problems: those

that require an example of a construction and those that demand a

general method.

A construction problem that requires only the construction of one

example is much easier than a problem that requires a construction that

must work on a whole set of figures. No conjecture is necessary. After

doing the construction and checking that it works, one can be sure that

the problem is solved. One doesn't have to try it on other figures or

make an hypothesis. By contrast, a problem that calls for a general

method recieras a leap of faith or a proof in order to be convincing.

Another illustration of the differences between tasks comes from

comparing construction problems and conjecture problems. Students

seemed to enjoy the construction problems more than other types of

problems. They worked hard and generated many good methods of solution.

In addition, they used both inductive (e.g. trial and error) and

deductive techniques (e.g. making use of knowledge of geometric

theorems in deciding what constructions to try) more often when doing

construction problems.

A second way to categorize tasks is to examine the role that the

teacher assigns to the problem in the classroom. There are at least

three different roles that a problem can play.

First, a teacher may want to have the students discover the theorems,

postulates and definitions of geometry. Second, a problem can be used

to allow students to become familiar with a given field of inquiry--a

set of definitions or a particular construction--before the teacher

teaches the material. A third way to use a problem is to pose problems

that require students to apply concepts they have already learned to a

new construction. These three approaches differ in the emphasis that is

attached to specific conjectures. In some cases, the conjecture is

important in and of itself, while in others it is not.

In addition to type of task, the size of the task may also effect

student performance. First, some clarification of "size" is in order.

A problem is a small one if it cannot be explored in a variety of
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directions or approaches, does not have many parts, and does not demand
a lot of work from students.

One type of large problem requires the full range of inquiry
activities. This type of problem calls for a student to derive general
ideas from empirical experience and then to construct formal proofs of
those ideas. In general, students did not have difficulties with this
kind of large problem.

However, there was another type of large problem that did present an
obstacle. Small problems may become large ones if after examining the
small problem one changes features of the problem: replaces an altitude
with an angle bisector or a median, generalizes from one type of

triangle to other types of triangles, generalizes from triangles to
other polygons, or generalizes from two dimensional shapes to three,
four, or n dimensional shapes.

In our inquiry approach with the

SUPPOSER, it is important to change the nature of the problem, to ask
"What if not?" questions. However, changing a problem in this way is
not usually considered appropriate in school settings. Not suprisingly,
students did not usually change the given problem.

2. PROCESS INSTRUCTIONS

On occasion, the teachers we worked with this year felt that the
problems we had developed were both too large and too vague. They used

process instructions to clarify the tasks and to break the problem into
manageable parts.

We distinguish between two types of process instructions, those which

define the task at hand and those which break down the inquiry process
into separate activities. This second type of instruction provides
guidance for students whose inquiry skills are not polished.

Different types of tasks require different kinds of clarification and

specification. In a discovery task, where the teacher wants students to
discover particular relationship., it is important to indicate which

relationships are under scrutiny. In exploration type tasks, this kind
of specification of relationships may be less necessary. The curriculum
does not hinge on the discovery of a particular relationship.

Teachers also wanted to aid students whose inquiry skills were not
strong. We had assumed that this type of instructions would be

unnecessary because they would become "second nature" to students.

However, this year's work with low ability students indicates thot these

kinds of instructions are important throughout the year. Explicit

process instructions seem to be especially important when students must
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isolate one variable at a time.

It is difficult to know how much assistance is appropriate; too much

aid can be constricting. One student commented in a derogatory tone:

On the worksheets the problem is 41 mapped out for you. The

problem that they just gave us, y u have to find the solution

and find the work. They give you step by step, number one,

number two, number three.

We tried many strategies for giving aid. One strategy used by some

teachers this year that we would not recommend is to include tables and

charts as part of the problem. Teachers used the column titles as the

instructions to guide the discovery process and to indicate the subject

of the expected conjectures. We do not argue that tables should never

be used in the inquiry process. They are appropriate tools for students

to use after they have determined what measurements are to be made or

organized in the chart.

Below is an example of a met of instructions that tries to strike the

correct balance. These instructions accompanied a large problem.

...Make a brief restatement of what the problem asks for.
Hake an outline of the steps you think necessary to explore
and solve your problem.
You will collect, examine and study the data you think will

help you to make conjectures about the relationships in the

problem...
A conjecture sheet will be due...
The last segment of your project is to prove "formally" as
many of your conjectures as possible, but no fewer than

three...

These instructions seem general enough that they cculd be used with many

problems. They get students to step through a model of the kind of

inquiry desired by the teacher. Such directions do not restrict

students who no longer need this type of organization, yet they are

helpful to others who may need them.

1. SPECIFYINC THE CONSTRUCT/ON

In some problems, a construction is the endpruduct of the inquiry; in

others, it determines the situation which will be examined. In either

case, a construction must be specified.

Analysis of this year's work suggests that these specifications should

be couched in a general form. It is an interesting finding in light of

the traditional focus in geometry courses on conceptual, general

terminology (e.g. exterior angles) as opposed to labels which are

specific to a diagram (angle BCD). The expectation in a traditional

class is that students will translate from the conceptual terminology

into properties of a given figure in terms of its labels and back again.
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Using the SUPPOSER, we have the same expectations.

Since the specifications of the ,estruction should be ge seal ones,

diagrams can be problematic. In most cases, a diagram's rule in a

problem is to simplify, minimize, or clarify written info,:na:ton. The

figure is a form of shorthand, providing information suet ic:ly. In

such cases, the diagram acts as a model, not as a specill: eitity. It

has a reference field that is larger than itself. Howeve .t is not

possible to produce a 'global' or universally valid pictu :. There is

always the risk that a certain facet of the infinitely in. ay

characteristics of the picture will be identified by the sclver as a

special property.

Part of the rationale behind the SUPPOSER was to provide a tool that

could help students unaeretand that a picture is a special case srx1 that

examining one picture is part of a larger process that trb:ludes viewing

many special cases and not one static example. Thus, since the SUPPOSER

makes examples easy to create, work with the program should stress the

importance of examples and at the same time should minimize the

importance of any single example.

It to important to note that the diagrams that we provide with a

problem are very different in character from those that students mate on

their papers after copying from their screens. Our diagrams are single

instances of a set of possible diagrams which represent the whole set.

By contrast, students' diagrams are specific cases which only represent

themselves. A different word for each kind of diagram is appropriate.

In our classroom observations, we noted that students had difficulty

developing an understanding of the representative nature of diagrams.

One suggestion for aiding this understanding is to qualify every diagram

that accompanies a problem by saying: "Your construction should look

something like this."

A second observation about the specification of the construction is

that it varies in explictness according to the type of problem.

Construction problems are different from conjecture problems. Since

constructions are the "given" in a conjecture problem and the task is to

generate assertions about the construction, the construction can be

specified in a direct manner without compromising the task.

In contrast, the construction in a construction problem must be

described in a general way, in formal language that will appropriately

describe all possible solutions. Giving the construction in a step-by-

step manner will provide the students with the solution to the problem.
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CONCLUSION

In addition to the three considerations that we have already examined,

there is at least one other factor that should be taken into account.

The amount of geometric knowledge students have is crucial to

understanding their response to a problem. We have observed students

growth over the course of the year both in geometric knowledge and in

comfort with geometric inquiry using the SUPPOSER. This comfort has

both a technical aspect (i.e. how do I use the program?) and a more

abstract aspect (i.e. how does inquiry work in this field?). This is an

important issue, but it is difficult to investigate since one cannot

usually give the same problems to beginning students and to students who

have had instruction in geometry.

This evolution on the part of students can be illustrated by the

change in students' relationship to diagrams. In the beginning of the

year, students treat diagrams that are supposed to serve as models as if

they are examples. This mistake disappears later in the year. Progress

is also evident in students' approach to a problem. We believe that

students attack a problem by developing an initial conjecture and by

refining that conjecture in the light of further experience. How does

one develop an initial Conjecture? When students have little geometric

knowledge, conjectures are likely to be a hit or miss affair. As the

year pros , students derive their first conjectures from their

geometric knowledge and then use the SUPPOSER to elaborate and verify

their conjectures.
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GEOMETRY AND THE COMPUTER ENVIRONMENT
Celia Hoy les

University of London Institute of Education
20 Bedford Way, LONDON WC I H OAL

In acting as respondent to a grouped set of papers on Geometry and Computer
Environment, I will try to bring the reported research into perspective and
suggest directions for future work. I wish however at the outset to
acknowledge the difficulties I have faced in undertaking this task. Firstly,
several of the papers are in French and, although my competence in this
language is reasonable, I have had difficulty in understanding some of the
more complex arguments. Secondly, some of the software forming the basis
of the research projects is not laminar to me. I have therefore been forced
to rely solely on the written descriptions as a means of grasping its
structure which is not altogether satisfactory. Thirdly, I have had very little
time to both absorb and reflect upon the findings.

In order to begin to think about the area of geometry and computer
environment it seemed sensible to first consider what geometry actually is.
Bishop, 1983, proposed the following definition:

"Geometry is the mathematics of space, and mathematicians approach space differently to
artists, designers, geographers, or architects. They search for mathematical interpretations of
space. Mathematics educators, therefore, are concerned with helping pupils gain knowledge and
skills in the mathematical interpretations of space. Depending on many factors, such as one's
philosophy of mathematics education, geometry education can range from learning
well-established geometries, such as Euclidean or more modern transformation geometry, to
developing the pupil's own geometrical ideas" (Bishop 1983 p.175).

Bishop goes on to contrast two approaches to geometry; one 1,4

emphasises "other peoples investigations" (for example learning theorems)
and the other which starts from "actual mathematising of space by pupils
Involving experimentation with materials and representations,
classifying, defining, and analysing why certain relationships occur" (Bishop
1983 p.175).

There would appear to be many research avenues still to explore. We are still
relatively ignorant about the learning of spatial and geometric ideas in
general, as pointed out by Bishop, and even more Ignorant as to the Influence
the computer might have on such learning. There is enormous potential here
for mathematics education research the computer, perhaps uniquely, allows
children to construct graphical representations, see the result of their
constructions, manipulate and change them and use them in more
sophisticated designs. The research described gives us valuable insights into
this potential. I would like to distinguish three broad research themes:-
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Research which explores the development of children's understandings of
geometrical and spatial meanings and how progression (for example, from
globailty to increased differentiation) might be affected by computer
"treatments ".

Ii. Research which investigates the "training" influence of computer

environments on different spatial abilities for example, on the two
ability constructs distinguished by Bishop (1983):-

"I. The ability for interpreting figural information (IA). This ability involves
understanding the visual representations and spatial vocabulary used In geometric work,

graphs, charts; and diagrams of all types. Mathematics abounds with such forms and it

concerns the reading, understanding, and interpreting of such information. It is en ability

of content end of context, and relates particularly to the form of the stimulus material.

2. The ability for visual processing (VP). This ability involves visualization and the
translation of abstract relationships end nonfigural information into visual terms. It also

Includes the manipulation and transformation of visual representations and visual

Imagery. It is an ability of process, and does not relate to the form of the stimulus

material presented "( p 184).

III. Research which takes as a starting point the design of geometric
computer-based situations which confront the students with specific
"obstacles" and seeks to identify student/computer strategies, the
meanings students construct and how these meanings relate to the
representations made available by the computer "tools'. Such research

more or less explicitly uses the computer to create didactical tools to

facilitate the acquisition of specific mathematical conceptions or

understandings.

The papers grouped within the topic area Geometry and Computer Environment

appear to fall within the research themes II and III above and It would seem

appropriate therefore to consider together the papers within each of these

separate themes. In theme II, I would suggest there are three papers: J. Olive

and C. A. Lankenau, The Effects of Logo-Based Learning Experiences on

students' Non-Verbal Cognitive Abilities: S. Scally, The Effects of Learning

Logo on Ninth Grade Students' Understanding of Geometric Relations;

and R. Pallascio and R. Allaire, Les Babiletes Perceatves Objets

Polyedrioues. I will briefly summarise them below:

Olive and Lankenau investigated the effects of a Logo environment on four

subtests from the Cognitive Abilities Test the Figure Classification

Subtest, the Figure Analogies Subtest, the Figure Analysis Subtest and the

Equation Building Subtest. They found after using analysis of covariance to

compare performance between Logo and Comparison groups that the Logo

groups tended to achieve higher scores on these tests, a finding which was
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more marked In the first two tests mentioned above. They also pointed to a
developmental effect and the importance of the teacher's "instructionalexpertise and educational philocophy", Scally, using a clinical approach withpre and post tests investigated how the Logo environment might provide
experiences at the third van Hiele level that of geometric relationships anddeductive structure. Her work involved the operationaltsing of van Hiele
levels for the topic of angle as a basis for the analysis of student interviewswhich took place before and after a Logo experience lasting over a semester.
Her work suggests that both qualitatively and quantitatively the Logo
students evidenced more overall gains. Pallascio and Allaire developed
software In order to represent and manipulate 3-D objects on the screen. The
software used was Logo, the rationale being the extensibility of the Logo
language. The research aimed to develop the abilities of observation,
abstraction and communication by means of visualisation activities,
structuration activities and transfiguration activities respectively. Pre and
post tests were used and the results Indicated that there was an improvement
in visualisation in the experimental group but that it was the boys in this
group who seemed to account for the differences observed.

In theme III, I would suggest the following papers can be grouped: D. Chazan,
Similarity; Unraveling a Conceptual Knot with the All. of Technology.
E. Gallou-Dumiel, Theorerne de ThalOs et Micro-Ordinateur; C. Hoyles and
R. Noss, Seeing What Matters; Developing an Understanding of the Concept of
Parallelogram through a Logo Microworld: C. Janvler and M. Garancon,
Understanding Feedback Systems; I. Osta, L'Outil Informaticue et
l'Enseignement de al Geometrie dans l'espace; and M. Yerushalmy and D.
Chazan,

using the Geometric Suoposer. Each paper identif led specific pupil strategies.
which relate closely to the software used and the mathematics modelled so,
cannot be summarised in any general way. I have however attempted below to
capture some significant points in each of the papers.

* I' AI '6 1I 1 6111'1 ok

Chazan used the Geometric Supposer to provoke a confrontation with some
naive theories that students hold of the mathematical concepts similarity,
proportional reasoning, dimensional growth relationships and
correspondences in right triangular similarity. Gallou-Dumiel used the
software MacDraw, to investigate the difficulties students might have in
using the theorem of Thales. She compared the strategies used and the
problems thrown up in this computer environment with those observed in a
paper and pencil environment. Hoyles and Noss used a Logo based
parallelogram microworld to investigate how students came to understand
the "essence of a parallelogram" through modifications of the formalism of
the given program. They identified ways in which students progressively
became aware of and generalised the relationships embedded within the
parallelogram procedure. Janvier and Garancon presented a detailed analysis
of difficulties in understanding feedback systems and how software could be
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designed specifically to assist in overcoming these difficulties. Osta set out

to Identify ways the computer might help In overcoming problems of
representing 3-D objects In 2-D. The research described teaching situations

where there was a dynamic interaction with the 2-D designs and where the

aim was to solve a range of problems constructed in order to develop specific

geometric knowledge. Two types of software tools were used, MacSpace,

where operations can actually be done on the 3-D object itself and MacPaint,

where operations can only be undertaken on the figurative design. Student

strategies in these two environments were compared and In particular a

development from local to global activity described. Yerushalmy and Chazan

examined some issues arising from their work using the Geometric Supposer.

The paper makes important points about the didactical conditions which

facilitate student learning and distinguishes the important influences of: the

kind and size of task, the amount of process instructions and the nature of the

specification of the construction.

DISCUSSION QUESTIONS

I would like to raise a series of questions some or all of which might be

useful as starting points for discussion of the research papers to be

presented:

I. What type of software is used and what is the rationale for its choice and

the design of the computer environment?

2. What is the purpose of the research:- to assess the influence of the

computer environment on specific mathematical conceptions or on more

general spatial abilities? if the former how is the nature of the

conceptions or misconceptions identified and if the latter what is the

theoretical framework adopted?

3. What is the geometric knowledge investigated and how is It modelled In

the computer environment?

4. What is the Influence of the computer on the learning environment? It Is

possible to approach such a question In two ways how do the computer

tools affect the representation of the knowledge; and how does the

computer environment effect the process of learning?

5. What Is the relationship of the understandings developed in the computer

context with other contexts? it Is plausible to suggest that in unfamiliar

simulated environments on the computer embedded relationships are more

easily discerned DA how does the recognition of these relationships

transfer across contexts?
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6. What is the role of the teacher and the nature of the teacher's intervention
in the learning process?

7. What Is the student reaction to the software for example, were they
motivated to experiment? Could they cope with the technical aspect?
Were any individual differences or differences between groups observed?

RESEARCH METHODOLOGIES

In considering the papers in this topic it Is possible to discern a wide range
of methodologies in terms of the age of the pupils, sample size, time scale of
experiment, research design (case study, use of comparison groups) and
context (research laboratory or school based). Data sources also vary: within
theme area 11, results tend to be based upon the administration of tests of
spatial abilities or the identification of these from interview protocols;
within theme 11, the research data tends to be the Identification of student
strategies whilst attempting the tasks presented.

COITION THREADS IN THE PAPERS

I. An important common thread in the papers is that all the computer
environments described focus on the development of student
understandings or abilities as a result of student/computer interaction.
No computer environment exhibited characteristics of CAI, that is a

concern for the explicit transmission of facts and skills. Thus the
computer Is not viewed as a teacher but as a tool for the manipulation of
graphical representations which has the power to provide informative
feedback. The software is thus seen as an environment for mathematising
space with instructions are added by printed material or teacher
Intervention. The software Is therefore not content specific but adaptable
for different instructional purposes or different groups of students. The
software environments also embody formalisms allowing the user to
represent the effect of his/her actions.

2. Leading on from point 1, there seems to be a common rationale for the
computer use; that Is that perceptual ambiguities/conflicts which
inevitably arise from student activity In an Interactive computer
environment will provoke students to be suspicious of perceptual cues,
rethink their original intuitions and try to make explicit their geometric
knowledge in relation to the graphical feedback.

3. Most of the papers described students working in pairs at the computer.
This would seem to Imply a role for the computer as a tool to provoke
discussion.
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4. Several researchers identified the Importance of the computer as a means
of 'seeing the general In the particular ", that is provoking a move away
from the manipulation of specific objects on the screen to seeing them as
representative of a class of objects or as generic examples. Thus the
formalism required in computer use is seen as a way of assisting the user

in distinguishing the central mathematics from the peripheral and
identifying the invariants which define this mathematics.

FURTHER QUESTIONS

I. Many papers pointed to the importance of the role of the teacher. There is

a need for more explicit research on the nature of teacher intervention and

how this affects learning In a computer environment. How for example is

it possible to guide students so they do not work randomly (which often is

the quickest way to the 'result') and therefore do not grapple with the
mathematical meanings embedded In the activity? How can the pupils be

moved to adopt a more reflective/deductive approach which takes into

account both global and local features of the task? How can and should

guidance vary in terms of level of abstraction and generalisation with

respect to different pupils?

2. More comparative research would be helpful; that is comparisons of

outcomes on tasks embedding specific geometric knowledge constructed

within citiferont computer environments and in non-computer

environments.

3. Research might usefully consider how robust are the misconceptions

identified In different contexts and how far do they arise from particular

types of software environments or pedagogic practices? A 'detailed

analysis of the basis of misconceptions, visual or symbolic, for example

would also be of considerable interest.

4. More specific attention In this research area could be focussed on

differences in approach or outcome which might reflect group (for example

gender, ethnicity, class) as opposed to individual characteristics.

5. Since most of the research describes students working in pairs, it would

seem Important at some point to attempt to distinguish the influence on

learning outcome of the student/student discussion from the computer

Interaction.

6. There would seem to be a need for more research within a developmental

framework involving longitudinal study and evaluation of children working

In a computer environment,
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CONCLUSION

There remains an enormous amount of research to be done on both the effect
of interaction In a computer environment on general spatial abilities and the
Influence on students' construction of geometrical knowledge of activity with
software tools which allow the manipulation of graphical objects on the
screen. MI the studies presented in this group acknowledge the Dower of the
computer for learning geometry. This power was very evident in my own
attempts at grappling with the research papers. 1 was largely working
outside a computer environment and was forced therefore to visualise the
effects of the manipulations described without the chance to experiment and
receive feedback. The difficulties I experienced in doing this gave me much
food for thought,

REFERENCES

Bishop, A, 'Since and Geometry' in Lesh, R., and Landau, M. (eds) 'AcauisitIon
of Mathematics Concepts and Processes' , Academic Press, 1983, p.176-200.



In-service
teacher training



- 71 7

TILACIMIS VIEWS Al ATTI"f0DIS ABOUT
.

CLASSROOII COMPU1131 USZ

Paulo Abreustes
Jog° Paste

tAiversidade de Lisboa

Computers may bring deep changes in the nature

and contents of mathematics teaching and learning.

Ibis study vas designed to yield information on

the nature of the issues that teachers face when

they try to use computers in their classrooms.

fifteen teachers were involved in this project,

covering the grade level range froa 6th to 12th

grade. The software most used were demonstrations

and practice programs. Teachers tended to use the

progress that they knew best and perceived as akin

to their own teaching styles. It is concluded that

the teachers who are tilling to use the computer

in the clap:woos should be provided with the

opportunity to reflect on the nature of the

learning activities intended for the students.

Computer science and computer technology may have the poten-

tial to bring about deep dames to mathematics education.

Computers can be used for individualized learning, as 'elec-

tronic blackboards', as
aupercalculating alChil109, to promote

project work, to conduct investigations or problem solving

activities, or slimly as aotivational devices. According to

Taylor (1980), the computer can be seen either as a tutor, a

tuts., or a tool. Host of the research concerning the impact

of the computer in mathematics education has focused on the

presumable effects on the student. However, if we regard

learning as a continued social process. we suet also pay

attention to the ways teachers regard and react to the new

technologies (Phillips et al., 1984).

In our country there is already sons experience of using

the computer in club activities. usually with high involvement

and enjoyment from pupils and teachers. Interested students,
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very often not the brighast ones on the discipline of mathe-

matics, sometimes develop complex programs related or not to

curricular topics, which seams a significant effort of inde-

pendent study. However. one may ask if the fundesental effects

of the computer in mathematics learning will CODA tree this

kind of activities or froa 'bat will happen within classrooas.

THE MIDI'

Mira:Mrs. Throughout 1986, ooze mathAmatics teachers were

encouraged to use computers in their classrooms. We were in-

terested in studying the eventual new educational phenomena

that could develop in such a situation, namely new kinds of

interactions both among students end among students and teach-

er. Vs were also concerned with teachers' beliefs and Views

about the use of computers regarding their classroom activity.

Kora specifically, the main objectives of this investigation

concerned the ways teachers react to the different problems

they face when they take the computers into the classroom: (a)

What are their purposes in the use of computers; (b) what kind

of software do they tend to choose; (c) how do they use it ?;

and (d) abet kind of new educational issues have the teachers

to face and how do they react to them?

pm teachers. lifteen teachers were involved in this proj-

ect. They were teaching in 'addle (grades 5-6) or secondary

(grades 7-12) schools. Some of thee had previously learned

something about programing (generally using BASIC), although

attaining very different levels of expertise. A small number

of then contributed to the conception or the construction of

educational programs. Bawer, most had, at least at the he-

only a very short experience of work with computers.

During the first semester of 1906, these teachers partici-

pated in a seminar at our Department, in the University of

Lisbon, dedicated to the educational use of computers. The

seminar was organized in weekly sessions of about two hours.

The work included sometime solving and discussing problems

through programing activities, but it was generally dedicated

to discussing the educational value of different programs and

the possibilities of their use in the classroom. In some
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occasions. the experience of one teacher that had used a

particular program was reporLed to the group.

During the seminar, there was no unanimity concerning

teachers' involvement, interests or views about computers and

their use in the classroom. On the contrary, while epee teach-

ers were always present and knew all the available programs,

others *lased a variable number of session., and their contact

with some progress was netted to short demonstrations.

available pingrams. About twenty programa were selected to

be used whenever necessary. Obviously, the possibilities of

using computers in the classroom was not strictly limited to

these progress or even to the existence of previously prepared

software. Short programa written by the teacher in the class-

room or student programing activities were also educational

possibilities to be considered and encouraged.

The suggested progress can be classified in different groups

according to their prevailing characteristics (Hatfield, 1984):

(1) Demonstration - dedicated to help teachers to introduce

or explore new content topics, generally in a pre - established

way, although eventually with some interactive characteristics;

(2) Educational gases - providing challenge to strategy and,

in most cases, involving some mathematical idea;

(3) Practice - very often with gaming features, but clearly

intending to help students to become proficient in a given

kind of operation, rule or skill;

(4) Problem - solving - demanding for a way to solve a problem

or a situation affected by random factors;

(6) Simulation - representing an aspect of a real life situ-

ation and allowing students to change values for the variables

or parameters and study the effects of their choices.

(6) Tool - utilitarian programa, for example for drawing

graphs of any given functions.

None of the suggested programs was a tutorial. Obviously,

most of than presented characteristics belonging to more than

one of the categories mentioned above.

Data recordlng Two kinds of report sheets were developed to

record the relevant information after every lesson in which

computers had been used. One of those report sheets focused on

functional aspects about hardware and software, objectives of

5



the coaputor use in that particular lesson. how students' ac-
tivities were organized, and main positive and negative fea-
tures of the program in relation to the aentioned objectives.

The second report sheet asked for the most relevant issues
that occured trots cognitive, affective, social. and global

(educational) points of view. Specific questions were included
to help the record (for example: learning difficulties about
the involved concepts, student. initiative in developing

strategies. interest or enthusiesa of the students, coopera-
tion, participation of boys and girls, learning atmosphere,
relations among students and among students and teacher).

The report Meets were completed by the teacher at the end
of the lesson. In some cases. lessons were observed by one of
the researcher* end short discussions were conducted with the
teacher to talk about what happened in the lessor and discuss
the most salient occurrences.

RISULTS

Considering the report sheets that were returned, we notice
that only seven different programa were used by thirteen dif-
ferent teachers. Table i describes the situation. indicating
the names of those programs and. for each of thee, some condi-
tions about the say it was used (grade level, number of dif-
ferent classes. number of computers in the classroom), and the
classification type according to the categories stated above

with (x) we refer to the prevailing characteristic and with
(*) other significant ones, whenever this is the case.

Table 1 shows that most classes (17/21) belong to grade
levels 7 and 0 (the two first levels of secondary schools).
This cannot be related to the classes of these particular
teachers -- in general, secondary school teachers are respon-
sible for classes in both levels 7-9 and 10-12. This aspect
may partially be attributed to the nature of the existing
software and perhaps also to the fact that teachers appear to
be sore comfortable in using the computer with younger rather
than with older students. Another aspect, maybe even more
significant, is that simulations were virtually ignored and
that demonstration and practice programs were preferred.
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TABLE I

EzzonasaileatLimllialeulau

Program Level Classes Computers Characteristics

(1) (2) (3) (4) (5) (6)

limber Pacts 511 2/2

erandpria 7 3 1

Relative Numbers 7

Sisters 8 1 3

Equations a 3

Estimates 8 3/1 (a) 2,5,3/1 (a) * x

Function Graphs 11 1/1 (b) 1/1 (b)

Mote: (a) and (b) indioate situations that, for their special interest,

will be referred in detail later in the teat.

Ecwever, a deeper analysis needs to take into account the

written reports in the context of our knowledge about the

particular teachers, their involvement and their views about

the use of computers and also their usual slays of organizing

classroom activities. Frog this point of view, some inter-

esting observations mesa to be:

1. Teachers made generally a quite positive evaluation of

the use of computers, considering that the choosen prograa had

corresponded to the stated objectives and referring as espe-

cially positive the involvement of the students.

2. Teachers tended to select, for their own use in the

classroom. progress with which they were very familier. In

some cases, a progrea was only used by its own author (or co-

-author) and, at wet, by colleagues of the same school. flora-

over, some teachers. whose involvement in the project was not

very strong, limited their use of computers to the few pro-

grans about which they had participated in detailed desonstra-

tions and discussions about their educational possibilities.

3. Teachers seemed to avoid progress that can disturb their

usual way of managing claaaroaa activities. That is probably
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why demonstrations and practice progress were preferred and

shy, in several cases, one siajle computer was used. Educa-

tional gazes were used in a similar may, in teacher- centered

lessons. Or, alternatively, they served to support some kind

of 'extra-lessons'. Programs of problem-solving type were used

by the teachers who regularly organize in their classes prac-
tical tea* work as students' activities, generally associated

to the simultaneous use of several computers.

4. Met lessons did not include any tasks for students but

those provided by the computer program. On the other hand,

activities suggested by the program sere not, in most cases,

retaken in any subsequent lessons. It appears that there wee

an identification between the objectives of the lesson and the

specific objectives of the software.

However, this way of using the computers in the classroom,

largely dominating at the beginning, gave partially place in
the last period to some more original and creative ways of

organizing students' activities. The two following examples

correspond to notes (a) and (b) from Table 1:

(a) In an 8th grade class, the teacher organised her stu-

dents in five different groups and prepared six lessons about

related subject matters involving errors, aproxiaate values,

and racional numbers. During each lesson one of the groups

worked with the program 'Estimates' which deals with estima-
tions to a given decimal place, demanding the solution of a

random situation in the least number of trials. It intends to
promote the devalopaent of estimation ability and strategic

ideas, and to provide some practice. At the ease ties, the

other groups worked in different tasks, not involving the cos-
puter, on related subjects. The sixth lesson vas used to or-

ganize * contest same the groups using the program. Another

teacher, using the ease program in a single class period with

several computers, decided for the subsequent lesson to choose

sous situations as if they were generated by the computer,

wrote the* on the blackboard, and discussed with the class

adequate strategies and methods to savage those situations.

(b) In an 11th grade class, the teacher prepared a worksheet

suggesting the exploration of different situations involving
graphs of trigonometric functions and relations among then,
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and motivated her students to study those situations with the

help of the computer. The
students worked in small groups and

used a graphic drawing program. He the computer was used as

a tool and was not, in any sense, the focus of the lesson.

IMPLICATIONS

The introduction the computer in the classroom is charged

with pedagogical implications.
The computer can be used to

reinforce traditional teaching
practices or as an instrument

of change. A teacher who is willing to use the computer in the

classroom should reflect on the nature of the learning activi-

ties that he or she intends to proportionate to the students.

Computers provide an opportunity for charge (Fey, 1984).

However, one should not expect that teachers will modify their

styles from ana day to the other. Therefore, it is necessary

to have a diversified set of programs and computer related

materitis, that can be used in a flexible way allowing teach-

ers to choose according to their particular inclinations.

The most important and urgent changes in mathematics teach-

ing and learning are not likely to occur just by a spontaneous

process. To foster change, to stimulate teachers to perceive

the potentialities and
limitation, of computers and of course-

ears packages in relation to students' difficulties and

progresses, it is necessary a continued process of reflection

and orchangs of experiences. That needs to be taken into ac-

count by those charged with the development of soft/ears sup-

port docuaentation, and the organization of teacher training.
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CHANGES IN MATHEMATICS TEACHERS VIA
IN-SCHOOL IN-SERVICE EDUCATION

David Ben-Chaim, Barbara Fresko & Theodore Eisenberg
The Weinnann Institute of Science

A model for a teacher in-service program concentrating onchanging teacher attitudes and behaviors Is discussed. Thismodel was implemented In 7 socially disadvantaged schoolsover a two-year period. Difficulties of implementation andinitial teacher reaction to the project are discuned. Bothsubjective and objective measures assess!ng .escher changeand resultant pupil achievement are presented.

Introduction

The attempt to understand and solve the problem of "why Johnny can'tadd" has generated great activity among mathematics educators both in therealm of educational psychological research and in the area of curriculumdevelopment. Despite the resultant increased understanding of learningdifficulties in mathematics and the abundance of approaches and materials,many of our schools are still severely plagued by low mathematicsachievement.

The reasons for this situation are complex: sometimes there is aconcentration of 'problematic" children in a school, such as in the case ofschools in disadvantaged areas, which makes instruction particularly difficult;sometimes the teachers teaching mathematics have not been trained for theirtask, having been recruited from other fields; sometimes qualifiedmathematics teachers have not kept themselves abreast of changes in theirarea, and sometimes all, or some combination, of these factors existsimultaneously. It is certainly a shock to specialists in mathematicseducation to visit a classroom and discover that advances in their field havesimply not reached the mathematics teacher.
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Usually in-service education is proposed to ameliorate such circumstances.

While the short-term effects of in-service education have been cited, the long-
term effects have not been so evident. As pointed out by Richard Skemp
(1985;1986), in-service has tended to fail as a long -term remedy essentially

because the focus has been on individual teachers in artificial contexts who
find it difficult to apply what they learn in schools where the old ways
dominate. It has been suggested that in-service must deal with teachers in
their own environment in order to be really effective.

The purpose of this paper is to describe the operation, and evaluation of

a comprehensive in-school in-service approach for improving mathematics
teaching which operates under assumptions similar to Skemp's. At this point

in time, the Department of Science Teaching at the Weizmann Institute of
Science has applied this approach for two years in two junior high schools
and for one year in five more schools. All mathematics teachers in each

school have been involved (n=40), a condition for participation in the

project. The duration of the total intervention is currently scheduled for a

three-year period.

The Problem

All of the junior high schools participating in the program were

identified as low achieving in mathematics. Initial testing of the children at

all grade levels (7 to 0) indicated that knowledge of prerequisite topics

(simple fractions, decimal fractions, and elementary geometry) was very low,

the average score by school being about 57% correct on minimal competency

teats. Achievement tests measuring knowledge of the junior high school

curriculum itself yielded scores ranging by school from 20% correct to 55%.

(Average "advantaged" schools tend to yield scores of about 85 on the

prerequisite tests and 73 on the curriculum-based tests.)

In general, the schools were characterized by lack of a clearly defined

mathematics program suitable to their pupils. Moreover, classroom

instruction was found to be in need of serious improvement. Mathematics

lessons tended to be of the conventional "chalk and talk" variety, and

reflected little forethought or planning on the part of the teacher. Class

exercises, homework assignments, and explanations were often unrelated; lack

of prerequisite knowledge received little systematic treatment; lower and

higher level cognitive skills were dealt with inadequately; and mathematical

errors occasionally crept into teachers' explanations.
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The In-Serviee Program

The major goal of the program undertaken to alter the above situation
was to make mathematics teaching in these schools more effective and more
varied. The main focus of the program was to be the mathematics teacher
under the assumption that lasting change could only be accomplished in this
way. Program planners were definitely of the opinion, so aptly expressed by
Lee Shulman (I070), that "...any changes in curriculum and instruction must
be mediated through the minds, motives and activities of teachers.'

In this belief, teachers were provided with both individual and group
assistance. Throughout the school year the teachers were counselled
individually by "masters teachers, who observed their lessons at regular
intervals, discussed instructional topics with them and offerred advice along
the way. In addition, group activities were provided for the teachers
through the observation and analysis of demonstration lessons given by
colleagues or 'master' teachers and, more importantly, in the form of
workshops aimed at enriching the teachers' knowledge of mathematics and
exposing them to various strategies and teaching aids.

The major aim of this intervention was to alter the teachers' behaviors
in the classroom by encouraging them to be more reflective about what was
occurring during a lesson and by offering them alternative instructional
approaches. Teachers were expected to pass through a number of phases In
becoming better teachers. First, their consciousness would be raised as to
the need for change and as to the various alternatives available. Next, their
motivation to change would increase and under the friendly coaxing of a
-master" teacher they would become more willing to try new ways. Finally,
they would actually try out new strategies and gradually learn to put them
to use effectively in the classroom.

In addition to the program's efforts to effect instructional change on the
personal level, intervention was done on an organizational level. Such
intervention was carried out with the intent of establishing a unified plan for
mathematics instruction suitable to the specific pupils at each grade level in
each school. Decisions were made at the start of the project by staff from
the Weizmann Institute in consultation with the teachers themselves, as to
which curricular topics would receive greatest emphasis, which textbooks were
most appropriate, and how remedial help would be given for lack of student
prerequisite knowledge.
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The operational model developed for this in-school in-service program is
depicted in Figure 1. As indicated, change in teacher classroom behaviors
together with the use of appropriate curricular materials are expected to
produce an increase in pupil mathematics achievement.

TEACHER
Indiv. & grp. inservice
activities to change
teaching & strengthen
math skills

CURRICULUM
Adaptation of
curricular materials
to pupil needs

PUPIL
Increased math
achievement

Figure 1: Model of in-school intervention and effects.

Implementation Difficulties

There were many hitches to the smooth implementation of the in-school

intervention program which should be mentioned before presenting evaluation

findings. Essentially, difficulties were of two kinds: technical difficulties and

psychological barriers. On the technical side, problems were encountered in
the scheduling of group activities and In selecting a suitable and convenient

location for them. Various solutions were adopted, ranging from group
meetings held in school during school hours, to meetings held in school after
hours, to meeting held at the Weizmann Institute on released-time.

A more serious technical problem which still persists today is that master
teachers often find themselves with insufficient time for serious discussion and

planning with individual teachers, and for developing a close on-going

working relationship with them.
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Psychological and attitudinal barriers were, and still are in part, the
most critical impedimenta to project implementation. Teacher participation
in the program was mandatory in two schools, being dictated from above.
In the other five schools, the majority of teachers accepted the project which
obligated the remaining teachers to participate. While local school
authorities and school principals were strongly supportive of the program, the
teachers themselves were only mildly interested. As indicated by results of a
needs assessment questionnaire completed by the teachers at the outset of the
project, teacher attitude was generally positive towards the proposed group
activities and generally negative towards receiving individual assistance or
towards any activity which might be construed as personally threatening
(such as observation of their classes or preparation of a lesson to be viewed
by fellow teachers). Clearly, the first year of the in-school intervention
prr Zm in all of the schools was greatly devoted to overcoming suspicions
and to creating a relaxed, cooperative environment in which teachers sad
master teachers could work together to accomplish common goals.

EV4111111l011

Evaluation of the in-school in-service program focused first and foremost
upon the perceptions and behavior of the teachers, and concentrated only
secondly upon their pupils' achievement and attitudes. Measures Included
classroom observations, interviews with teachers, questionnaires for both
teachers and pupils, and finally achievement testa administered to the pupils.
Some of the measures were adapted from already existing ones, while others
were constructed specifically for this project.

After one year of the program, some positive change in teacher attitudes
and behavior could be discerned, mainly from classroom observations and
interviews with the teachers. For example, teachers were more willing to
admit to both teaching deficiencies and even to their lack of in-depth
knowledge of the mathematics content of the curriculum. Teachers concurred
among themselves that even if their actual teaching had not undergone great
alteration, their perception of mathematics teaching had been transformed.
Some teachers were able to translate such cognitive changes into behavioral
changes. Towards the end of the first year, their lessons were better
planned, learning goals were more clearly defined, homework assignments
were more carefully selected, and math games, worksheets, group activities
and investigative learning were gradually entering their repertoire of
instructional approaches. This is a start in the righ. direction, however it is
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not enough. Since behavioral change is a slow process, it can only be hoped,
that after several years of such a program, stable and lasting teacher change
will occur.

Results also indicate that mathematics learning has already been

positively affected as a consequence of this program. At this stage it would
be difficult to claim that change in pupil learning is a direct result of
teacher change, since teachers are, for the most part, only at the initial

stages of altering their instructional approaches. Increased pupil achievement

at this point, as measured by standardized achievement tests, must be
attributed to the organizational intervention of the project staff into the
curricular content, pacing of topics and choice of basic learning materials.
There is some evidence, however, that these early gains will help convince
the teachers that change is in order and indeed possible.
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ELEMENTARY SCHOOL TEACHERS' PERCEPTION OF MATHEMATICS AND MATHEMATICS
TEACHING AND LEARNING: TWELVE CASE STUDIES

Jean J. Dionne, Universite Laval

Abstract

Four problems affected in the past and still affect
mathematics teaching and learning. These are the insistence
put on symbolism, the great influence of formalism, the heavy
presence of behaviorist learning theories and the focus that
many teachers put on their pupils'answers instead of on their
reasoning. Any solution of these problems requires a change
in the perceptions that many teachers share about mathematics
and mathematics teaching and learning. To that end, a new
approach for teacher training, approach based on concept
analysis within the framework of a model of understanding,
was elaborated and tested. This paper presents the part of
the rechearch which is concerned with twelve case studies
led within a control and an experimental group. The results
show that the aforesaid approach led teachers to a more
constructivist perception of mathematics and of mathematics
teaching and learning as well.

PROBLEM AND HYPOTHESIS

Four problems, tied to the nature of mathematics, to the philosophy of

mathematics, to epistemology and to learning theories, plagued

mathematics education for years. And they still do. These problems are:

the insistence put on symbolism and notation (Ginsburg, 197i),

- the great influence of formalism (Davis et Hersh, 1980),

- the heavy presence of behaviorist learning theories,

- the exagerated focus that many teachers put on their pupil's answers

instead of on their reasoning.

As these problems persisted through both time and reforms, we must look

elsewhere than in curriculum transformations for their solution. As we

have already said, these problems are tied to philosophic perceptions

of mathematics and to conceptions of learning. Thus we should address

the latter if we want to remedy the situation and improve mathematics
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teaching. And in this undertaking, teachers are the targets we should

favour: firstly, because they are the true workers of mathematics

teaching and thus, they are the pivoting factor of any genuine renewal

of that teaching (Colmez, 1979). But also because tney have been

neglected in all past reforms in the senses that they seldom received

the necessary profiency courses and that their pre-service training was

often barely adequate ((Freudenthal, 1977; Beltzner et al., 1977;

Colmez, 1979; Robitaille and Dirks, 1982). A new approach of teaching

training, whether pre or in-service, seems to be a sine qua non

condition to any possible solution of the problems at hand.

Such a new approach was test in the research. ms described in Bergeron

et al. (1981) and Herscovics et al. (1981), this approach is based on

the initiation of teachers to the analysis of mathematics concepts

within the framework of a model of understanding (Herscovics and

Bergeron, 1983). This approach of links the psychological,

epistemological and pedagogical aspects od the teaching of mathematics

to the mathematical content itself. Mathematical concepts are examined

in the context of the model of understanding; the focus thus put on the

cognitive aspects leads the teacher to reflect on the mental processes

involved in the elaboration of a particular notion. This, in turn, may

also lead the teacher to restructure his teaching strategies in order

to conform more closely with what he has understood about the learning

of the notion. According to our hypothesis, this approach should lead

the teachers to a more constructivist perception of mathematics

teaching and learning.

EXPERIMENTATION AND TOOLS

We tested our hypothesis on an experimental group (n=18) of teachers

enrolled in an in-service program at the "Faculte d'Education

Permanente" (F.E.P.) at the Universite de Montreal. These teachers took

a 45 hour mathematics education course in which our approach was used.

Simoultaneously, we appealed to a control group (n=16) of teachers also

enrolled in the same F.E.P. program but taking a course in a field

other than mathematics or mathematics education. Immediatly before and

after the 45 hour courses followed by both groups, the participating

teachers were subjected to a test and a questionnaire. Furthermore, six

participants from each group accepted to answer twice the Jame long

interview, once before and once after the course. Thus, it became
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possible to evaluate the perceptions shown by the teachers and to

evaluate as well the evolution of these perceptions. Therefore, three

tools were developed, a test, a questionnaire and an interview: these

three tools are described in the following paragraphs.

The first one, called the "correction test" (Dionne, 1985) armed at

evaluating the relative importance the teacher places on the students'

answer and on their reasoning. He or she was asked to grade fictive

students' answers to two elementary problems: one in arithmetic and the

other in geometry. Furthermore, he or she was asked to justify his or

her grading.

The second tool was a written questionnaire on which teachers were

asked to specify their perception of school mathematics (Dionne, 1984).

These different pc,,repetions - traditional, formalist and constructivist

- were each caracterized by a set of statements. Teachers were first

asked to order these sets according to the importance they assigned to

each one and then to give a mark to each of these sets.

The third tool was a long interview in which were explored the

teachers'perceptions of mathematics teaching and learning. Four themes

were addressed: the function and place of intuiti,,n, the role and the

place of understanding and of skills, the part of discovery and of

definitions and, finally, the role and importance given to errors.

Within each part of the interview, teachers were asked to specify the

meaning they gave to key-words used, to illustrate that meaning with

examples and to articulate the role they attribute to each of these

elements in their class practice.

THE MODES OF ANALYSIS

The first two tools, test and questionnaire, were used with each group,

experimental and control, individually taken as a whole. Results

concerning procedures and conclusions were presented in Dionne (1985

and 1984). In this paper, our intention is to concentrate on the twelve

case studies related to the interviews. But in each of these cases, the

response to all three instruments (test, questionnaire and interviews)

were considered and examined as a whole. The purpose of this approach

was to clearly isolate the manifest perceptions and their evolution.

Next, the answers to "pre" and "post" interviews were analysed. These

analyses were afterwards compared to those conducted by two independant
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experts. The only conclusions retained from this exercise were tnose on

which agreement was unanimous. What should be added here is that these

analyses were more qualitative Lnan quantitative. They were based on

the search for converging indications: this appears to be more

interesting since we do get a real description of the perceptions

instead of mere reductionist statistics. And the search for convergent

indications - in which we tried to validate the answer to the test, to

the questionnaire and to the different parts of the interview - allows

for clearer conclusions on a topic which in itself remains difficult to

define and delimit.

THE SIX TEACHERS IN THE CONTROL GROUP

Of the six subjects involved with the control group, five showed

constructivist perceptions and tendancies while the sixth one, Lise,

appeared much more traditional. As all the perceptions did not change

much between the pre and post tests, the descriptions that follow in

the next paragraphs hold for the period that precedes as well as for

the period that follows the proficiency course followed by these

subjects.

In their reactions to the correction test, the six subjects proved to

be much more concerned with the reasoning of the children than with

their answers. There were only few variations in the marks given when,

for each category of children's answers, we compare the gcometry

problem to the arithmetic problem or the pre to the post-test.

It is much more hazardous to try to conclude from the individual

answers to the questionnaire: there was often a contradiction between

the first classification given by some teachers and the marks they gave

afterwards. Global analysis based on the groups' means showed

interresting indications (Dionne, 1984). However, it is much more

difficult, if not impossible, to characterize in a few general

statements the individual reactions of the subjects.

Intuition, the first theme of the interview, was first described in

general terms ("to guess", "to anticipate") but four of the six

teachers succeed in linking this concept of intuition to learning. For

example, they spoke of instinct, trial and error discovery, use of
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concrete materials. Later, while addressing the theme of learning by

discovery, three teachers stood up in defense of very intuitive

approaches based on the manipulation of concrete objects, but they did

not use the words "intuition" or "intuitive" to characterize these

approaches.

Most of the teachers acknowledged the importance of understanding. They

described this notion in terms of explanations given by the child, two

of them adding the idea of transfer. Lise distinguished herself as she

linked the idea of understanding with the ability to memorize and to

apply or to use. The idea of skill, also dealt with in this second part

of the interview, remained vague for most of the subjects. Only two of

them were able to define it in terms of "use at doing something".

Five out of the six subjects agreed on the effectiveness of learning by

discovery. They prefered this approach to what is known as the

traditional magisterial approach in which the teacher defines the

notions to be learned. Lise, even if she thought of discovery us an

"ideal" way of learning, admitted that she confined herself to

traditional, authoritative lectures on mathematical concepts and

operations.

Finally, mistakes were perceived as normal and even useful by all the

six participants. They did not all believe that a good answer can stem

out of bad reasoning. However, if such an event were to occur, they

thought that the student's explorations would allow them to realize

what had happened. Only one teacher claimed that she systematically

asked the children for explanations...

With these people from the control group, as we have already pointed

out, changes were rare and isolated phenomena, so that, as such, they

never indicated to any substantial evolution in these subjects'

perceptions. Hence our conclusion that our tools did not initiate

modifications of these perceptions.

THE SIX TEACHERS IN THE EXPERIMENTAL GROUP

In both the pre-test and the pre-interview, our six experimental

subjects proved to be very much similar to those of the control group:
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five of them appeared to be rather constructivists, showing reactions

analoguous to the ones already described. Furthermore, Jacques, like

Lise, proved to be more traditional. However, changes observed between

the pre and post-tests or between the pre and post-interviews were much

more numerous and coherent. The next paragraphs give a description of

these.

In the correction post-test, our first subject pays a much more nuanced

attention to the child's thought processes as she distinguishes between

a computation mistake and a reasoning error. And this is confirmed, in

the post-interview, by the clear distinction she establishes between

poor understanding and a lack of skill. Our subject then describes what

she considers her "new" reactions when facing students' mistakes,

explicitly asserting here the influence of the experimental course. She

also claims this influence whei she explains, still in the

post-interview, that she now distinguishes levels of understanding and

can describe their manifestations.

In the correction post-test, our second subject deprived her students

of the benefit of the doubt she had given them in the pre-test. This

increased severity is explained in the post-interview when our subject

relates how much surprised she was when, asking questions to "good"

students, she discovered that they simply could not explain their

solutions to particular problems. Still in the post-interview, she

presented intuition as a kind of spontaneous and primitive knowledge

and described different levels of understanding. For instance, she

mentioned that these levels allowed the teacher to overcome the

simplistic "you have it or you don't" diagnosis. Finally, she insisted

on the ability to explain as an important criterion of understanding, a

criterion replacing the ability of problem-solving. This attitudinal

change is coherent with the increased severity mentioned above.

Of all the interviewed persons, our third experimental subject was the

most constructivist from the outset. Thus, she did not change much but

even then, she deepened and structured her beliefs. The course allowed

her, notably, to clarify her perceptions of intuition, now saen as the

first step in the understanding process and to describe that irtuition

in terms of cognition and not orly in terms of repres(.ntation. She now

could also establish a classification of errors distinguishing between

a technical mistake, a wrong choice of process and a lack of
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understanding.

Our fourth subject was also a very constructivist person but this did

not prevent her from renewing her vision of intuition which she

described, in the pre-interview, as a vague feeling and, in the

post-interview, as primitive knowledge, an important step in the

learning process. She also asserted, in the post-interview, that she

now believed more than ever in the importance of the process of

discovery. And she associated the latter with the manipulation of

concrete materials, which, as we believe, constitutes a rather

intuitive approach.

Our fifth subject also showed signs of change in her perception . For

instance, she explained how the course helped her to get a better

understanding of basic arithmetic and, thus, a better understanding of

the roots of her students' difficulties. And as she acknowledged this,

she was led to a more general use of concrete materials and

manipulations, And for her, this was added proof of the importance of

intuition and discovery in the learning process.

Jacques, our last subject, was at the beginning what he remained

throughout the experiment: a very traditional teacher. For instance, in

the correction test, he remained, above all, interrested in answers and

did not see any place for intuition in the learning process. He did not

find "realistics" the use of discovery learning nor did he consider

error as something rather difficult to analyse. His conviction were,

for sure, a little more "nuancees" than what this brief summary makes

then to be, but as it may, they remained unaffected by the experimeuL21

course.

CONCLUSION

fhere is a clear convergence of indications: five out of the six

control subjects proved to be rather constructivist. For instance,

their reflections on errors were coherent with their reactions in the

correction test; the attention they said, in that test, to the

student's reasoning process was confirmed by the importance they

attached to understanding. Similarly, the importance they gave to

intuition was confirmed by their marked preference for learning by
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discovery. Lise, alone, remained clearly traditional. She could'nt make

room for the child's intuition or for a discovery process in her

teaching. Also she gave a rather behaviorist description of

understanding.

The preceeding conclusions also apply to the subjects of the

experimental group: simply replace Lise by Jacques... For Jacques did

not change much. In fact, our constructivist beliefs led us to say that

it will always be sheer utopianism to try to change someone's

convictions againts its own will. The initial move or impetus has to be

initiated by the person himself.

However, if the changes observed within the control group were small

and isolated, the presence and coherence of those noted in the

perceptions of five out of six of the experimental subjects reveal a

real influence of the experimental course on these perceptions. For

these individuals, the course was an opportunity to discover something

new and/or to deepen and structure beliefs already present: concerning

the function of intuition in the learning process, for instance, or the

importance of analyzing children's errors. All this confirms and

strengthens the indications obtained from the global analysis of

answers to the correction test (Dionne, 1985) and to the questionnaire

on school mathematics (Dionne, 1984). However, the evolution observed

here are not radical. And this is due to the fact that constructivist

perceptions were more operative than expected at the beginning, but

especially and above all because real change in perceptions is more a

continuous process than an event.

Finally, what should be retained is that this research brings novelty

in two ways.

First, by its method. Because of this study, new tools to

evaluate teachers' perceptions were built and tested. More

importantly, the simultaneous use of these tools, each being

very different from the other, allowed a search for converging

indications which mutually validated themselves.

Secondly, by its conclusions. In fact, the results of this study

could lead to better teachers training prcgrams where

mathematics concepts would be considered simultaneously in an

epistemological and psycho-pedagogical perspective. This

particular kind of integration of different aspects of teaching
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and learning could help to solve the problems mentioned at the

beginning of this paper because it would put the focus on the
way concepts are known and understood.
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USX OW CLASSROOM VIDSO POR MONKS mataviat IDUCATION

Barbara Jaworski - Open University, U.K.

Peter Gates - Stantonbury School, U.K.

Abstract

The first part of this report refers to an informal study in

which questions were addressed about the effect on mathe-

matics teachers of their viewing of classroom video tape.

Classroom excerpts were viewed by groups of teachers, who

were then invited to reconstruct what they had open, relate

it to their own experience, and discuss issues which were

raised. The second part concerns continuing work in which

beliefs, which resulted from the earlier study are being

tested. Lessons of a number of teachers in a secondary

school have been filmed and viewed by the teachers both

individually and in groups. Audio recordings of the teachers

comments, both at the time of the viewing and after sub-

sequent classroom action provide data for analysis.

PART 1

SACIIMBIOUND

The Centre for Mathematics Education at the Open University (U.K.) hae

filmed 'many hours of mathematics lessons and has published compilations

of excerpts from these lessons. The members of the Centre have sub-

sequently been engaged with issues concerning the use of such video

footage for teacher inservice education.

TUX TIWOXISRL STUDS

The Informal Study concerned questions to do with the value of viewing

video recordings of mathematics lessons in contributing to the profes-

sional development of mathematics teachers. It has been pursued through

a series of workshops with teachers and advisory teachers. In some

cases the workshop has been based on particular themes or questions.

Two examples of such themes were, the role of practical work in the

mathematics classroom, and teacher intervention.
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The work has been based on the belief that viewing a video tape creates
resonance (1] in the viewer which can stimulate her to reflect on

aspects of her own classroom experience and practice (6chon 1983).

Moreover, if the viewing is a group activity, it provides a shared
experience of the recorded classroom. As a result of this the group

have a common basis from which to explore issues raised due to in-
dividual resonance.

An important aspect of viewing videotape ***** to be what happens when
the television is switched off (Mason 1985). We have worked on the
principle that this should be the most valuable part of the activity.

The videotape itself is no more than an incomplete record of one class-
room. The value ip viewing this merely as a classroom example or

demonstration seems limited, since the viewer is not actively engaged

in it. We suggest that it is only when the viewer relates what she has
seen to her own experience and starts to work on the issues raised,

that she starts to profit from the experience. It is by construing the
video images in terms of her own experience that she constructs her own
reality (von Glasorefeld 1984).

The length of videotape viewed at any time has usually been quite

short, perhaps 3 to 7 minutes, so that viewers could be expected to

remember what they saw in some detail. Viewing has been followed by

moments of indiviJual silent reconstruction to allow each person to fix
their own images before sharing them with others. Then viewers have

been invited to tell a neighbour briefly what they saw, without

interpretation. Discussion has then been opened to the larger group, to
allow sharing of what was seen, and of related personal experience. We
hope to include an exasple of this way of working at our presentation.

One of the first things that we observed was that although everyone
watched the same piece of video,

different people actually saw dif-
ferent things. Sometimes by negotiation people were able to agree on
what they had seen. At other times only reshowing of the video would
convince. As discussion progressed,

description turned subtly into
interpretation, and the teacher group were no-longer discussing what
they had seen, but were putting themselves into the situution and

responding to it with their professional experience.
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Although it was never claimed that excerpts illustrated good practice,

this was often assumed by the viewers. In many cases it triggered a

response of overt criticism of the teacher concerned. When this hap-

pened we felt it important to suggest that little value could result

from criticising the teacher filmed, and that perhaps most could be

gained from relating what was seen to one's own experience and trying

to learn from it by reflecting (Kilpatrick 1986).

At all of the workshops, issues to do with teaching mathematics were

raised which involved most of the participants in discussion. Often a

considerable debate resulted. We suggest that the video was the cat-

alyst in the creation of this debate, and that as a result the teachers

confronted issues that they might not otherwise have articulated.

Many events could be reported. There are no formal records, and the

teachers were not formally interviewed after the sessions. However,

comments from many teachers indicated that they found the sessions

stimulating and thought provoking. A valuable further study could be to

follow up some of the teachers and explore what effect the experience

had on their classroom practice.

A number of questions were raised as a result of this work:

1) What happens to the teacher's classroom work as a result of engag-

ing in issues provoked by the video?

2) How does the selection of the excerpt for viewing affect issues

which are raised?

3) How does the length of tape viewed affect the resulting discussion?

PAR? II

These questions and others are being considered in a further study

which concerns exploration of the use of video tape by the members of

the mathematics department in secondary school.
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TUX CCOMISUISO STUD/

Our intention is to study in more detail, the effects on teachers of

viewing classroom video tape. The video tape used in this case is

filmed in the classrooms of the teachers who are taking part. The

teachers are interested in the use of video recording to inform their

own classroom practice. Several lessons have been filmed, and the

following uae has been made of the resulting video taps:

1) Teachers have individually viewed video of their own classrooms and

their subsequent comments have been recorded on audio tape.

2) The teachers, as a group, have viewed excerpts from each other's

lessons and the discussions which followed have been recorded on

audio-tape.

Current analysis consists of working on transcripts of the audio-tapes,

and talking with the teachers about the issues raised and the role of

the video-tape in raising the issues.

A result which is already noticeable concerns teachers working on ideas

together and sharing classroom experiences in a way that did not occur

before. For example, the group viewed a video excerpt of the Head of

Department (HoD), presenting an activity to his class in a particularly

open-ended form. The activity was one on which the other teachers were

also working with their own classes, and so the lesson viewed had

relevance tar them all. The HoD had chosen the excerpt, and he had some

questions which he wanted to share with the group.

He had presented the activity in open-ended form in which pupils had

been invited to pose and explore their own questions. He felt that the

resulting exploration had produced few mathematical insights because

pupils had worked with too many variable.. He had tried hard to get

pupils to constrain the situation themselves. so that it became pos-

sible to relate some of the variables, but felt that he had not

succeeded. His questions were to do with the value of an open-ended

approach, the desire on the part of the teacher for recognisable mathe-

matical outcomes, and the training of pupils in problem solving

strategies.
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The other members of the department were quickly drawn into the debate,

and a number of issues emergedr

The different modes of presentation of an activity; (witnessed by

the different experiences of the teachers in presenting the activity

themselves).

The value of open-ended activities - losses and gains.

The time spent by a teacher 'up front' as opposed to working with

individuals or groups within the class

One teacher felt that, despite the HoD's worries, his pupils could gain

from being given more freedom to explore for themselves, and so he

decided to try out a more open-ended approach to his next classroom

activity.

The HoD believed that he had spent too much time at the front of the

class, and decided to work on reducing this in subsequent lessons.

After viewing tapes individually, one of the teachers commented on the

value of the video-tape in providing glimpses of the working of pupil

groups to which she had not had access because she was elsewhere. She

said,

I found it very useful to see what they did, and hear what they

said after I'd left them. Normally iou wouldn't know, and I was

very pleased. They were smiling and seemed confident.

Another teacher remarked that he had found it interesting to observe

his intervention with pupil groups and he wanted to think about how

this affected the work of the pupils and his perception of their under-

standing.

As a result of one video excerpt of a group of four pupils working on a

problem, meeting took place between the HoD and the pupils who had

been filmed. The pupils were encouraged to talk about how they had felt

when they were working, to
recall different stages in their working,
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and to relate them to their
mathematical progress. The HOD felt that

this had value in at least two ways:

1) He gained insight into the students' perceptions of what he had
asked them to do.

2) He felt that a better understanding might result between the stu-
dent. and himself to the advantage of future work.

Video-tape has contributed to the raising of issues in mathematics

teaching amongst the teachers involved in this study, for the following
reasons:

Its replay facility enables sharing of events and concerns with

colleagues and pupils, and viewing of events where the teacher was
not present.

Resonance with what is viewed brings out issues and concerns for

group discussion and possibly subsequent classroom action.

Questions still being pursued:

1) What changes in classroom
action and outcome can be related

directly to video viewing?

2) Can and should excerpts for viewing be chosen with specific issues
in mind? How does what is offered for group viewing influence

resulting discussion and action?

3) Is there any efficient or economical way in which group viewing of
video recordings can take place, perhaps to maximise benefits from
this group activity?

4) What do the teachers regard as the benefits?
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CONCLUSION

The video is having an effect on the teachers' thinking. The methods of

its use and aspects of classroom action and outcome need further

exploration.

We realise that there are issues to do with the making of the video -

e.g. technical limitations and implicit editing by the person holding

the camera - which might affect viewing. We are aware of those as

potential issues but are not explicitly addressing them here.

NOTES

1. St Augustin* wrote in De Magister, in the late fourth century, the
following pascage which capture. beautifully what we mean by
resonance:

If anyone hears me speak of them (images of things once perceived),
provided he has seen them himself, he does not learn from my words,
but recognises the truth of what I say by the images which he has in
his own memory. But if he has not had these sensations, obviously he
believes my words rather than learns from them. When we have to do
with things which we behold with the mind, ... we speak of things
which we look upon directly in the Inner light of truth ... .
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THE MIDDLE GRADES MATHEMATICS PROJECT: COACHING

AS A STRATEGY FOR CHANGING TEACHER PRACTICE

Anne Madsen-Nason

Glenda Lappan

Michigan State University

The Middle Grades NathematIcs Project represents
a two year effort to Improve the teaching and learling of
middle school mathematics. The goal of the project is to
ascertain the amount of assistance middle school teachers
need to implement effectively an instructional model that
would promote the development of mathematical understanding
through conceptually oriented instruction. Twelve middle
school mathematics teachers were separated into three
groups: One group, four "uncoached" teachers, received
mathematics materials using the instructional model and a
workshop focused on using these materials; a second group,
four "coached" teachers, received the materials and work-
shop training and were also coached in their classrooms;
the third group, four "lead" teachers, received the mater-
ials, workshop training, and couching and were also
expected to coach a colleague the second year. Interim
results from the first year of the study indicated the
"lead" teachers made greater changes in their thinking
about instruction than did their "coached" or "uncoached"
counterparts. There Is evidence that 1) coaching does
make a difference in changing teacher practice and 2) the
length of support time needed to help teachers learn a new
instructional mode is at least two years.

Fullan and Pomfret (1977) provided a comprehensive review of research

on curriculum and instruction implementation. They suggested that there

are five dimensions of implementation in practice; changeo in materials,

structure, role/behavior, knowledge and understanding, and value

internalization. The goals of implementation must also include changing

teachers' behaviors or roles in the classroom in such a way as to

encourage the acquisition of student process goals. Teachers can

tmplement new materials in the classroom, at a surface level, so students

learn the skills and "algorithms" of the content without developing

deeper understanding of the concepts and processes inherent in the

mathematics. According to the Rand Study (McLaughlin & Marsh, 1978),

professional development aimed at changing experienced teachers'

practices may need a level of personal involvement with the teachers in

addition to providing exemplary mathematics materials.

Howson (1979) says, "If new materials are to be handled with

understanding, then training is insufficient -- one can train teachers
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to handle a new learning system, yet Co cope with difficulties

which arise in its use, the teachers must be reeducated." Joyce &

Showers (1981) hypothesize that a fully elaborated training syaLem

including theory, demonstration and practice, and feedback generally

will ensure skill acquisition on the part of the teachers. However,

if transfer in to tweet they suggest that further help in needed which

could be provided by "coaching"

Showers (1983) reports a very promining study in wnich the notion

of coaching is elaborated. Coaching was conceived in thin study an a

combination of several elements: the provision of companionship, the

giving of technical feedback, and the analysis of application.

Good & Brophy (1914) demonstrated the power of intensive observ-

ations and feedback for assisting teachers to alter certain kinds of

behavior. Lanier (1983) used an intensive advisor strategy to change

teacher behaviors in general mathematica clasnrooms. There ore many

similarities between the characteriatics td an advisor's work and that

ol a "coach". Andreae (1912) emphasizes that the advisor's role in to

provide astfistative in terms of teacher's needs. Apelman (1981) nays

that "stimulating and extending teachers' thinking about their genie

values advinIng above merely technical aid." An advisor's ultimate

task is to elicit is the teacher a problem-solving and reflevtive

attitude, that will enable him/her to overcome successfully future

challenges. incorporating the strengths of the advisory role with the

mare behavioral coaching role seems to be a very profitable direction

in teacher inservice.

PROJECT GOALS

Thy Riddle Grades Mathematics Project (MGMP) represents a wide-

ranging effort to improve the teaching and learning of mathematics by

Leachers and students in grades six, seven, and Cght. The early phase

of the project focused on th,! development of exemplary units of import-

ant mathematics idea: appropriate for students in these grade levels.

The instructional model (Shroycr, 1934) around which the units are

built (Launch-Explore-Summarize) provides teachers with exemplars of

conceptually oriented mathematics instruction.

Good pointed out that his research with Grows on mathematics

instruction showed that many teachers tend to emphasize computation,

memorization, and mechanics. However, the students of teachers who

emphasize conceptual understanding received higher achievement scores
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in mathematics. (Notes & News, 1984)

The MGM° staff identified changes in teacher practices that need

to occur in order to implement effectively the Launch-Explore-

Summarize (LES) model. These changes in teachers' beliefs and

behaviors included the following major areas:

1) Patterns of Communication;

2) Planning for Instruction;

3) Quality of Direct Instruction; and,

4) Instructional Thoughts and Actions.

Previous work with the implementation of these exemplary materials

had shown, as the literature predicts, that the materials alone did not

produce the desired changes in teachers' instructional beliefs and

classroom practices. This study examines the impact of classroom

consultation (referred to as coaching) on producing the desired

caanges. The major question is, "How effective is coaching as a

strategy in changing teacher's instructional emphasis from a comput-

ational to a conceptual orientation as reflected in the exemplary

mathematical materials (Hal, units)?"

THE THEORETICAL FRAME

The model of the nature of teacher change that the staff

theorized would be found is based on Lewin's general model for the

process of change. As Blanchard (1981) explained, the Lewin model

consists of three phases: The first phase, unfreezing, prepared

or motivated people for change; the second, changing, phase, took

place when people learned new patterns of behavior; the third phase,

refreezing, was the process by which the newly acquired behavior

was adapted or integrated into the individuals repertoire. We

imposed a series of change states on this model that we conjectured

the teachers would move through in varying degrees during the change

process.

Thoughts Beliefs

UNFREEZING CHANGING

Behaviors

REFREEZING

Eight of the twelve project teachers were coached by the staff.

Of the eight, four were identified as "lead" teachers with the

expectation from the beginning that they would coach a colleague in
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their school during the second year of the project. The four "coached"

teachers were not expected to co "ch a colleague. The remaining

fool. teachers were "uncoached" - they received the same summer workshop

training and the exemplary mathematical
units as did the "lead" and the

"coached" teachers but did not have any coaching follow-up in their

classrooms during the school year.

INTERIM RESULTS OF THE TEACHER STYLE INVENTORY

AND STUDENT SURVEY OF THE CLASSROOM

In an effort to capture the changes in teacher's thoughts, actions,

beliefs, and behaviors surveys were administered to the project

teachers and the students in their classes. The surveys used a Likert-

scale requiring a response from 1 to 5. Students completed the

Student Survey twice during the school year - once in the Fall and

Spring. The teachers completed the Teaching Style Inventory at the

start of the project, after the first year, and will be given the

inventory at the end of the second year. It was believed the results

of the Teaching Style Inventory
would provide evidence of a teacher's

changed thoughts and beliefs about instruction and classroom practice.

In addition, the results of the Student Survey would reflect the

teacher's changed actions and behaviors in the classroom.

The Teacher and Student Surveys
from the Spring of 1985 (pre-

project) and the Spring of 1986 (interim) were analyzed. A method of

analysis was employed that captured the amount and degree of change

the teachers made in their thinking across the first year. This

analysis involved making a comparison between an "actual" response

on an item with the "ideal" response for that item. For example,

if a teacher's or students'
"actual" response to an item was 2

and the "ideal" response for
that item was 5, then a 3 was recorded.

This value of 3 signified that the "actual" response was 3 levels

away from the "ideal". A sum of all the items distances from the

"ideal" was calculated for each pre- and interim survey for the teachers

and their classes. The difference between the sums on the pre- and

interim surveys represented the
Index of Change - or the amount of

change which occurred from the pre- to the interim survey. (Figure 1)

The results suggest that each of the project's teachers had made

some changes in their thinking about instruction and classrocm

practice across the first year.
Interestingly, three of the four

"lead" teachers ranked first, third, and fourth in the interim

Teacher Survey results. This would indicate these teachers had
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changed more in their thinking than did their project counterparts.
The results from the Student Surveys

indicated the students in the
teachers' classes noticed some change in the classroom practices

of their teachers. Although the "lead" teachers showed more change
in their perceptions, this change was not reflected in classroom
practice. The "coached" teachers showed less change in their

perceptions (from the Teacher Survey results), but their students

noticed more change in their classes (from the Student Survey results).

PRE- TO INTERIM RESULTS ON THE MGM

TEACHER STYLE INVENTORY AND STUDENT SURVEY OF THE CLASSROOM

TEACHING STYLE INVENTORY
STUDENT CLASSROOM SURVEY

Tchr
Code

Spring
g

Rank Tchr
Code

Spring
ChnF

Rank
'85 '86 '85 '86 85 '86 '85 '86
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A-4

8-2

A-2

A-1

C-2
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8-4

8-I

A -3

C-1
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C-1

C-2
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B-4

A -3

A-4
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A-1

A-2

k-2 61 36 +25 A-2 30.2 27.6 +2.6
A-3 62

1

53 +9 A -3 26.:, 25.5 +1.3
A-4 53 22 +31 A-4, 26.4 26.4 0.0

0

B-1 65 51 +14 B-1 27.7 23.1 +4.6
8-2 48 32 +16 8-2 27.0 23.4 +3.6
B-3 51 43 +8 B-3 27.0 21.4 +5.6
8-4 54 46 +a,

+14

B-4
Imams
C-1

28.0 24.3 +3.7
ro

0
0

C-1 67 43 26.1 22.1 +4.0
C-2 55 38 +17 C-2 24.1 22.5 +1.6
C-3 80 71 +9 C-3 27.8 26.3 +1.0

i 59

SD 9.2

43

10.2

X 27.3

SD 0.51

24.6

2.13

Figure 1

The summary results show changes in how teachers thought about

instruction and some small changes in their classroom practice as
perceived by their students. We believe that the results from the

second year will likely show more dramatic changes in the "lead"

and "coached" teachers and less change in the "uncoached" teachers.

The "lead" and "coached" teachers during the second year seem to

be transforming their thoughts and actions into beliefs and behaviors

about practice - this has not been accomplished by the "uncoached"
teachers.
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DISCUSSION AND EMERGING CONCLUSIONS

None of the project teachers reached a state of changing their

beliefs or behaviors in a consistant habituated way by the end

of the first year. Although most of the "lead" and "coached" teachers

had moved into Lewin's Change Phase by the end of the first year

they were inconsistent in their classroom practices. While one

lesson would be very good, the following one might show a return to

a previous instructional mode. For example, a return to questioning

such as, "Tell me what you do to find the area of a rectangle."

(requiring a computational response rather than a conceptual one).

If there was a surprise in the data from this first year it was in

the length of time we found teachers needed support in order to

make substantial changes in their instruction.

IMPLICATIONS

At this point in the project there is clear evidence that coaching

does make a difference and that the length of support time needed

to help teachers learn a new instructional strategy - to make real

change - is at least two years. The process of changing teachers'

instructional modes involves moving them through phases of unfreezing,

changing and refreezing by changing their thinking and acting in the

classroom first, followed by the more comprehensive changes in their

instructional beliefs and behaviors in regards to the teaching

of mathematics.
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ANALYZING THE PROBLI34 SOLVING BEHAVIOR OF TEACHERS AS LEARNERS

Carolyn A. Maher and Alice Alston
Rutgers university

Twenty-six educators (including elementary teachers,

administrators, and graduate students) working in small

groups participated in a mathematics problem-solving

activity as part of a teacher development project.

Participants were asked to use gedboards to construct

solutions to a series of multi-step problems involving

fractions. Analysis of their problem-solving behavior

in an exploratory investigation indicated that

generally the participants first constructed a physical

model which they evaluated and refined using knowledge

of numbers, rather than first constructing a symbolic

solution and then modeling it physically.

The model providing the basis for this study has as its goal the

professional development of mathematics teachers. Described elsewhere

(Maher, 1986; Maher, in press), the model proposes a program, based on

a constructivist view of learning and teaching, that enables teachers

to facilitate mathematics
instruction by creating learning environments

for children. One component of the program is that the teer.hers ex-

perience the construction of the mathematics they are required to teach

by working in small groups to solve problems using particular physical

eMbodiments to represent the mathematical concepts. The approach is

based on the view that such experience can better prepare teachers to

observe and guide children's
mathematical learning and consequently

better equip than to design, implement, and evaluate prdblemrsolving

activities for children. The model is currently being irrplemented in

a three year project at the Harding School in Kenilworth, N.J.1

(Maher, Alston, & Landis, 1986; Maher & Alston, in press; Maher &

Landis, in press).

Another view of teaching which advocates both understanding of mathe-

matical content and of the development of children' knowledge is of-

fered by Carpenter, Fennema, and Peterson (1986). They hold that the

complexity of the processes of both learning and teaching causes

prescriptive teething to be ineffective and propose an alternative

which would require that teachers make instructional decisions based

on an "understanding of the general stages that children pass through

1 The Project is sponsored by the Rutgers University Center for

Mathematics, Science, and Cemputer Education, the Kenilworth Public

Schools and the New Jersey Department of Higher Education.
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in acquiring the concepts and procedures in the domain, the processes

that children use to solve different problems at each stage, and the

nature of the knowledge that underlies these processes" (pp. 227-228).

In order to respond to the present crisis in education, Mary Futrell,

President of the National Education Association, also expressed a need

to restructure teaching both from the perspective of children's learn-

ing and the professional status of teachers. She called for continued

research by educators on learning and teaching to be implemented as a

basis for developing programs that would challenge and prepare teachers

to create environments in which students could be actively engaged in

explorations that facilitate learning (Futrell, 1986).

Components of the knowledge domain, identified by re- ..archers as

critical for mathematics teachers if they are to make informed instruc-

tional decisions, are knowledge of the content as well as both know-

ledge of how the content is learned and how problems are solved by

children Lt various ages. Shulman (1986) has indicated the need to

consider knowledge of content in research on teaching. Romberg and

Carpenter (1986) have indicated that research on teaching and research

on learning in mathematics are conducted as if these were separate

areas and call for an integration of research in the two disciplines.

Understanding teachers as learners requires studying the ways teachers

construct solutions to mathematical problems, reflect on their own

strategies as well as possible alternatives, and consider how children

of varying ages and mathematical experience may represent their solu-

tions. This report is focused on that part of the model that considers

the teacher as learner. The approach is based on the view that tea-

chers, in preparation for their working with children, profit from ex-

periences doing mathematics that call upon their engagement in con-

structing solutions to problems and modeling them with the use of

physical objects.

OBJECTIVES

Specific Objectives of this investigation were to describe how groups

and individuals within groups solved mathematical problems. The par-

ticular problem-solving activity involved concepts and operations with

fractions to be modeled using gerboards. The following behaviors were

studied: (1) construction of solutions based on the representation of

the physical model(s) and/or monitored and revised based on an inter-

action of their conceptual/procedural knowledge of fractions with their

physical model(s); and/or (2) construction of solutions based on
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conceptual/procedural knowledge without prior reference to a physical

model(s).

WTHODS N PROCEDURES

The study took place in a K-8 elementary school with participants of

the Rutgers-Kenilworth Project. The population consisted of a mixed

group of 26 educators: 18 elementary teachers (from grades 1-8), 8

graduate students (including 2 elementary and 4 secondary mathematics

teachers, and 2 teachers with no prior teaching experience), the school

principal and the curriculum coordinator. Five groups naturally formed

by self-selection, each including both teachers and graduate students

and two including also an administrator.

In this two-hour session participants were asked to use a geo-board to

construct solutions to four multi-step word problems involving equi-

valency and operations with fractions. Previous sessions, similarly

organized, included activities that provided a variety of physical ob-

jects with which the participants were to construct solutions to pro-

blems including activities with fractions using gecboards. The third

of the four problems given in this session was used for this report.

On average, 20 minutes was required for the task. It was presented in

a context of the school environment. Each of the five groups was video-

taped and transcripts of these tapes and the written work of the par-

ticipants provide the data for this paper.

The statement of the problem is as follows:

The first, second, and third grades have been given a
garden plot to develop as a project. The third grade

is to have 1/2 of the plot, the second grade is to have
2/3 of the remainder of the plot and the first grade is

to have what is left. Show (1) a possible model of the

garden by grades, (2) how much of the garden the second
grade will have, (3) how much the first grade will have
and (4) how much of the total plot Linda's class will
have if the three first grade sections share their part

of the garden equally.

RESULTS

In each of the five groups, the initial attempt to construct a solution

was based on the physical embodiment provided. One or more of the

group members began by enclosing a rectangle on the board and then look-

ing to see if it could be partitioned according to problem specifica-

tions. For instance in Group 1, composed of a 5th grade teacher, a 7th

grade teacher, 2 graduate students, and one administrator, the adminis-

trator began with:
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"It's 6 - or 12 - or 16. (Enclosing each of these areas
in turn and counting squares inside.) You can't do 16
because half of 16 is 8 and you need 2/3 of that."

Four of the five groups completed their solutions to the problem based

on these models. For each of these groups, individuals' procedural

knowledge of fractions was used to accept, reject, or refine a particu-

lar construction.

Two strategies seemed most prevalent in the construction of these solu-

tions. In the first, successive models were built, the areas of which

were consecutive multiples of 6. Members of each of the five groups

began with a rectangle of 6 square units which net the requirements of

the problem that half of the plot could be divided into two parts:

one, 2/3 of the area of that half and the other, 1/3. In order to ful-

fill the final requirement that the smallest part be shared among 3

classes, the rectangle was doubled and 12 square units enclosed. In

each case it was discovered that this construction would not work.

As an illustration, consider the dialogue between a 3rd grade teacher

(T3) and a graduate student (G) in Group 2.

T3: "Here's the half. (Points to half of the 12 square
units.) Then 3rds. This is what the 2nd grade gets."
G: "You divide it into 6ths - so the 2nd grade gets 1 -
2, 2/6 of the total. The 1st grade gets 1/6 - " T3:
"Now just divide this into 3rds - How? It's not divid-
ing!" G: "I see what you're saying."

Members of three of the groups then combined two geoboards in order to

enlarge the rectangle. Within Group 4, a 1st grade teacher (Ti) and a

5th grade teacher (T5) provide an example of a number of attempts to

construct a solution based on 24 square units before successfully

constructing a model of 36.

Ti: "Let's put our boards together. We want 24 squares.
(Encloses a 6 by 4 rectangle.) - Any way you look at it,
it's not going to work - You have this little triangle
left." T5: "You need 36." T1: "(Constructing a 36
unit square.) That's going to work!"

A second strategy was employed by members of two of the groups based on

a 9 unit square. In each of these cases an individual working parallel

to the rest of the group developed the solution while the other members

were constructing models based on the first strategy. After completing

the solution, that person shared it with the others.

Group 3, including an administrator (A), a 5th grade teacher (T5), 3

2nd grade teachers, and a graduate student (G), exemplify this approach.
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All of the members of the group constructed models of rectangles, first

with 6 square units and then with 12.

A: "This is what's left - 2 square units - You have to

divide it by 3."

T2: "That's 2/12 (Constructing her model)." A: "I don't

see a way."

G: "9. Here is half. (Pointing to her square which is

divided by a rubber band along the diagonal.) Now we

have 3 (parts). - 1 and 1/2, 1 and 1/2, 1 and 1/2 - see,

we can divide it. There it is! A: "You're right - I

understand." A then explains to T5 and other members of

the group. All 6 construct the model and 15 continues

the explanation to the 2nd grade teachers. T5: "This

is my 6 halves. Here are 3 halves for the 1st grade -

this unit and 1/2."

Group 5 provided the only exception to constructing a solution from the

model. This group began with a 5th grade teacher (T5) and 2 graduate

students, both of Whom teach college mathematics, (G1 and G2). They

were joined midway by a 3rd graduate student, also a college mathematics

teacher (G3). The 3 began, as the other groups had done, by construct-

ing first a 6 unit rectangle and then one having 12 square units. They

had just proposed building a 36 unit model when G3 joined the group and

they pauEed to explain their strategy to him.

G3: "Why not use 6?" G2: "Because how do you take -

'You have 1 unit left - How do you divide that into 3rds?

- (Reads problem)." GI: "The 24ths aren't going to give

us help - " T5: "36 would give it."

G3: "18 would do it better - It would be a perfect fit."

G2: "Do you know what bothers me when you came up with

18 - Isn't it kind of underhanded? In other words, we

knew basically what we wanted to find in this thing."

CONCLUSIONS AND IMPLICATIONS

A goal of this model is that teachers Show certain changes in perspec-

tive and practice in their classroom mathematics instruction. Specifi-

cally for this investigation, the question was whether the activity

that called for participants working in groups to construct physical

models to represent their solutions
in mathematical problem solving was

appropriate.
Qualitative observations of the five groups indicated

that there was a high level of involvement among the participants.

Each person was active in constructing models of the solution and all

but one of the participants were
involved to some degree in dialogue

with group members concerning particular strategies. The roles assumed

by various members of each group seemed to be important in considering

the piccess of constructing problem solutions, but space limitations

preclude their being reported here.
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It is interesting to Observe that in the case of solutions using a nine

unit square, the solution seemed to be based on the constructed model

rather than the knowledge that 18 sections could be found using the

least cumixxl multiple of 2, 3, and 6, although the area had been divid-

ed into IP pieces. Also, those individuals and groups who used the

strategy of doubling the area never attempted to construct a model of

18 square units, which is the lowest canyon denominator for 1/2, 1/3,

and 1/6.

Implications of this investigation suggest that teachers working as

partners with administrators and graduate students can be engaged in

constructing solutions using physical objects to represent concepts

that are a part of elementary school mathematics. Continued research

is needed to observe the effect, if any, that participation in these

activities has on the teaching behavior of the participants and on

their ability to construct problem solving activities appropriate for

the children wham they teach. Also to be explored are the effects,

both cognitivu and affective, of natural heterogeneous grouping such

as those formed in this project.
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PROJECT WORK WITH TEACHERS INVOLVED IN A PROGRAM

FOR THE USE OF CUMPUTERS IN EDUCATION

Maria Cecilia Monteiro

Escola Superior de Educacilo

de Lisboa

Jolo Ponte

Universidade de Lisboa

This research describes the evaluation
of a teacher training program set up to imple-
ment the use of computers as a support for pro-
ject work. The teachers, who entered in the
program mainly with the motivation of learning
how to use computers, recognized changes in
their attitudes and pedagogical practices.

The national Project Minerva was established in 1985

to promote the introduction of computers in Portuguese ele-

mentary, middle and secondary schools. This project pre-

tends to contribute to the technological updating of school

curricula and methods, and has a concern for pedagogical

transformation. Universities and Superior Schools of Educa-

tion are charged with the training of teachers, curriculum

development and its evaluation, as well as with the neces-

sary support to the work carried out at the schools.

Teachers of several disciplines are involved in this

project. However, many of those who are most interested and

become leaders within the schools are mathematics teachers.

So far, most of work involving students has been realized

through extra-curricular activities. Some of the teachers

tried to use the computer in the classroom, but this has

been difficult given the scarcity of appropriate software

and insufficient quantity of existing hardware.

To use the computer in the classroom does not imply
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necessarily a change of pedagogical attitudes, student/tea-

cher relationships, and learning processes. The computer

can just he used to reinforce a tradicional style of tea-

ching. In rroject work, students have the possibility to

participate in the choice of the problems that they want to

deal with and to define the corresponding strategics, me-

thods, and forms of presentation of the results. This peda-

gogical approach, which remotes to Dewey and Kilpatrick,

intends to assign the students, a responsible and indepen-

dent role in their own learning process. Dewey (1959)

wanted to give a livelier content to education, in opposi-

tion to teaching just from listening and from hooks, by

following the principles of motivation, dedication and orga

nized work in order to achieve a learning goal. In his

views about the use of computers in education, ['spurt (1980)

also stresses the importance of the deep involvement of the

students in the learning process through their personnal

project.
Many contemporary teachers are in a way or another

sensitive to these proposals. However, project work is not

easy to implement in a long term basis, and most for the

actual activities carried out in todays schools still draw

from the traditions of straightforward transmission of

ready made knowledge, memorization, and passive learning.

To make teachers aware of the pussibilities, difficulties,

and conditions of sucess of project work and to invite them

to start using this methodology with their students, it

seems reasonable to involve them in a set of activities of

a similiar format.

THE STUDY

This research intended to evaluate the effects of a

training program in project work on teachers, attitudes

concerning this kind of pedagogical strategy and to evalua-

te its effectiveness in developing their ability to conduct

students in project work oriented activities, using compu-

ters. This evaluation was also intendend to provide informa
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tion to improve the design of the training program.

Specific objectives of this program on project work

were to make teachers: (a) develop skills of organisation

and c----operation in group work, (b) develop research skills

and the ability to organize and present information, (c) be

aware of different aspects of verbal and nonverbal communi-

cation, (d) view knowledge in a interdisciplinary perspecti

ve, (e) recognize the importance of intrinsic motivation,

and (f) stimulate their iniciative and selfconfidence.

THE PROGRAM

Involved in this study were 22 teachers, all partici-

pants in the Project Minerva. Of these, 13 were teachers of

mathematics and 7 teachers of other subjects.

The training program was developd in two phases. The

first phase consisted of a four day workshop which main

objective was to give an overview of project work methodo-

logy. The second phase concerned the implementation and

evaluation of project activities in the schools.

In the first phase, a general problem was selected in

big group discussion and then subdivided in smaller ques-

tions which were taken on by different subgroups. Each

subgroup selected its own methodological strategies, inclu-

ding labor organization, data collection methods, data ana-

lysis, and forms of presentation of the results. After the

presentation of each subgroup there was a discussion period

in which the different contribuitions were confronted with

the general problem initially defined. Finally, there was a

general discussion to evaluate all the activity.

The second phase, included the introduction to the use

of computer tools such as spreadsheets, data bases, word

processing, drawing applications, an initiation to the LOCO

language, and monthly seminars for discussing pedagogical

themes related to the use of computers and project work and

for exchange of experiences and reflection on the ongoing

activities in the schools.
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EVALUATION

There were two main periods of evaluation: the first

took place at the end of the initial project work workschop.

Since this activity represented for most of the teachers a

first formal contact with this methodology, it seemed impor

tent to evaluate it just after the end of the workshop.

There was some discussion to decide if the problem to

be selected should concern or not directly computers. The

teachers decided that the computer ought to be regarded as

just an instrument among others and picked up as their ques

tion "what can be done to improve the school?". This ques-

tion was taken with enthusiasm by the participants, who

assumed their role in the study of the subquestion in which

it was subsequently divided. Some teachers felt inconforta-

ble in doing actual field work, but the pressures of the

needs of the group overcome this difficulty. Most of the

final presentations were quite creative and original. In a

short Likert type questionnaire they reported to have

enjoyed the workshop and some indicated to have squired new

pedagogical perspectives to use in actual practice.

In the second evaluation, carried out six months after

the initial workshop, the teachers were asked to respond to

a more detailed questionnaire. One group of questions con-

cerned the self-evaluation of change of attitudes by the

teachers themselves. Another group concerned the different

activities undertaken. Three other open question asked for

comments on the difficulties and the potencial of project

work. Twenty teachers answered this questionnaire.

The responses to the first group of questions are

summarized in Table 1.

A global analysis of the responses to the questionnai-

re showed that in this phase of the work most of the tea-

chers considered that the activities carried out contribu-

ted to improve, either highly or moderately, the qualitity

of their work in the mentioned areas. For the whole set of

questions, 39% of the responses indicated a high contribu-

tion, 46% a moderate contribution, 12% a low contribution,

and 3% were "don't know" responses. The item that had most
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TABLE 1

Contribution of the teaching training program
to specific areap-teachersLresponses

A. Development of an attitude

of permanet learning

Contributions

High Moderate Low

95% 5%

Don't
Know

B. Development of capacities

of organization and

technics of group work

157. 60% 25%

C. Awareness of the importance

of the affective aspects

in the learning process

25% 45% 20% 10%

D. To view knowledge in an

interdisciplinary way

407. 40% 20%

E. Awareness of the problems

of communication in the

school context

35% 60% 5%

F. Development of new

perspectives concerning

the role of the teacher

in the school

40% 55% 5%

G. Development of a new

relationship with students

40% 40% 20%

H. Development of the ability

to stimulate and to

support the project of

the students

35% 60% 5%

I. Development of a more 30% 50% 10% 10%

positive perception of

their function as educatores

positive responses concerned the development of an attitu-

de of permanent learning. Following were the items D, F,

and G. The items B,E,H and I received mostly moderate respon
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ses. The answers of the mathematics
teachers and of the tea

chers of other topics were
similar for all items, except

for items E, G and I, in which mathematics teachers were

eager than the others in recognizing a high contribution of

the training ,rogram.

A second set of question concerned the specific contri

butions of the several moments of the teacher training pro-

gram. Some of this moments had a pedagogical emphasis and

others concerned the use of specific computer tools. The

most valued of the pedagogical activities was the initial

workshop (63% high). For the remaining, the teachers ten-

ded to rate higher the activities that were mostly related

to their actual experiences. The sessions concerning the

specific computer tools were in general quite highly rated

(all with more than 42% high).

At last, in open questions, we asked for the opinion

of the teachers about the difficulties related to project

work as well as for suggestions for the improvement of the

program. Most of the teachers indicated several difficul-

ties that they face in trying to use the computer as a

support for project work in their schools. A content analy-

sis of the 51 answers
indicated that the scarcity of avai-

lable time and the insufficience of material conditions,

namely, computers and appropriate working spaces, were mos-

tly refered (29%).
Pressures from programs and the negative

attitudes of their colleagues wee also mentioned several

times (10%and 18% of the answers, respectively).

Concerning the role that should be given to the refle-

ction on the pedagogical
aspects of the use of computers in

education, 89% of the teachers agreed that this aspect

should continue to have a strong emphasis in the program.

However, they suggested a shift towards more practical

issues and more exchange of experiences.

The projects developed in the schools by these tea-

chers may be grouped in two kinds: projects with teachers

and projects with students. In the first case, were offered

courses related to the use of computer tools, such as

drawing applications, word processing, and LOGO. There were

also sessions for all school to show the educational poten-

tial of computers. In the second case, there were experien-
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ces with LOGO and other computer tools in extra-curricular
activities, as well as nne experience on teaching Geometry
in a 5th grade classroom. Projects such as the school jour-
nal and other interdisciplinary activities were also imple-
mented in most of the schools.

A more detailed evaluation of all these projects will
be performed on the end schools year in order to improve
the working methods and to divulge and extend this kind of
activities to other schools.

CONCLUSIONS AND IMPLICATIONS

Overall, we tend to believe that this training program
was quite succefull. It seemed to have a reasonable mix of
"pedagogical" and "technical" components, which reiforced
each other and promoted teachers willigness to change some
of their attitudes and practices.

The introduction to the use of computer tools and LOGO
constituted for most of the teachers the main motivation.
The discussion of pedagogical themes was appreciated and
the teachers recognized it as important for the acquision
of skills in developing work projects with the computer in
their schools. However, we feel that this pedagogical dis-
cussions should be more deeply rooted in teachers practical
experiences.

It would be unreasonable to expect outstanding results
in a rather limited period of time. The inservice training
of teachers should be viewed as a long term process. Parti-
cularly in this case, the teachers need to learn many new
things about a new medium, the computer. However, these
teachers are becoming leaders in their schools by introdu-
cing the computer as an instrument of pedagogical change.
These teachers will participate in the training of their
colleagues. So, this involvement may rather be an important
part of the training program next year.
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EXPERIMENTATION OF THE MINI-INTERVIEW BY PRIMARY SCHOOLTEACHERS

Nicole Nantais, Universite de Sherbrooke

The MINI-INTERVIEW (Nantais et al, 1983) is a new tool for
evaluation of understanding of mathematics at the primary
level and is characterized by a short individual question-
ing sequence. Concerning the experimentation of this tool,
we raised two questions: first, a question of feasability,
in which we tried to determine the conditions under which
the teacher can use the mini-interview with each of her
pupils in the classroom. The second question concerns the
use of the mini-interview to determine if the teacher uses
it as a tool for formative evaluation, in the sense of
providing her with some feedback on her teaching and assess-
ing the pupil's understanding in the construction of the
concept. This paper presents some results of the experi-
mentation of the mini-interview by three first grade school-
teachers with all their pupils in their classroom.

The mini-interview has been devised to inform the teacher of the child's

thinking and reasoning; for the teacher who wishes to involve her

students in the construction of their knowledge must be able to follow

their cognitive evolution. That kind of information can only be obtained

from individual questioning and this suggests a form of clinical interview

as the tool to be used. To achieve its full value, this form of evalua-

tion must be integrated in the teaching task and hence should be used by

the teacher herself within the classroom. It is in answer to the needs

of the teachers and also to stay within the restrictions of the classroom

that we have designed a new tool for the evaluation of the child's

understanding of mathematics, a tool we have called the MINI-INTERVIEW.

The mini-interview consists of an individual interview of the pupil and

is characterized by a short timespan (5 to 10 minutes) and a sequence

of questions prepared systematically and rationally. This evaluation

aims at the student's understanding in the construction of conceptual

schemas, and hence deals only with key notions in the mathematics

curriculum. This is why the use of the mini-interview by the teachers

requires a serious training in conceptual analysis as well as a good

grasp of the methodological guidelines concerning the steering of an

interview. This preparation enables them to determine criteria by which
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they can evaluate the understanding of a given concept, and it also helps

them in running rigorous and efficient mini-interviews. The mini-interview

used in this experimentation deals with the strategy of "counting on from

one of the terms" in the addition of small numbers (Nantais et al.,1983);

the sequence of questions in this interview has been carefully studied

with many subjects.

To determine the criteria by which to analyze such an exnerimentation. we

must realize that to carry out mini-interviews is no easy task for it does

not simply consist in using a new instrument by following precise rules.

Indeed, to carry out each interview, teachers must take into account

several factors simultaneously such as class organization, the questioning

prepared in advance, and abiding by the allotted time (S to 10 minutes).

Moreover, they would need to interpret the child's answers in order to

continue questioning adequately and handle all this while respecting the

child's rythm and behavior. For it is important to spell out that it is

not a test but an attempt to ascertain the pupil's reasoning in the

addition problems set. For experimental purposes, with each pupil, the

teacher had to audio-register each interview and complete a checklist,

as well as write up an assessment report.

CLASSROOM USE OF THE MINI-INTERVIEW

Regarding the question of feasability, we have kept in mind the following

elements: the handling of the interviews, the class organization, the

type of activities suggested to the students, and the attention paid to

the provided time. Thus our first question, about feasability, has been

answered positively, for the three teachers involved in the experimentation

Louise, Denise, and Rejeanne, succeeded in using the mini-interview with

all their students within the regular time frame of their class,over a

period of two to three weeks, at a rythm averaging two interviews a day.

Concerning class organization, it was our intention not to suggest any

predetermined model, for we wished to examine how each teacher would

handle it in carrying out the mini-interviews within the classroom. The

three teachers did not make any radical modification but simply adjusted

their normal mode of functioning. Thus one teacher, Rejeanne, took

advantage of the time allotted to her students for individual work, in

order to carry out her mini-interviews. Louise had to initiate her pupils

in working on their own more often without asking for help during the
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the mini-interviews with individual students. On the other hand,

Denise's pupils were already used to work regularly in teams or in

workshops on a wide variety of activities; moreover, Denise had

already started individual assessments right at the beginning of the

school year. In each classroom, a corner had been set up to facilitate

audio-registration of the interviews, but even more to enable both

student and teacher to concentrate on the task at hand.

Class organization went beyond just the material aspect, for it also

involved planning the activities for the rest of the students, activities

which were to be used not simply to fill time, but needed to be integra-

ted into the regular learning activies. Activities such as silent

reading, research work, and workcards on social sciences, were

handed out rather freely at the beginning. But quite soon, the teachers

felt the need to plan ahead and spell .out,as rigorously as possible, the

work intended for the students so that all of them would understand

clearly the instructions and the methods to be used in the tasks they

were set, thereby reducing the possibility of being interrupted during

the interview. Concerning the feasability question of the mini-interview,

we had at the beginning questions about the possibility of letting such

young children work on their own or in teams. The experimentation shows

us that not only is it possible but that it is even desirable; indeed,

the three teachers reported that it proved to be very positive,for their

pupils learned to organize themselves, to manage without their constant

presence and support, and thus became more autonomous. However, this

required that the activities had to be well prepared and that all

students understood the work they had been set. In a few instances, the

teachers have reported that they were able to do two consecutive

interviews, their students being so involved and focused on their work.

One of the characteristics of the mini-interview is its short timespan

which must not exceed ten minutes. Respecting this time requirement is

quite important for the brevity of the mini-interview is a specific

element used in determining the classroom feasability question. The

time spent by the teachers was as follows: Louise stayed within the

allotted time in 21 of her 25 interviews, Denise for 12 out of 19, and

Rejeanne for 17 out of 24, providing us with the following percentages,

0.84 , 0.63 , and 0.71 respectively. Considering that the teachers
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were trying out the mini-interview for the first time and that they were

being held to rigorous experimental constraints, these results are very

positive and show that in normal conditions, the mini-interviews can be

used in a relatively short time since with 70Z of the 68 students

interviewed, the prescribed time had been observed.

Our analysis enables us to bring out some of the reasons which might

explain why several interviews vent beyond the allocated time. It seems

evident that this can be attributed to the fact that the teachers were

experimenting this new tool for the first time but perhaps, it is also

because some of the experimental instructions had not been grasped

adequately. In a few instances, the teachers tended to transform the

interview into a teaching session or to strongly suggest some hints which

might have brought the student to provide a desired response; this

occurred mostly with students having some problems. In other cases, the

pupil's nervousness made it necessary to repeat or reword questions that

had net been understood. The lengthening of some interviews can also he

attributed to one of the questions which was aimed at assessing the

child's memorisation of number facts, a question for which the teacher

should have provided only a few seconds for an answer. One teacher. in

particular, Denise, did not understand the objective of this question

since each of her students was allowed time to look for an answer and

to explain the reasoning behind it. The lack of adherence to the prepared

questions also had an impact on the length of the interviews, especially

when useless questions were asked or when unintended questions were

added. For one of our teachers, Rejeanne, her difficulty in interpreting

immediately the student's procedures and answers led her to repeat some

questions or to raise additional ones even when the pupil's procedure

was quite evident.

THE MINI-INTERVIEW AS A TOOL FOR FORMATIVE EVALUATION

Relative to the second question, we might add that having trained the

teachers to analyze concepts, we were convinced that they had learned to

view the acquisition of knowledge as a constructivist process. It was

thus natural to expect that they would be more aware of the value of

formative evaluation. From our analysis, some evidence can be found

to the effect that the evaluations performed by these teachers using the

mini-interview, have been carried out in a formative perspective.
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We first examined if they could identify the procedures used by each

pupil in the addition problems. ue then compared the teacher's

evaluation with ours. In each case of agreement between our two

evaluations one point was attributed for each of the four addition

procedures correctly identified, and of course, for each one of the

pupils. The correspondence between the two evaluations has proved to

be excellent as indicated by the index of agreement worked out for each

teacher: 0.92 for Louise, 0.91 for Denise, and 0.86 for Rejeanne.

This shows that our subjects, the teachers, have correctly interpreted

the understanding of their students regarding the identification of

procedures used in the addition of small numbers.

The mini-interview has enabled the teachers to determine the level of

understanding of their pupils and has led them to modify their perception

of some of the students. For example in Rejeanne's own words, "Most of

my pupils were more advanced than I tought"; and for Louise, speaking

about one of her students, "Contrary to what I thought, she is not ready

to move to the level of
abstraction". Furthermore, to her great surprise,

she found a pupil who did not understand the meaning of addition, despite

the fact that they were well into the school year. The other teacher,

Denise, identified a few pupils who did not conserve number; this led

her to understand why they were not succeeding in counting on while

doing addition.

Since the mini-interview aims at a very precise aspect of the construction

of a concept, it can be used beyond the assessment of a student's under-

standing, to uncover quite accurately at which point there might be a

problem. Thus, the teachers were able to identify not only those

students who needed special attention, but especially, what kind of help

was needed; and this is one of the formative elements of the mini-

interview. For instance, some students could not solve problems of

addition without concrete material: 8 in Louise's class, 6 in Denise's,

and 5 in the class of Rejeanne. This information proved to be quite

important, for indeed, it led Rejeanne and Louise to perceive the need

for more work at the intuitive level, the latter teacher specifying that

she is now aware of the need "for some pupils to work more with manipula-

tives" and that she will have to "drop several textbook exercises which

are dealing solely with the symbolic aspect of
addition".For other pupils,
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the counting on procedure was almost mastered; this allowed the teachers

to clarify the type of intervention to be used with them by planning

supplementary exercises to consolidate the concept.

At the end of each interview, the pupil was asked a question in order

to find out his perception of this new type of individual intervention.

The children felt that being alone with the teacher had put them in

a privileged situation. As Rejeanne remarked: "This is an opportunity

for the pupil to speak to the teacher, especially for those who do not

express themselves very much in class". For some pupils, the mini- inter-

vans, was used to strengthen a newly acquired procedure. For example,

one of Louise's pupil's who during the interview discovered that counting

on from one of the terms "it always works" and continued using the

counting on procedure for the remainder of the interview. In such a

case, the mini-interview goes beyond its evaluative objective, but where

a few additional secon(:e are sufficient to initiate or reinforce a

desired procedure, the opportunity should not be missed. Nevertheless,

care must be taken not to transform the mini-interview into a period

devoted to teaching or to remediation.

As a last observation, let us recall that the main objective of the

mini-interview was to get at the child's thinking, thus to de- emphasize

the answer in order to focus on how the pupil solves a problem. Our

experimentation has shown that

finfing indices, either in the

answers, which would provide a

sentence of Denise's indicates

mini-interview when she writes

in the future she will be more

answer was found".

our three subjects were really aiming at

children's actions or in their verbal

better grasp of their reasoning. And this

definitely a formative effect of the

about what she learned from it is that

inclined "to ask the child how the

CONCLUSION

These few results from our analysis lead us to believe that the mini-

interview is a tool that can be used by teachers themselves in their

classroom with each and every one of their pupils. Moreover, the mini-

interview can play a formative role in evaluation. As described in this

paper, many indications show that in addition to enabling them to
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gather information on their students' understanding, the teachers' :use

of the mini-interview provided them with feedback on their teaching.
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CHANGING TEACHING STYLES
The development of a model for effective in-service courses

Susan Pirie, University of Warwick

This paper discusses a two-year research project on helping
teachers to change their classroom styles. It focuses
on two interlocking aims. The first wns to devise a
model for in-service courses which wouldennble participants
to genuinely alter their perceptiona of the ways in which
they could enable their pupils to learn mathematics.
The second aim was concerned with a particular medium
through which this change could be effected. There has
been growing evidence that children, and indeed adults,
achieve greater enjoyment and success if they are encouraged
to become involved in mathematical thinking rather than
merely receive mathematical thought. Changes in the
English public examinations at 16 have in effect forced
this doctrine into the classroom by including invest-
igation°, extended projects and problem solving in the
syllabus to be ansessed. The research project selected
investigations as the basis from.which to work and aimed
to enable reluctant and even hostile teachers to effect
the necessary change to a more investigative way of teaching,

it was taken for granted that no person can change another. Only
the teacher herself can effect personal change and those who offer
in-service courses have therefore to provide her with the optimum

environment %;ithin which this can take place. It is relatively easy

for attitudinal changes to occur on a surface level: the zeal of
the presenters can be infectious, but "it is not sufficient to take
the ordinary teachers...and by a uhort course of lectures arouse

in them a temporary enthusiasm for new methods" (Perry, 1902). For
there to be a lasting change, able to withstand the pressures and

assumptions back in the world of school, there must be personal

motivation, conviction and involvement in the proposed new ways of
thinking or behaving. A teacher must take away within herself a
belief in the new act of values, a belief that they are relevant
to her, a belief that change is necessary and a firm belief that

such personal change is possible. To be effective, in-service courses

must not provide merely a 'bolt-on package', but a way of altering

one's philosophy of education and understanding of learning. There
are criteria around which the course model was built, but equally

fundamental to the design was acceptance of the premise that change
can be very threatening. In this instance it challenged both the
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perception which teachers had of their knowledge of the content of

the subject and their skills of clew) management.

Confrcy (198h) contends that "Implementing instructional approaches

that encourage a focus of process and more independence, persistence

and flexibility in the students requires changes in students'

conceptions of mathematics". True, but it first requires such changes

in the teachers. Without these, 'new' curricula can rapidly become

moulded to fit the structure of the old.

The major element of the course model was the creation of a supportive

er.vironment within which teachorn could work and think with confidence.

The intention was to make teachers aware of their own strengths,

enable them to achieve mathematical succour; and pleasure themselves

through a new medium, support them in their initial attempts to change

their classroom practices and create a non-threatening environment

in which tc. discuss their progress. The structure of the course

was therefore Lunt around four key elements:

a)

b)

c)

d)

each participant's personal experience of doing an investigation;

small group reflection on this experience;

each participant's personal experience of

investigation into their own classroom;

email group reflection on this experience.

taking the same

The course was spread over a teaching term and took place out or

school hours. The first session ran from 5.3G on a Friday evening

through to 8.3() on the Saturday evening with the aim of welding the

group together as a supportive unit. Subsequent sessions took place

fortnightly and were of two to two-and-a-half hours duration. There

Was a further whole day long meeting in the middle of the course.

Time was provided at each session for the teachers to work ono suitably

flexible mathematical investigation at their own level of understanding.

Small groups of five or six teachers who had been playing with the

same problem then spent time together discussing their workings and

trying to take their explorations of the problem further. A tutor

joined each group with the passive role of listener and covert task

of ensuring that more mathematically able or dogmatic teachers did

not pose a threat to the less secure and confident. At some stage

each evening the participants returned to the whole group for some
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relevant input by the course leader. This included analysisof processes,

elements of classroom planning, approaches to assessment and topic-

based work. The final part of the evening was spent back in the

small groups planning, with the help of the tutor, how to take their

particular investigation into their own classroom - this 'homework'

to be done during the two weeks before the next meeting. Careful

attention was paid to the composition of these small groups, which

were changed for each new set of investigations. It was there that

mutual support was vital, but at the same time no teacher was allowed

to become, even subconsciously, dependent on any one other teacher.

Each had to make the change in teaching style their own. The start

of each of the evening sessions was a small group discussion of "how

the classroom experience went".

The course model was trialled on a cascade principle. Initially

I ran the course at Oxford University. The participants were aware

of its experimental nature and the final session was devoted to

evaluation. Participants were asked, through an anonymous questionnaire

and subsequent informal discussion over refreshments, about their

initial expectations of the course, their reasons for not already

using an investigative teaching style, their emotional reactions

during the course and their current assessments of the effect of
the course on their future teaching. Specific detailed suggestions

for improvements to the individual sessiona were also sought. The

presentation and content were modified and the series of sessions

written up in such a way that two advisory teachers and two heads

of departments in local schools could run a second course at which

I was present. This time, teachers were encouraged to come with

acolleague from their own department if possible, but were deliberately

prevented from working together in the same small group. Again the

final Hessian was devoted to evaluation. The heads of department

were then able to take an adapted model back to their staff at school

and the advisors had the materials to run similar courses within

their local education authorities. One of these latter courses was

also evaluated. A follow-up study was then initiated to look at

the participants of the first two courses. The purpose was to assess

the long-term influence on their teaching styles.

The method adopted in the evaluation session - that of open-ended

questions such as "What were your expectations of the course?",
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"Were there occasions when you felt 'good'?" - meant that teachers

responded in their own words, but it was possible to group the renlies

under certain headings. The absence of response, however, did not

necessarily imply a negative reaction. Some of the questions were

posed to shed light on the course model, and some to examine the

area of content, namely investigations. Only those affecting the

construction of the course model are presented here. Tables of results

are presented in percentages followed by brief comments. General

conclusions are suggested after
the follow-up study has been cor.sidered.

RESULTS OF EVALUATIONS

From Questionnaire
Evaluation at end of 1st 2nd 3rd course

Expectations of the course?

Encouragement and know-how
69 53 50

A collection of materials
63 38 40

To meet and discuss with other teachers 38 16 16

To learn how to assess investigations
19(6) 28(9)' 40(23)1°

Ideas on classroom management
56 34 GO

To understand the value of investigations 19(6) 3 16

*The percentages given in
parenthesis indicate those whose expectations

were not fulfilled by the course.

The rising dissatisfaction
in the session on assessment can be directly

related to the rising panic among
teachers, following the government's

announcement of the new national examination. Neither the course

leaders nor anyone else at that time had 'the answers' on what marking

schemes would be used for this examination.

Emotional reactions during the course?

'Bad' Mathematically insecure
31(19) 31(25) 37(23)*

Tired
31 28 10'

Overwhelmed
19 6 20

'Know-alls' spoiled it
13.

Cold workroom
10**

'Good' Enjoyment
69 34 20

'Eureka' when working 63 56 50*
Working in a group 19 25 30

The percentages given in parenthesis indicate those who commented

that they had overcome these feelings during the course.

'The tall in complaints of tiredness may be attributed to the fact

that the third course was held near the participants' schools, therefore

involving much less travelling.

This comment is interesting as it only occurs in the third course

questionnaire responses. The original cou^se model provided fox'
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monitoring of the small groeps to prevent this happening and this
feature was not present in the third course.

**Ten weeks later, the teachers still remember the one very cold
evening. Comfortable environment is important.

**The high number of spontaneous responses in this category underlines
the value of the philosophy behind the course model, which was to
allow participants to work at their own mathematics

their craft as teachers.

Did more than the set homework?

before considering

No
13 25 37Same investigation, different class 38 59 37Same class, more than one investigation 50 31 30

Normal teaching style affected?

No (and no response)
38 9 33Yes
62 91 67These were either: More investigative 44 72 57

and/or: More confident 25 25 20

Intended doing investigations next term?

No-one suggested that they might not do investigations.
Regularly

75 56 57Integrated on the syllabus
56 47 43One-off events
13 38 37

Have involved colleagues back at school?
No

50 37 67'Several
44 50 20One other
6 13 13

*This figure includes many teachers all of whose departments had
been on one of the three courses.

The follow-up study was conducted by Robin Grayson (1986), who inter-
viewed the participants during the year following the courses.

Comments relevant to the course model are discussed here. With
hindsight all the participants considered the courses enjoyable and
beneficial, with the exception of two teachers who were already well
experienced in the use of investigations and confessed to having
come on the course merely to get new materials. The use of Saturdays
was found to be acceptable, giving time for greater depth of study,
and the requirement to "try out and report hack" was appreciated.
It forged a link between personal work, course theory and classroom
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practice. Attending with a school colleague was seen as valuable

as it provided continued support away from the course but many were

also pleased that they had been separated during the sessions as

a consequence of the philosophy of the course model, as this provided

a wider pool of experiences to draw on. The original intention of

this policy was to protect the more junior teachers from the fear

of assessment by their heads of department, but this was obviously

never made explicit. The difficulties course members encountered

when trying to continue investigative work after the course ended

were discussed during the interview. One unexpected reaction was

to the timing of the course within the school year. The first course

was held during the last term of the year, and, not knowing their

new timetables, teachers were unable to commit themselves to doing

investigations in the future with any specific group of pupils.

By contrast, the second and third course participants were able to

make statements such as "With classes 2A and 3B" with a certainty

that they would not be inhibited from carrying this intention out

by changes in teaching schedules. The factor of pupil resistance

was frequently raised, but the teachers felt that pupils became less

resistant over a period of time, and the courses had provided the

confidence to persist with their new style of Leaching. Problems

of seemingly unsuitable school sites, teaching schemes and lack of

resources were seen as diminishing obstacles to a change in teaching

styles, given the personal confidence and motivation to change acquired

on the course. Confirmation of the course model came through the

finding that, as already to some extent indicated by the above stat-

istics, the major single benefit reported by teachers in the follow-up

study was increased personal confidence. It was this which gave

them the willingness and impetus to experiment in their te'..._hing.

Several recommendations for those with the immediate problem of

designing in-service courses can be culled from these results, but

what are the implications which can be drawn for the more general

psychological aspects of effecting changes in teaching style? The

increase in confidence came, not from instant classroom success as

they returned from the course, but out of the personal belief that

the new style of working which they themselves had experienced and

enjoyed would facilitate the pupils' understanding and enjoyment

of their mathematics. This personal conviction, through personal

involvement enabled them to comprehend, and not merely to 'hear',
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the value of the change.
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THE LEFT AND RIGHT HEMISPHERES OF THE BRAIN

AS A MODEL FOR IN-SERVICE TEACHER TRAINING.

Gershon Rosen

The Weizmann Institute of Science, Israel

Abstract: This report discusses the left brain/right

brain model as a method of evaluating didactic teaching

methods in response to teachers questions. A right brain

bias is implied throughout.

There is an increasing amount
of evidence to show that two

different aspects of learning mathematics, i.e. language functions

vs. mainly spatial processing, are linked to the activities of

different halves of the brain.(1)

In the P.M.E. Israel 1983 two papers discussing the influence on

learning and teaching of the two
hemispheres of the Brain were presen-

ted. Fidelman
(2) in relation to learning and higher mathematics and

Yeshurun(3) in relation to learning and elementary school mathematics.

However, Yeshurun, ibid, remarks that a right brain approach with

elementary school mathematics is possible since most of the topics can

be presented both sequentially
and globally but that this mode of

presentation is not possible in secondary school mathematics as each

branch of mathematics has its own mode of presentation. In other

words the topic determines the approach.

Many educationalists appear to dismiss the left/right hemisphere

model because they feel that a childes left/right orientation is

determined at birth or at least during the formative years and there

is not very much one can do to change it. Others maintain that some

attempt should be made to deternine the degree of left/right brain

bias for each individual child and then use appropriate teaching

techniques. Still others maintain that mathematics is a predominantly

left brain activity and should therefore he taught as such (standard

text book approach).

All the above approaches (no matter what the terminology used to

relate to right or left brain) appear to use a linear scale such as:

r-N
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DIAGRAM 1.

Right Brain
Orientated

as a model of the child's thought (or topic requirement) with the

child (or topic) sited somewhere on the scale.

It is my contention that both left and right brain approaches

are possible with most topics in mathematics and it is important for

the teacher to at least be aware of this and to help me identify

various teaching approaches) I use, not a linear scale, but a 2-

dimensional approach, viz:

Left
Brain

at
for each topic on
the curriculum.

Right Brain

DIAGRAM 2,

In every school maths curriculum and in every age range there is

at least one topic (or concept) which presents itself as a barrier to

further advancement in maths. It can be as simple as multiplication

by 10, or more complicated such as long-division or addition of frac-

tions, with the barriers becoming greater as the pupil climbs higher

up the ladder. Eisenberg and Dreyfus(4) refer to thist"one continues

to take Mathematics courses until one doesn't succeed any more". In

, the primary to early secondary school situation there is no opportu-

nity to "drop out" entirely, it is usually only possible to "drop

down" a stream, so these barriers have to be either "overcome", "by-

passed" or may be even just "ignored" or else they remain barriers.

One way to cope is to "learn the rules" and "play by them" or

have a machine, like a calculator, that "knows the rules" and so all

one has to do is to have confidence in the machine and feed it the

information and if the rules for handling the machine are simpler or

in the eyes of the user more consistent than those of, say, subtrac-

tion of negative numbers, so that the right answer can be achieved
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most of the time, then everything is rosy. Thus we are presented with

a picture of the pupil who succeeds in maths being the one who is able

to play by the rules, whether he understands them or not and the

successful teacher is one who can get his pupil to play by the rules,

whereas a pupil who has grasped the concept "sees" what to do and the

barrier disappears.

This "getting the pupils to play by the rules" very often becomes

an obsession going in some cases to extremes, for example, I've seen

some teachers spending the best part of a lesson on SETS, with instruc-

ting the pupils on the correct way to draw the curly brackets; 3or de-

fining an order for removing brackets from an expression like:

6 23 - (4.(7 - 5) + 311

and woe betide any pupil who deigns to write the expression:

6[23 - (4.17 - 53 + 3)]

and it certainly won't permit a pupil to "see" a solution to a problem

such as "the sum of two numbers is 13 and their product is 36, what

are the two numbers?".

The "SEE" used is a right brain process. Let us consider some

specific requests from middle school teachers during in-service work-

shops.

Teacher 1). The class has been occupied with inserting the inequality

sign between pairs of directed numbers. As expected some were carry-

ing out the task successfully, others sometimes with the correct

answer and at others not and, of course, others practically always

wrong. The pupils were using the following working definition:

If the two numbers are positive then tLe larger number is furth-

est from zero, and if the two numbers are negative then the number

nearest the zero is the larger. (Of course if one number is positive

and the other negative then the positive number is the larger.)

The teacher had two objectives:

i) to enable the pupils to see that the larger the number the

further right it is on the number line, (a unification and hence right

brain approach)

ii) to enable the pupils to give the right answer instinctiv-

ely (again right brain).

(.4 4;w
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Teacher 2). The class is working well with the addition of directed
numbers and is also beginning to handle open sentences such as:

(+3) + 1=1- (-l) (Right brain)

but for all that,I know that we will not be able to make a successful
transfer to subtraction.

Eventually I will have to make the statement
that to subtract we add the (additive) inverse and the pupils will
learn it without understanding the rule in the same way as they learnt
how to divide fractions. Working with this rule (left brain) interfer-
es also with the addition that the class had mastery of (or so I
thought). Is there no way to unify the two operations? (right brain)

Another Teacher (same topic) 3): my class seems to be handling addi-

tion and subtraction of directed numbers without too much difficulty

but we don't seem to be convinced that adding the (additive) inverse is
equivalent to subtraction.

Teacher 4). When teaching the solution of two simultaneous equations
is it better to equate coefficients

and subtract or get to the situa-
tion where the coefficients

are additive inverses and then add?

The above examples are with concepts or topics that the teachers
feel must be taught. Let us now consider some topics which the

teachers would prefer not to teach.

Teacher 5). Is it in order if I do not teach the area of a circle to

my 8th graders? They are better off doing algebra anyway,

Teacher 6). I don't want to teach Pythagoras. It doesn't fit into
the syllabus and it just takes up the class time and anyway the child-

ren never understand it.

Teacher 7). The book says that we have to teach inequalities of the
type: 'x - 3 I I x + 4/4C 11, how is it possible to
do so successfully with an 8th grade class in the little time that is
available?

I deliberately chose these examples of Teachers' requests for two
reasons:

i) they require a reply which appeals to the right brain

(left brain solutions didn't satisfy the teachers)

625
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ii) Didactical questions that
could be dealt A'th using a

predominantly left brain approach were practically non existent and in

any case solutions were
usually given by other teachers at the workshop.

One other point, a paper
of this type, is by its very nature

predominantly left brain orientated so it will be very difficult to

demonstrate a right brain approach and therefore apart from one attempt

which will follow shortly a
full discussion of possible right brain

approaches to the teachers
questions will be left until this paper is

presented when perhaps other
suggestions will be forthcoming.

Betty Edwards
(5) c'assifies Left-Mode and Right Mode

characteristics as follows:

L - Mode
R - Mode

Verbal
Non verbal

Analytic
Concrete

Symbolic
Analogic

Rational
Spatial

Logical
Intuitive

Linear, etc. Holistic, etc.

If we are to appeal to the Right brain with our solutions we must

be able to describe the
approach with more of the R-mode terms than

those of the L-mode and the
approach will be at some point R (see

diagram (2)).

I now present the suggestions accepted by teacher 5,

Take a circle

fold in two

What is this bit (the part labelled d) called?

Fold in two again

What is this part,(the part labelled r) called?

Work with your neighbour and make different shapes
from the two folded

parts of the circle, give names where appropriate.
(Encourage different

shapes)
butterfly

semi circle



Square - Anything special about the square?

Yes it is the square whose side is the radius of the circle or

"square on the radius"

use the square as a template and draw 4 squares thus

Take your circle back

How many squares will your circle cover?

A left brain approach using the formula 7(r 2 results in many

children (taking Ire to be 3.14 and r to be 5) using a calculator and

keying in 3.14 x 5

i.e. (3.14 x 5)
2

and not 3.14 x S 2

Whereas using the right brain approach with the emphasis on the square
of the radius the child will generally key in 5x5w

3.14

Judicial use of a right brain approach even simplifies the algebra from
2 dimensional to uni-dimension (6)

.

Now see if you can think of right brain orientated suggestions
for the other questions listed.

In conclusion, neither the left brain or the right brain can work

in isolation, there must be interaction between the two and the teacher

must be able to stimulate both hemispheres of his students' brain other-

wise no interaction can take place.

It is the task of the teacher to devise (or master) activities or

approaches which will (a) encourage the pupil to strengthen his weaker

hemisphere and (b) to use his stronger hemisphere to maximum effect in

exactly the same vay as a soccer coach would devise activities to
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encourage his player (a) to strengthen the weaker leg and (b) to

increase the range of skills on the stronger leg knowing full well

that even though the player prefers one leg over the other, both need

to be developed.

In order to encourage practising teachers to develop both hemi-

spheres they themselves have to be made aware of the model and in many

situations their own appropriate hemispheres have to be strengthened.
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CHILDREN'S AND TEACEMS' MATHEMATICAL THINKING:

HELPING MAKE THE CONNECTIONS

Barbara Waxman, Pine Manor Cbllege

Susan Zelman, Emmanuel College

This paper reports on the varying effectiveness
of workshop techniques that facilitate reflective
awareness in teachers who possess different
beliefs about learning, teaching aril mathematics.
Three prototypes of belief systems were developed
to make sense of participant responses toworkshop
techniques and were designed to capture the range
of beliefs expressed in the workshop. Techniques
included the use of videotaped clinical interviews
of children solving mathematical problems, auto-
biography, triadic problem-solving, and a pro-
jective test. Workshop techniques encouraged
different kinds of teachers to explore their own
le.::ning and beliefs and to make connections
between their own learning, children's learning
and their teaching practices.
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OBJECTIVES

The objectives of the research reported in this paper are

twofold: (1) To assess the effectiveness of workshop techniques for

facilitating reflective awareness in elementary school mathematics

teachers and (2) To examine, with the aid of three prototypes of

teacher belief systems, how these techniques affected different kinds

of teachers.

REVIEW OF THE LITERATURE

lte theories and research which inform the design of the

workshop and the research on the workshop derive from two sources.

The first source is the literature which describes and analyzes

children's mathematical thinking and which has resulted in a richer

understanding of children's cognitive processes in the mathematical

domain (e.g., Ginsburg, 1983). Recent work on the development of

mathematical thinking has, in Schoenfeld's (1982) phrase, moved

"beyond the purely cognitive" to consider the affective and

reflective aspects of mathematical learning. The consensus of this

research is that students' awareness of what they are learning, how

they are learning, and what they are feeling as they learn, are

crucial components of the learning process. Teachers who can

facilitate self-awareness in children are likely to improve the

learning process. The purpose of the woreshop was to facilitate self-

awareness in teachers so that they would be able to do so for their

students.

The second literature source is on teacher belief, systems. Brown

and Cooney (1982) suggest that teacher beliefs, which are strongly

held and acquired through enculturation
and education may not be

debatable or open for consideration by teachers. This would help
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explain the varying degrees to which teachers accept, internalize,

and practice what they learn in methods courses (Mandy, Waxman &

Canfrey, 1934). Teacher belief systems are not only important in

understanding teachers' behavior in the classroom; they are also

crucial when considering teachers as learners. Furthermore, teachers

themselves need to understand the relationship of beliefs to

practice.

CESCRIPTION WORKSHOP

Innovative teacher education workshops (e.g., "SuemerMath for

Teachers," Windy, Waxman & Confrey, 1984) have encouraged teachers

to be conatructivist in their approach to teaching mathematics.

Other recent workshops have used videotapes of students performing

mathematical tasks as springboards for teachers' understanding of

students' mathematical processes (e.g., Ginsburg's video workshops
for teachers, 1965). The workshop examined here incorporates both of
these approaches in an attempt to provide teachers with the

knowledge, skills and perceptions needed to facilitate self-awareness

in children. The objectives of the present workshop "Ihderstanding

Teachers' and Children's Mathematical Thinking" were to have teachers

examine: (1) The development of children's mathematical thinking,

(2) Their own beliefs about mathematics, learning and how they learn,

and 3) The connections between their beliefs about themselves as

learners and teachers, and how children learn mathematics.

Workshop techniques served the dual purpose of facilitating

teacher self-awareness and data collection on teachers' perceptions

of self-learning, teaching, the nature of mathematics and children's

mathematical thinking. Techniques included: Videotaped clinical

interviews of children solving mathematical problems (at different

age levels); journal assignments; a mathematical autobiography;

triadic problem-solving; exploration of unusual algorithms for

arithmetic operations; development of curriculum materials which

encourage self-reflection in children; administration and discussion
of a projective test (Mueller & Ginsburg, 1986) to tap unconscious

attitudes with regard to learning and teaching; and pre, post and

follow-up questionnaires.

631
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Subjects who participated in the workshop consisted of nine pre-

service and six in-service teachers from a cross-section of back-

grounds. Their ages ranged from 24 to 50 and they taught in urban

and suburban school systems.

FORMULATION OF PROTOTYPES

Examination of the fifteen workshop participants' responses to

the above exercises and techniques allowed us to formulate three

hypothetical types of pre end in-service teachers. These prototypes

are not meant to be used as unequivocal categories. They were

designed to capture the broad range of beliefs expressed by the

workshop participants and are used for heuristic purposes. The three

types are: The "Traditionalist," the "Constructivist," and the

"Reflective Math-Phobic."
We characterized these three types on the

basis of their beliefs about learning, mathematics, the development

of children's mathematical thinking, and how to teach mathematics. We

will consider each type according to these belief dimensions.

Beliefs about Learning. The Traditionalist saw learning as a

function of rote memory, of mastering one aspect at a time, and of

being externally rewarded. Learning was also seen as a function of

innate intelligence. The Constructivist saw learning as a function

of exploration, discovery and effort. Learning was seen as being its

own reward, and discovery was equated with ownership of the

material. The Reflective Meth-Phobic showed conflict in her

beliefs: On the one hand, she believed that learning was a process,

however, she also believed that perhaps success in learning was a

function of intelligence.

Beliefs about Mathematics. The Traditionalist saw mathematics

as the mastery of rote algorithms. The Constructivist SEW

mathematics as heuristics, problem-solving and part of everyday

life. The Reflective Math-Phobic saw mathematics as aesthetic,

profound and with important connections to the world of science and

art, but felt cut-off from those
connections through her lack of

understanding of the structure of mathematics.

Beliefs about Teaching,. The Traditionalist
believes in teaching

children by modeling correct
algorithmic procedures, drill and

practice, flashcards, workbooks and rewards for success. The

G 32



Constructivist teaches the underlying reasoning behind algorithms

through probing questions to children and provides children the

opportunity to work with manipulatives. The Reflective Math-Phobic

takes a laissez -faire approach by allowing the children to go at

their own rate and does not like to intervene with questions.

INTERACrION OF TYPES WITH TECHHIWES

1. Autobiography. Prior to coming to the workshop the students were

asked to writetheimathematicaautobiography. The Traditionalist did

well at mastering algorithms In elementary school but had problems

later on with algebra and geometry. The Constructivist did not like

arithmetic, but did well with math in high school or with teachers

who were more flexible in their approach. The Reflective Meth-Phobic

did not like math at any level but enjoyed an intellectual approach

to history and literature.

2. Analysis of videotaped clinical interviews. The Traditionalist

interpreted the children's errors as lack of knowledge or ability.

The Constructivist saw errors as a clues to the child's mathematical

thinking. The Reflective Math-Phobic sew errors as a Deletion of

fear and anxiety.

3. Triadic Probley,SolvIm. The Traditionalist was anxious about

their problem- solving performance, intruded her own solutions when

acting as a prober, and did not know what to observe when in the

observer role. The Constructivist was comfortable in the problem-

solving role even when they could not get the answer, did not impose

their own thinking as a prober, and recorded strategies the problem-

solver used when in the role of observer. The Reflective Math-Phobic

was afraid that her problem-solving performance would reveal their

mathematical ability, found it difficult not to impose their own

thinking when in the prober role, and had highly detailed

observations on all aspects of the task.

4. The Projective Test. Four pictures of learning scenes, one with

parents and three in a traditional school setting, were presented to

each participant who was then asked to write about each scene. The

Traditionalist perceived parents and teachers as telling the child

G33
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what to do and the child as not knowing the answer. The Construc-

tivist perceived that the parents and teachers were helping the child

or merely being available if the child wished to be helped, and

perceived that the child as patiently struggling with the problems at

hand. The Reflective Math - Phobic perceived that the parents and

teachers were ignoring the child and perceived that the child was

daydreaming or too anxious to perform.

SUMMARY AND CONCLUSION

The "Traditionalist" was uncomfortable with many of the workshop

exercises but was jarred into rethinking their teaching approaches.

The "Constructivist" already possessed a process approach to learning

mathematics, both in children and in herself. For this participant,

the workshop techniques proved most valuable as a chance to

incorporate reflective processes into teaching practices. The

"Reflective Math-Phobic" began to feel better about her own learning

history and to become more interested and curious about the processes

children use to learn mathematics. The discrepancy between her views

and her behavior as a teacher came to the fore.

Data from this workshop suggest that it is crucial to take into

account teachers' belief systems about learning, mathematics and

teaching when formulating teacher education curricula. The teachers'

exploration of their own learning and beliefs vivified the

connections between their learning, their students learning and

educational practice.
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Research Reports on Projects with laservice Teachers:
A Reaction

by

J. Michael Shaughnessy
Oregon State University

For the purpose of discussing these papers on inservice teaching, I

find it convenient to group some of them together. The papers of Dionne.

Waxman&Zelman. and Jaworski&Gates deal with assessing teacher's beliefs

or influencing teacher belief systems. The papers of Ben- Chaim, Fresko,

&Eisenberg; Phis, and Nason&Lappan propose intervention via training

and workshop activities to bring about desired changes in teachers' styles,

beliefs and teaching methodologies.

The two papers from Portugal, (Monteiro&Ponte and Abrantes&Ponte)

are concerned with involving teachers in computer use in mathematics

classrooms. Finally, we have papers by Nantais on the feasibility of

teachers conducting mini-interviews with their students, by Maher and

Alston on an inservice project in which teachers solved problems in groups,

and by Rosen on the feasibility of left-right brain analysis for didactical

questions raised by leathers.

I will not attempt the nearly impossible task of uniting this wide

spectrum of papers under any one roof, but I will try to react to them in

groups when it is feasible.

Teacher Beliefs

I wish to start with this group of papers, because it makes sense to me

to explore the belief systems of the teachers you are interested in changing

before you attempt any change activities.

The themes of "reflective activity" and "constructivism" echo

throughout the three papers on teacher beliefs. These researchers wish to

induce metacognitive activity among in- service teachers for the purpose of

developing a more constructivist perception of mathematics. Dionne

attempted to lead teachers to a more constructivist view in an

experimental inservice course. Beliefs were assessed by having teachers

explain how they graded student's answers to a test items, by a

questionnaire, and by pre-post interviews with the teachers. Waxman

encouraged reflective awareness of mathematical processes among

teachers by means of interviews of children solving problems, by teacher

autobiographies, and by group problem solving by teachers. Jaworski
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stimulated reflective activity by having groups of teachers watch
videotaped segments of actuai mathematics classes, and subsequently
relate what they saw to their own classroom experiences.

In Dionne's paper we find evidence that the experimental Inservice
course had effects on how teachers perceived children's mistakes. After the
course subjects made a distinction between computation and reasoning
errors among children, sad mentioned that the old "children have it or
they don't" response is fir too simplistic. The beliefs of these
predominantly oonstructivist teachers in Dionne's study appeared to be
strengthened by the course. This prompts several questions. First, what
exactly was the material covered in this experimental course, and how was
it covered, that is, what mathematics was taught, and how was it taught?
Information about the course seems crucial to other researchers in this
area. Second, what would happen if the volunteer sample had not had a
predominantly constructjvist orientation to begin with? Is it possible that
volunteers for such a study are more likely to be constructivists? Would it
be likely that "non-constructivists" teachers would show little change of
perception on the post interviews? It seemed that those teachers who came
to the study ready to explore and change their beliefs did so, while Jacques
did not. More case studies may be needed to see if the ever mental course
has any hope of moving the Jacques-type teachers away from their fixed
perceptions of mathematics teaching and learning.

One of the real strengths of the Dionne study is the three different
methods of collecting information about teacher beliefs, the "correcting
test", the questionnaire, and the interview. In this way a profile for each
teacher's beliefs can be reliably synthesized by analyzing their responses
in several different contexts. This same strength is also apparent in the
Waimea paper in which three prototype belief systems were distilled from
teacher responses to four distinct data collection techniques. The
prototypes "Constructivist", 'Traditionalist", and "Math-Phobic" may be
very useful to other researchers who are attempting to identify teacher
beliefs. The paper operationalizes each of these terms by describing
specific behaviors and response patterns for each prototype. According to
Waxman, Traditionalists believe in rote memory, irate intelligence,
drill&practice. Constructionalists believe in exploration&discovery,
underlying reasonin processes rather than mere answers, and heuristics
and problem solving. Math-Phobics seem to be caught between the other
two types, mouthing constructivism while behaving traditionally. The
interaction of each prototype with the techniques--videotapes,
autobiography, problem solving activity, projective test--suggests that
Waxman has devised an excellent way to assess some aspects of teacher's
beliefs. For example, traditionalists interpreted children's errors on the
videotapes as lack of knowledge, but Constructivists saw clues to the
children's thinking processes rather than errors. The Math-Phobic,
predictably, felt that errors occurred because the children were anxious.
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There are several issues that are raised by the Waxman paper that

those of us involved in in-service "change" projects should consider. It may

be well to first find out "who" we have in our workshops, that is, what our

teachers' beliefs are, and then work on providing a basis of change for

those who have a chafice of chancing, There are teachers who are not going

to budge, no matter what kind of inservice we offer them. Another

possiblity is to sprinkle a few Traditionalist type teachers among a group of

Constructivists so that the majority is already ripe for change, in hopes that

some of the Traditionalists can be made more flexible. It would be possible

to asses the beliefs ofr teachers ahead of time using the techniques in the

studies of Dionne and Waxman. A second issue that comes to mind is the

role of mathematical content. Is it possible that the Math-Phobic prototype

is on shaky Bounds mathematically, and therefore does not have the

confidence to merge voiced beliefs with actual practice? In a broader sense,

what is the role of mathematical content knowledge in determining

teachers' beliefs?

The Jaworski paper also used videotapes, but with the purpose of

stimulating group discussion and reflective activity. Teachers viewed taped

excerpts both from their own classroom, and from other teachers'

classrooms, and their comments during and after the viewing were

audiotaped. The paper reports that different teachers, viewing the exact

same segment of videotape, reported seeing entirely different things going

on. This finding makes sense in light of the three different belief
prototypes reported by Waxman, and corresponds to the different ways

that teachers analyzed errors on her test items. While Jaworski did not

report any systematic investigation of teacher's beliefs, the videotape

segments show a great deal of promise for ferreting out beliefs and biases.

Thus, Jaworski has provided researchers with yet another creative

methodology for assessing beliefs. Jaworski may benefit from using some

of the other methods for assessing teacher beliefs, such as those reported

in the Dionne and Waxman papers, in conjunction with her videotape

reporting sessions. In this way any claims that are made about teacher

beliefs can be substantiated by a second or third information source.

Jaworski poses some interesting questions for future research. What is

the effect, if any, on the classroom activity of teachers who participate in

these videotape sessions? How important is the selected tape excerpt itself

to the quality of discussion (one would think very important)? Jaworski's

method also has the potential to allow comparison of teacher perspectives

with student perspectives on a segment of classroom interaction, since

viewers can simulate the role of students, and examine the lesson from

their perspective.
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In summary, here are some questions that may deserve attention
from those researchers who are investigating beliefs of inservice teachers.

I. What is the interaction between reathematicel content knowledge
and beliefs about teaching and learning mathematics? Is there a
relationship between a teacher's preservice content and methods
background, and the prototype belief system she(he) espouses (i.e.,
ConStrUCUVISL, Trwlitionalist, etc.)? Beliefs do not form in a vacuum.

2. For that matter. are there any relationships between classroom
management techniques, class environment, and teacher belief systems?

3. Are there any relationships between the professional activity of
inservice teachers and their beliefs? That is, are teachers who are involved
In inservice activities such as workshops, attendance at local and regional
meetings, memberships in NCTM and local organizations, more likely to
profess certain types of belief systems?

Indeed, these three questions suggest that studies investigating correlates
of teacher belief systems are highly desirable. The papers at this
conference indicate that techniques for assemine teacher beliefs are
already in hand. A natural next step is to ask about relationships of beliefs
to other teacher variables.

1. Are the prototypes "Constructivist", "Traditionalist", and "Math
Phobic" adequate and useful in describing most teachers beliefs about
mathematics? Are there other prototypes that may be discovered if one
were to investigate beliefs of secondary level or college level mathematics
teachers?

5. What is the next step? That is, once you know something about the
beliefs of the teachers you are working with, what do you do about it?
What types of inservice experiences do you plan In order to enhance, or
even change, those beliefs?

This last question brings us to the second group of papers, research on
long term inservice programs.

atanninn A Teacher's Styles and Practice.

The papers of Pirie, Ben-Chaim, and Madsen-Nason have several
common themes. First, the teachers in these studies were actlyelyjnitaytti
iniloinit some mathematics in groups. The intent of all three researchers
Was to model both content and processes in such a way that they could be
carried directly into the classroom by the participant teachers. Second,
there was a provision for reflective activity and discussion in groups. You
will recall that this type of reflective activity on the part of the teachers
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was also important in the set of papers on beliefs. Third, these researchers

are attempting to evoke definitive changes in teachers' perceptions of

mathematics, and to insiuctsmaionditashauttiasatusgwathing
behaviors. Finally, there is deep personal involvement and commitment to

the teachers over an extended period of time (several years!) on the part of

the researchers. The establishment of a "group identity" among the

teachers is crucial in the studies of Pirie and Madsen-Nason.

Pirie's paper provides a nice transition from our discussion of teacher

beliefs. She is primarily concerned with altering teacher's perceptions of

mathematics by involving them in "investigations", reflective activity, and

group discussion. Pirie states from the outset that change cannot take place

unless the teacher her(him)self effects the change. This is a crucial

reminder for those of us who would like to bring about change through

inservice activities. Teachers, like any other people, change from within.

Since change takes place inside, no amount of "top down" dictating will

effect permanent change if a teacher is not ripe for it from within. Thus,

Pirie suggests that it is the job of inservice to provide an "optimum

environment" within which change can take place. Pirie's environment

involves a tightly welded group identity, a comfortable peer group within

which teachers feel free to reflect on mathematical investigations, and to

discuss and share personal experiences. Many of the elements of a

counseling support group are evident in Pirie's group of teachers--peer

support, freedom to express without judgment, networking with others

(teachers) who have similar concerns (bring a friend to counseling session).

Each group session started off with "how things went" this past week. The

strength of Pirie's methodology is the establishment of this very strong

teacher support group.

Once such a support group has beenestablished, the potential for

effecting a change of perception about mathematics is heightened because

teachers are not isolated in their attempts to change. This type of support

may be particularly important for effecting change among teachers who

are "reluctant and even hostile", as Pirie says, to pursue a more

investigative way of teaching mathematics. Such group support also is

crucial for the teacher who has to go back to a building where perhaps

heishe) is the only one whose perceptions of mathematics are changing. It

is very difficult to "fight the good fight" all by yourself when your

colleagues are criticizing you for doing something different. "Why do you

want to do that, we've always done it this way, and it's worked just fine."

It is not, then, surprising that Pirie reports success in altering her

teachers' perceptions of mathematics. Several other issues come to mind

while reflecting on this paper. Any attempts to reliably assess Iona term

influence of such a course on teaching styles may involve more than just a

questionnaire to substantiate the changes. Documentation of increased

inservice activity, and classroom visitations and observations over a period

6 I 0
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of several years, will provide further evidence that the desired changes are
actually taking place. It is just too easy for teachers to slip back into old
ways when they are out on their own away from that su-aort group.

A second issue involves the actual "investigations" 01 me course. This
is another case (as in Dionne above) where other researchers could benifit
from knowing exactly what mathematics was "done" by the groups. The
selection of appropriate problems for "reluctant and hostile teachers may
be crucial to the successful formation of a mathematical support group. I
believe that the actual mathematics is at least as important as the processof investigation.

The key word in Ben-Chaim's paper may be "intervention." This three
year project includes not only classroom intervention. but intervention on
an administrative and organizational level, The hope is to establish unified
plans for mathematics instuction at each grade level in each of the seven
project schools. This is a much broader and ambitious task than changing
individual teachers' styles and practices. Yet, changing the teachers is at
the core of Ben-Cbaims' efforts. Without the horses, the cart will not move.
Ben-Chaim utilized "master interveners", teachers who observed the
lessons of the participating teachers, offered advice, and gave
demonstration lessons. These master teachers encouraged reflection on
what was occurring in lessons, and offered alternative instructional
approaches to the teachers they were working with.

Ben-Chaim reports that while the administrators and principals were
very supportive of the program, the teachers themselves were "only mildly
interested." The paper reports only the first year's activity, so perhaps
more teacher enthusiasm will be forthcoming. On theother hand, the
approach in the Ben-Chaim project". top-down. Participation in the
program is, or might as well be, mandatory in each school. It is not
surprising that administrators like the program, since it appears to be
"their baby". One wonders what stake the teachers themselves really have
in the program so far. From their point of view, this project may be
"happening to them." outside their locus of control. They have
administrators telling them that they will participate, and master teachers
telling them how to do it right. Perhaps a missing ingredient in this project
is the establishment of a peer group among the participating teachers,
similar to the Pirie project. It may be possible to rectify this situation, since
the project is still in its early stages.

As in some of the other studies from this session, it is not clear in
Ben-Chaim's report just what mathematics, or what alternative methods,
were proffered to the participants by the masters. Specific examples would
be of great benifit to other inservice researchers. Another question
concerns the characterization of the existing mathematics programs in the
schools. How was the information about the state of mathematics In these

6,11
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schools obtained? Math lessons were found to reflect little forethought and

planning, homework assignments and explanations were unrelated, lack of
prerequisite mathematical knowledge was overlooked. How did Ben-Chaim

assess this situation? Were these schools visited by the researchers prior to

the project? Or were the classrooms visited after the project had already

been mandated?

Who were the master teachers, and how were they selected? Did they

come from the same school, or were they from the outside? Were they
classroom teachers, or were they university people? Answers to some of

these questions may help explain why the teachers were willing to admit

to teaching deficiences and knowledge gaps, while their actual teaching did

not manifest any great alterations. If teachers perceive that change is being

dictated to them, rather than coming from them, researchers may be hard

pressed to effect change in their classrooms. Finally, the problem of "not

enough time" is a perennial excuse in schools forwhy change hasn't taken

place. Here are two ways to circumvent the time excuse. First, teachers

need to perceive that they have a real stake in any changes that take place

so that they will want to try and make time to initiate change, and second,

administrative support in the form of release time for planning, reflection,

and peer interaction is essential for maintaining the growth of change.

Thus, the administrators who are so supportive of this project should

perhaps be called upon to actually demonstrate their support to the

teachers by providing release time. Some schools accomplish this by

providing a "roving substitute" for a day each week.

The Madsen-Nason study includes the major foci present in each of

the other two studies. A support 21011Q_Of teachers is established. There is

ongoing personal involvement of the researchers with the teachers, and

constant encouragement to reflect on what is happening in the classroom.

In this case, the intervention that occurs Is in the form of a prescriptive

teaching model, namely the Launch-Explore-Summarize (LFS) model, in

conjunction with specific mathematical units created by the Middle Grades

Mathematics Project. The purpose of the intervention is to get teachers to

transfer the elements of the LES model to topics that they teach in their
_-

own classroom. In order to accomplish this, changes in both beliefs and

behaviors need to occur. This study seems to be a delicate marriage of the

"bottom up" approach to change used by Pirie with the "top down"

approach to change used by Ben-Chaim.

All the teachers, "coached", "uncoached", and "lead", were exposed to

the same mathematics units for the middle grades. in contrast with the two

previous studies, the actual matheinaliei that actively engaged the

teachers has been clearly defined, the five MGMP units (Probability, Spatial

Visualization, Factors &Multiples, Similarity, Area&Volume). Subsequently,

teachers were coached (or not) in the use of these materials in their own

classrooms. The coaching in this study is done by people who have been
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personally involved with the :upport group of teachers from the beginning,
thus the marriage of top down and bottom up elements of change. One gets
the sense that these teachers may have viewed their coaches more as
friends than as interveners.

Like the Ben-Chaim project, this project reports the first year of
activity. Also, like the Ben-Chaim project, this project reports that changes
in teachers' perceptions of mathematics were not necessarily accompanied
by corresponding changes in classroom practice. Teachers tended to slip
from the LES mode to their previous teaching habits. The study concludes
that more support and more coaching time is needed to make a real
difference in the classroom.

In summary, the papers on changing teachers' styles and perceptions
prompt one to consider the following issues.

1. It may be very useful to assess teacher beliefs in the population we are
trying to change before attempting to implement an inservice project. The
studies from this session on teacher beliefs provide a multitude of ways to
asssess beliefs. Perhaps, then, we should select those teachers we wish to
change more carefully, with an eye towards flexibility and leadership.
These teachers could then be used as "change agents" to affect change in
their own schools or districts.

2. The importance of a base support group for promoting Internal change is
clear in the studies of Pink and Madsen-Nason. Our inservice projects
should be the soil for change, and we the farmer's who plant the seeds.
Thus, grass-roots bottom up approaches probably have more potential for
lasting change than do mandated top down changes.

3. "Where's the Beef?" If we are talking about changing teachers' practices
through inservice courses it is important for us to attend to and to share
both the mathematics content and the methodolgy that we feel represents
our desired outcomes.

4. The role of administrative support and the importance of time for
reflective discussion is evident in all three of these papers.

5. More attention needs to be paid to the ways we "measure" the outcomes
of change In the classrooms of our participants, Videotaped segments,
audiotaped interviews, and classroom observation can enhance written
data obtained from surveys or questionnaires.

6. Change is a Ionia= process, teachers need lots of time, and lots of
support. We should not expect dramatic changes in teachers' styles even
after a year. In our initial attempts to assess change, perhaps some of the
more subtle cues of change need to be elicited, lest we mistakenly conclude

643
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we are having little impact on ou teachers. It is a strength of each of these

projects that they will be able to assess and influeesss change over a period

of several yew's,

Other_ studies on Teactimiussutiss.

The papers of Maher, Monteiro, and Abrantes deal with the effects of

particular content and/or methods instruction on teachers' views of

mathematics. Maher models a constructivist approach to mathematics,

embodying fraction concepts on geobeards in a small group problem

solving setting, Both the mathematics taught and the need to consider the

teacher as a learner received considerable attention in this study. A real

strength of this study is the inclusion of school administrator, and graduate

students in the small group problem solving sessions. Getting teachers and

administrators to experience mathematics together is a crucial step in

establishing communications lines within a school, and appears to have

been quite taecessful in this project.

The videotapes of the small group sessions that have been recorded

by Maher could be used to assess beliefs of the group members. They could

also be used as a basis for discussion and reaction, as in the Jaworski study.

Thus, Maher has data that can be useful to researchers who are asessing

teacher beliefs. However, it appears that the main use for the videotapes in

this study was to investigate and analyze the problem solving processes of

the groups. Maher states that a goal of this problem solving model is that

teachers will show changes in perspective and practice in their classrooms.

Unfortunately no evidence is presented either for what teachers believed,

or what they did in their classrooms, as a result of the problem solving

experience. These issues may be addressed as the project continues.

Monteiro attempts to show teachers the possiblities that computers

give them to go beyond mere "transmission of knowledge in mathematics

classrooms, and to investigate the affect of computer exposure on their

attitudes and teaching strategies. Co-operative group efforts and

interdisciplinary perspectives were dominant aspects of this study. Both

teacher and student computer projects were part of the inservice activity.

Teachers received courses on computers In LOGO, and applications packages

such as word processors and drawing programs.

It would be helpful to know more about the exact experiences of both

the teachers and students. What types of projects were undertaken to

anwer the question "How can we improve our school?" , and how was the

the computer used to investigate this question? What were some or the

experiences the students had besides some exposure to LOGO? What

mathematics was discussed in conjunction with the computer packages?

Teacher attitudes were assessed by several questionnaires. It would be

helpful to obtain evidence beyond
questionnaires, such as from classroom
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visits, to see how the teacher: used the computer. In order to address the
teachers' concern about keeping the computer rooted to practical
experiences, it may help to attempt to tie the computer more closely to the
mathematical content itself. For example, packages such as Algebra Arcade,
or The Geometric Sup'oser are closely tied to specific mathematical
content.

The study of Abrantes on implementing computer packages in
classrooms contains a familiar theme from the other papers. One should
not expect that teachers will modify their styles from one day to the other
Once again, we have evidence that change is slow in classrooms, and
requires a long period of time to implement. Of the twenty programs that
Abrantes selected, teachers tended to use the programs that concentrated
on demonstration and practice, rather than those involving problem
solving, simulations, or educational games, and to use only programs with
which they were very familiar. Abrantes attributes this to a reluctance on
the part of the teachers to disturb their classroom management policies. An
alternative explanation is that these types of programs require the least
amount of teacher involvement in the mathematics. Teachers can continue
to teach as they always have, and just use the computer as another tool to
evoke drill and practice methodologies. The constructivist perspective, that
seems so dear to most of the presenters in this session, can be-avoided
even with the introduction of a computer. Thus, attention to teacher belief
systems may need to accompany any inservice activities that involve
computer uses for simulations and problem solving. Perhaps we should
carefully select our initial group of teachers to be "changed", and then let
them affect the rest of the school.

It is a strength of Abrantes' approach that he had teachers evaluate
how the computer lessons were organized, and then subsequently asked
them to assess the cognitive and affective aspects of the programs on their
classrooms. Classroom observations would provide additional evidence for
implementation of the computer programs, in addition to the teacher
self-reports. Although there is some indication of the types of programs
used in Abrantes' paper--number facts, estimates, function&graphsa
complete list would be beneficial to other researchers.

The final two studies, those of Rosen and Nantais, deal with entirely
different issues than any of the other papers. Rosen claims that it is
important that teachers be aware of both left and right brain approaches to
most mathematics topics. A number of questions about the "way" to teach
particular mathematics topics are raised by teachers, and shared by Rosen.
The impression that I get from the paper is that these teachers are not
adequately prepared to deal with so-called right brain approaches to
mathematics problems. It is my understanding of right-left brain research
that right brain involves visual solutions to mathematics problems, and
involves visual thinking about mathematics concepts. In that regard, some

(1) 4 5
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of the questions raised by Rosen for right-left brain categorization do not

seem appropriate. For example, why should a missing addend problem be

considered right brain, and is it even useful to do so? flow would one

visually represent this type of problem for young learners? Rosen does not

offer any hints as to how this could be accomplished in the paper.

Similarly, it is difficult to defend how one sequence of keying in the

formula for the area of a circle is right brain, while another sequence of

key strokes is left brain. No evidence for this contention is supplied in the

paper. The impression one gets from Rosen's paper is that teachers are well

trained in mathematics as a left brain activity, but that mathematical

experiences in visual thinking may be necessary to elicit a right brain

orientation to mathematics problems. In this regard, Rosen may find the

work of Meyer and Nelson (Math and the Mind's Eye Project, Portland State

University) and the units on visual thinking that they have developed

quite helpful.

Nantais has investigated the feasibility of having teachers conduct

short interviews with their students in order to obtain feedback as to how

the student's learning and thinking are progressing. Results indicate that

teachers can obtain valuable information from this type of process,

although the interviews themselves need to be limited in time lest they be

too time consuming for teachers to conduct with all the students in their

classes. It would be interesting for Nantais to devise a "script" for such an

interview, so that some outside person could conduct interviews with the

children as well as the teacher. Such a script would guarantee that any

interviewer would ask at least the same basic set of questions in the

interview. Then, comparisons could be made between the types of

responses that the teacher gets, and those obtained by an outside

interviewer. The reason I raise this issue is that it may be that the teacher

her(him)self gets information from the children that the children think the

teacher wants to hear, rather than completely reliable responses. The work

of Nantais is reminiscent of work done by Ed Labinowicz (Cal State

Northridge) on teaching teachers to conduct mini-interviews with their

students. Labinowicz has written a book on the subject which may be

helpful for further work by Nantais.

In summary there are two overall impressions that I draw from all

eleven of these papers that need serious consideration.

I. It is important for those of us doing inservice projects to attend to the

mathematical content that we wish to model, and to communicate that

content to our fellow researchers. This is the "Where's the Beer question.

2. When we select participants for our inservice activities, if we really want

to maximize the potential for change, we should carefully choose our initial

perspective change agents after we have assessed their prototype beliefs.

6 4
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TOWARDS A TAXONOMY OF WORD PROBLEMS

Dan G. Bachor, University of Victoria

Abstract. In this paper a set of interconnected word

problems are presented. To prepare the problems selected
task variables were incorporated into a taxonomy or matrix,

resulting in a series of interrelated word problems. In

the resultant set of word problems the following variables

were manipulated: level of vocabulary, type of question,

type of extraneous information, type of operation, and

computational level. The final outcome was approximately

1200 prototypes for word problems.

In a recent paper, Bachor, Steacy, and Freeze (1986) argued that in

previous efforts to construct word problem typologies two fundamental

conceptual problems have emerged. First, specific problem solving

strategies have been identified and then they have been incorporated

into the defining characteristics of the resultant word problem

typology. For example, conceptual knowledge or semantic relationships

have been assumed to represent learner strategies, which in turn, have

been used to define problems (e.g. Carpenter & Moser, 1982; Riley,

Greeno & Heller, 1983). Second, generalized learner characteristics,

such as a theoretical sub-set of a developmental or cognitive theory,

have been selected as the defining features of word problems. For

example, Caldwell & Goldin (1979) used Piagetian stages to mark learner

characteristics and to distinguish word problems. Some other

limitations associated with both of these approaches to theory building

already have been noted .(e.g. Garofalo & Lester, 1985; Riley, Greeno, &

Heller, 1983). Carpenter and Moser (1982) argue that they have not

been able to use their framework, which represents the first

construction technique, to characterize unambiguously all addition and

subtraction problems. Garofalo and Lester (1985) have suggested that

one problem associated with the second approach to word problem

generation is that cognitive theories are too ill-defined to translate

directly into instruction.

An alternative to word problem design has been suggested by Cawley,

Fitzmaurlce, Shaw, Kahn, and Bates (1979). They have argued that any

set of task characteristics can be incorporated into a typology or

matrix. The selected task characteristics would be used to provide both

the structure and stricture for the constructed word problems.

Creating a typology likely will not lead to a resolution of the
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inconclusive framework problem referred to in the last paragraph.

Instead any suggested typology may be best constructed around a set of

research hypotheses. Similarly, if Cawley's suggested approach to word

problem construction is to be adopted the importance of learner

characteristics will need to be addressed independently. Such

investigations will depend on at least two factors: a) the degree to

which selected learner characteristics can be validated empirically,

and b) the degree to which those characteristics can be related to an

instructional theory to facilitate optimal decision-making for learners

of varying problem solving abilities. This approach to the construction

and study of word problems is described briefly in the paragraphs that
follow. However. a discussion of learner characteristics will not be

undertaken due to limitations of space.

COMPONENTS OF THE WORD PROBLEM MATRIX

In selecting the components to be included in the word problem

matrix a number of choices were faced. For example, Caldwell and Goldin

(1979) point out that up to seventy-three task factors had been included

in a single study. Thus, the following principle was formulated based

on an examination of Canadian word problem curricula and on a review of

previous research (Bachor, Steacy, 6 Freeze, 1986) to provide a

rationale for word problem design: To unravel the enigma of word

problems, task variables must be incorporated in a typology in which the

included problems are to be considered simultaneously as requiring

language manipulation, logical analysis, and mathematical computation.

Along with this general principle, five concomitant sub-principles

have been delineated. These sub-principles provided the basis for word

problem preparation and will serve as hypotheses for future research.

Sub-principle 1: Modifying the phrasing of the word problems was

hypothesized to be a significant determinant of problem difficulty. Two

variations on a basic problem set were prepared, resulting in three

levels.

The basic set of problems were written at the third-fourth grade

level. To establish grade level, every word used in the problems was

judged against both a graded Canadian stelling list (Thomas, 1979) and

a graded vocabulary compilation (Dale & O'Rourke, 1976, 1981). Two

further problem seta varying in language level then were constructed:

a) by inserting adjectives into the basic problem set, or b) by

modifying nouns used in the original problems. Before any adjective

G 4 9
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addition or noun substitution was made, two criteria had to be met.

One, both the adjectives and nouns had to be rated in the Dale &

O'Rourke list as falling between the sixth and twelfth grade levels.

Two, the selected adjectives had to be logically consistent with the

nouns incorporated into the basic problem set; and the new nouns had to

fall into a logical superordinate category. In addition, some

mathematical terms used in the problems were changed to increase their

difficulty level, using the same criteria described above. Verbs were

held constant at the grade three-four level of difficulty across all

three language levels. Some variations in verb selection occurred so

that specific word problems would read better and follow logically.

Sample problems are provided in Table 1.

Vocabulary Level Sample Problem

grade 3-4 level The stranger counted a few chickens. The stranger

counted 3 geese. Chickens and geese are birds.

The stranger counted 8 birds altogether. How

many chickens did the stranger count?

grade 6-12 level, The determined stranger counted a limited number

adjective insertion of savory chickens. The determined stranger

counted 5 succulent geese. Chickens and geese

are birds. Considered collectively the stranger

counted 8 birds. How many chickens did the

stranger count?

grade 6-12 level, The conservationist counted a limited number of

noun substitution lynx. The conservationist counted 5 cougars.

Lynx and cougars are felines. Considered

collectively the conservationist counted 9

felines. How many lynx did the conservationist

count?

Table 1: Indirect Problems to Demonstrate Changes in Vocabulary

Sub-principle 2: The type of question incorporated into the

problem is hypothesized to affect difficulty (Bachor, 1985). The three

types of questions suggested by Pearson and Johnson (1978) were

incorporated into the matrix of word problems: a) text explicit (TE),

b) text implicit (TI), and c) script implicit (SI).

When incorporated into mathematical word problems, the three types

of questions can be seen to vary in the number of assumptions made about

the potential problem solver. With TE problems, the assumptions made

are that the responder can read the text and locate the required answer;
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neither selecting an operation nor completing any computation are

required. With TI problems, the latter requirements are assumed The

responder may be required, depending on problem construction, to

integrate information from more than one statement and then to complete

at leant one operation. While problem solvers may need to integrate

information, the semantic categories required to complete the problems

as given are summarized in the classification statements in the actual

problem. With SI problems, a third requirement is added in that any

required prior learner knowledge of the semantic relationships between

the subordinate and superordinate categories of nouns also is assumed.

It should be notea that as a result of this latter assumption, SI

problems contain leas text than TI problems. Examples of each type of

question are given in Table 2.

Type of Question: Sample Problem

Text Explicit The cook ordered 69 pies. The buyer bought 76

cookies altogether (SIR). The cook prepared 78

more pies (SR). How many pies did the cook order?

Text Implicit The king photographed 67 tigers. The prince

photographed 83 bears. The queen saw 70 zebra

(SIR). The duke chased 59 elephants (SR). Kings,

princes and dukes are men. Tigers, bears, zebra,

and elephants are animals. How many animals did

the men photograph?

Script Implicit ?'he man rented 12 houses. The woman rented 78

houses. The bank sold 86 houses (SIR). The

worker fixed 63 houses (SR). How many houses

did the people rent?

Table 2: Direct Problems to Demonstrate Question Type

and types of Extraneous Information

Sub-principle 3: Including extraneous information is hypothesized

to affect word problem difficulty (Bachor, Steacy, & Freeze, 1986).

Two types of extraneous information may be found in the problems. The

extraneous information contained in the first type has been termed "set

irrelevant extraneous information" (SIR). Two different cues are

provided to mark the SIR case: (a) a shift in noun, either in the

subject or the object or in both the subject and the object, and (b) a

change in the verb. The second type of extraneous information has been

called "set relevant information" (SR). Only one cue, a change in the

verb used, is provided to the reader in the SR case. A third case of
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extraneous information is found in some problems. It is termed "set

relevant and set irrelevant" (SRSIR) because both types of extraneous

information are combined in one problem. Sample problems containing

these three variations in extraneous information are illustrated in

Table 2.

The specific determination of SIR is more complex as the wording of

the problem statements vary as a function of the set complexity of the

problem, which is described next. In simple subject, simple object

(SSSO) problems, the exclusion occurs in both the subject and the object

and in the verb. In the case of simple subject, complex object (SSCO)

problems the exclusion for SIR occurs in the complex object and in the

verb. In complex subject, simple object (CSSO) problems the exclusion

occurs by modifying the noun in the complex subject and by changing the

verb. In the final variation of complex subject, complex object (CSCO),

the exclusion occurs by changing either the noun in the complex subject

or the complex object but not both concurrently and by changing the

verb. The result is two variations of the CSCO case. Sample problems

for all the variations of the SIR case are given in Table 3.

Sub-principle 4: The need to categorize or classify information

into logical sets, referred to as set complexity, is hypothesized to

influence problem difficulty (Cawley et al., 1979). Four types of set

complexity are found across the word problem matrix: a) simple subject,

simple object; b) simple subject, complex object; c) complex subject,

simple object; and d) complex subject, complex object. In SSSO

problems, responders are not required to make classification decisions.

Thus, in Table 3 in the first example, there is no need to classify the

basic problem statements as only "wolves" and "chickens" need to be

considered. Category inclusion must be determined in the case of the

question since this is a script implicit example. In the last example

in Table 3, the responder must determine if the statements given belong

to the superordinate category in
both the subject and the object cases.

In the two middle examples,
categorization only is necessary for either

the object (SSCO) or the subject (CSSO).

Sub-principle 5: The type and number of operations, and to a

lesser the computational level, are
hypothesized to affect problem

difficulty (Carpenter, Corbitt, Kepner,
Lindquist, & Rays, 198 ')). Two

types of problems (Cawley et al.,
1979) are used to define the number

and type of operation contained in the problems: a) direct and b)

indirect. Computational level is controlled by manipulating number.

All other elements of the problems,
for example, the type of extraneous
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information, were held constant.

Set Complexity

Simple subject,

simple object

Simple subject,

complex object

Complex subject,

simple object

Complex subject,

complex object, 14 trout. Mr. Smith ordered 13 goldfish.

a) subject exclusion many fish did the women catch?

b) object exclusion Mrs. Green caught 35 sharks. Mrs. Brown

65 trout. Mrs. Smith saw 87 frogs. How

fish did the women catch?

Table 3: Sample Problems to Demonstrate SIR

Exclusion Conditions and Types of Set Complexity

Sample PLoblem

At first the wolf caught 41 chickens. The wolf

caught 69 more chickens. The fox picked 38 ducks

altogether (SIR). How many birds did the animals

catch?

Tom had 78 cats. Tom had 47 dogs. Tom helped 32

seals. How many pets did Tom have?

Mary desired 57 horses. Ellen desired 46 horses.

Jack led 76 horses. How many horses did the

girls desire?

Mrs. Green caught 23 sharks. Mrs. Brown caught

How

caught

many

The operations in direct problems are either addition, or

multiplication, or both addition and multiplication. A direct question

is found when definite quantifiers only are used in the word problems;

examples are found in Table 2. Indirect questions have indefinite

quantifiers incorporated into the first statement. This change results

in a shift in the required operation to subtraction, division, or both

subtraction and division. Samples of indirect problems at the three

levels of vocabulary are given in Table 1.

All word problems were restricted to whole numbers as the

referents in them always are intact objects. Three variations in

computational level are found: single digit, double digit, and double

digit with regrouping. For the single digit problems, the digits 0 and

1 were omitted (see Bachor, Steacy 6 Freeze, 1986 for a rationale). All

digits were used in the other two types of computational levels. The

difference between the last two cases was that regrouping was required

at least once during the calculation of the final answer in the second

case and was never necessary in the first instance.

3
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CONCLUSION

The result of constructing word problems using the above guidelines

is a set of approximately 1200
variations in word problems. It has been

argued that the advantage of
constructing problems using a matrix is

that research hypotheses can be formulated around selected task

characteristics. Further, it has been suggested that another advantage

of generating problems in this manner is the separation of task and

learner characteristics.
Finally, it is intended that one use of these

specific word problems will be that learners of varying problem solving

efficiency can be compared systematically.
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SOLVING WORD PROBLEMS: A DETAILED ANALYSIS USING THINK ALOUD DATA.

Michael J. Lawson Donald N. Rice

School of Education . Institute for the Study of
The Flinders University Learning Difficulties
of South Australia. South Australian College of

Advanced Education.

The use of think-aloud data from concurrent verbalisation
should not be neglected as a source of information in the
analysis of mathematical problem solving. A framework for
the use of think-aloud data in the analysis of performance
on word-problems is described and an example of its
application, at a general level, to one student's think
aloud protocol is discussed.

In this paper we present a framework for analysing think aloud data

from performance on certain mathematics word problems. We describe

the framework and details of its use and then provide an example of

its application.

Several different approaches have been taken to the analysis of think-

aloud problem- solving performance in mathematics.

Wallas (1926), Polya (1957), Krutetskii (1976), and Luria (1973)

proposed models of problem-solving that have been used to analyse

performance in etudies such as those of Kilpatrick (1967), Rowe (1980),

and Schoenfeld (1985). Why present another think aloud analysis?

First, this typo of analysis provides a rich body of information that

is qualitatively different to that derived from non-interactive

methods used to develop process descriptions such as error analysis,

and chronometric analysis. A second reason for proposing another

framework is that such frameworks need to be revised to make use of

current thinking about the nature of problem-solving. The Kilpatrick

and Rowe frameworks noted above; while sound in basic structure, need

revision for this reason. The recent approach of Schoenfeld, was not

used because we believe that consideration of problem-solving events

in sequence provides both a better representation of the dynamic

nature of problem-solving and an account that is more adaptable for

instructional purposes than does use of Schoenfeld's time-based

episode.

Our approach to the analysis of problem-solving performance has a

further affinity with previous studies, in that we too focus upon

process or strategy events. In this respect our concern is primarily,

though not exclusively, with procedural, rather than with declarative,

knowledge. The Analysis, Strategy, Checking, Planning, Review, and
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Hetacognitive Knowledge categories are derived from recent work on

metacognition (Lawson, 1984). Declarative knowledge is considered at

a general level through use of the Representation code. The remaining

codes are operational codes.

Uncertainty about the validity of think-aloud data (Nisbett E. Wilson,

1977) has resulted in its relative neglect. We believe that the re-

jection of all verbal report data is not justified (Ericsson & Simon,

1984; Shavelson, Webb, 6 Burstein, 1986).

The most developed framework for considering verbal reports is that

of Ericsson and Simon (1984). The key assumptions of that framework

for the present study are: (1) information held in STM is available

directly to the subject, while information in LTM will not be available

until it is retrieved into STM: (2) concurrent verbal reports, which

do not require the generation of new information, are reports based on

information that is the focus of attention in STN; (3) concurrent

verbalisation, under the proper instructions, may add time to a per-

formance but need not change the structure of thought processes; and

(4) concurrent verbal reports are reports of deliberate processes.

In this report we first set out a framework for analysing think aloud

data from concurrent verbalisation, and then apply this to a

student's protocol.

METHOD

Subject and procedure.

The think aloud protocol we will discuss here was provided by a 15 year

old student (WA) of average ability in a regular High School who was

having some difficulty with mathematics.

After several familiarisation meetings two sessions involved training

WA to talk as he solved problems. The training procedure followed that

used by Ericsson and Simon (1984, pp.377-379).

The problem given to WA was:

A fireman stood on the middle rung of his ladder spraying water

into a burning building. As the blaze lessened he climbed up 5

rungs. A sudden burst of flames sent him down 10 rungs. When

it died down he moved back up 12 rungs. When the fire was out

he climbed the remaining 10 rungs to the top of the ladder and

entered the building. How many rungs did the ladder have?

For the purposes of analysis the problem was regarded as consisting of

a number of dimensions. Briefly, these dimensions are parts of the

problem about which a correct encoding, or a wrong encoding, can be

made. For the above problem we identified the following dimensions:
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1. Beginning e middle rung. 7. Movement is up.
2. Beginning e mid point. 8. Value of move e 12
3. Movement is up. 9. Movement is up.
4. Value of move 5. 10. Value of move e 10
5. Movement is down. 11. Top rung .reached.
6. Value of move e 10 12. Question e How many rungs?

Coding the Protocal

The coded think aloud protocol is given in Table 1. The protocol was

coded using the coding schedule set out in Table 2. The schedule has

11 major categories that represent our analysis of the events

involved in problem-solving.

WA's protocol was divided into a series of events so that each event

was described by one code. A new division of the protocol was re-

corded when a different event was identified. In Table 1 slashes (/)

are used to separate the coded events. Reliability checks on use of

the coding system were carried out using a series of raters and these

yielded acceptable levels of consistency for identification of the

number of events in a transcipt, for assigning of codes to events, and

for rating of the one transcript over two occasions.

This coding system allows for the recording of the sequence of events,

although sequence will. not be addressed here. Rather we will focus

on a more general fors of analysis in which the codes and their

sequences are used to develop higher-level groupings of the events that

occurred in the protocol.

RESULTS AND DISCUSSION

Inspection of the events coded under each of the major codes allowed

the development of a commentary on each of these aspects of WA's

performance.

His analysis is marred by failure to encode dimension 2, failure to

realise that the starting point is the mid-point of the ladder. This

error of analysis limits the rest of his attempt at solving this

problem.

Two representations of the problem are established. The first, which

is quite promising, is numerical. WA initially treats the problem as

a series of addition and subtraction problems. This approach would,

if it had been coupled with the encoding of dimension 2, have led to

a correct solution. WA's second definition of the problem, the

'approximate' representation, with the ladder having 'about 20 rungs',

could also have been a fruitful approach, if his use of the diagram

had not been careless. WA chose his strategies well. He applied the

specific strategies correctly, and showed that he can handle negative

657
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Table 1. Transcript

V: OA. Let's have a look at this problem now. I'll Just pin this
to your Jacket here (mint microphono) so that we can hear what

you're saying. Now would you like to read that problem out

aloud so that you can start.

VA: /mg fireman stood on the mITIle rung of his ladder spraying
water into burning building. As the blase lessened he climbed

up S rungs. The sudden burst of flames sent him down 10 rungs.

non it died down he moved back up 12 rungs. When the Lire vas out,

be climbed the remaining 10 rungs to the top of the ladder and

attired the building. How many rungs dld the ladder hovel/

Vi /IA huh. Nov remember to keep tafligg out loud about whatever you're

rotas to try And solve that problem./

VA: Alright. He vas the middle rung/and `41Vt;eint up/5"4/1,:nY-Lni/

'Viso ttfk+A 10 may from 5./rarreate dr/yr'
' Olt

et/ 43, 0 4-7

VA, Ilegatfve 5/than add/12/Is..s.a. 7/

SrA:

mw-ro owAow-9than when the fire died out he went up /mother 10so 7 add ItYis
OS/ ,
17./

V1 Leap talking out aloud whatevt:r7cou are thinking as you're looking

at that problem again./

VA: Cot smotherZ'ot a problem holey/ How youItilPosed to 1:fork out how

way rungs it have..had..if all you know is ha's on the middle tong
ancOpausa) you haven't been giv4114 that are below lt..bow many

Lome/

V: that's right. Von hsven'tIgn given how many below tt/ So what

are Alhisking about that/

VA: It's weird. 'Col it'424:lid to solve 'cos/..a..1 doc:Tknow (pause)/

V: fa/

VA, I'm°Xed, (pause) lks (pause)/

V: Can you tell me what you're til'infing now because you arrived at
la answer before of 17 which you got by adding up the stops and
them taking sway and than adding up and I'm just wandering (WA Yell)

what you're thinking now about what you did there./

WA: Ir. in he's..(start's drawls' steps on a ladder and whispers
ambers to himself./ aVvirr ra"0 /

V: Can you talk aloud about :°1117 you're doing an that it's recording/

WA: Er. just drawing up a pictgiVoi a ladder sort of thing/
So he's in'ttio-Liddie/so go pa t0 runga/1,2,F,r3,6,7,8,9,10/
So that's a?Orit whom he is/ (pa"; 10/Then Iri.44s up/antlVeil

041 '..11
50,2,3,4,5/ (puts 221/ Then he went up/ iflt/dtV7

`105,6`,"0,9:10/(purs"iy/ The n hViiE;e7s upiangtili 13t. all I 7112%

(purs";(4) So on that one And he's ;1:14;Z:cher IO/to`stii:r1,/

so add onothr:113 on hare/ 1,2,3,4,5,6 7,8,9,10/(pu.X5)/
So I reckon he'pl'oVatly had about/(cVin'ts froo/4173/1,2,3,4,5,6 , 7,

0.9,10,11,12,13,14,15,16,17,16,19,20f;32.2YrunV/,.approsloatelyi

V: So you think that there :4'23 (I4A 237 tongs/

079
V:

WA: Soh.
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numbers. The decision to draw a diagram was also a good one.

However he did not apply this general strategy effectively. Without

a view of the ladder as one with two halves and A mid-point his use of

the libels on his diagram (X1 -X5) vas careless, resulting in the

selection of a wrong starting point (X3) for his final calculation.

All cmputations were carried out correctly.

WA showed one sign that he was monitoring the course of his problem-

solving. He was aware that he had a problem in calculating the size

of the bottom half of the ladder. Ha did not, however, persist with

this monitoring or go on to attempt to resolve the problem, apart from

asking for assistance from the interviewer. Most importantly there was

no consideration of either of the solutions he reached. He also

failed to check use of his diagram in the final counting of rungs.

WA did commenton both his own state and the nature of the problem.

However these did not amount to positive use of knowledge about his

own capacity as problem-solver or about the class of tasks of which

this problem was a member. The comments he did make suggested a

tendency to give in rather easily when confronted by a difficulty.

There were no events coded in the Planning, Review, and Off-Task

behaviour categories.

There were errors of both commission and omission in WA's protocol.

Ha did not analyse the problem statement thoroughly and did not, in

the latter part of the protocol, represent the problem effectively in

setting out his diagram. He also made an error in selecting the

starting point for his final count.

Use of this framework has enabled us to build up a detailed picture of

the events of problem-solving for this student. To this extent it does

fulfil its purpose of proving a means of increasing our understanding

of the operation of processes involved in the solution of this type

of problem. We can identify types of difficulties met by this student,

and where these occur, and recur. The analysis suggests areas that are

likely to be profitable ones for extra work. The framework could be

used in the mathematics lesson, so that the events of problem-solving

become more public. This approach also provides for the further

analysis of the sequence of events in problem-solving.

G )
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TOWARD A CONSTRUCTIVIST DIRECTION IN
MATHEMATICAL PROBLEM SOLVING

John P. Pace Essex County College

While there has long existed a professional consensus
regarding the importance of understanding and teaching
mathematical problem solving, few notable gains have
been forthcoming. From a general theoretical framework of
constructivism provided by Dewey and Piaget and certain
more particular research findings of Lesh and his
associates, we argue that knowledge development in the
classroom suffers when purpose, action and knowledge are
not linked. Purposeful real world problem solving
situations may provide a framework for just such a
development.

'Understanding and solving problems are
considered the chief goals of mathematical study.'
This significant statement is found in the new
handbook for mathematics issued by New York
State Department of Education. It is typical of the
renewed emphasis being placed upon this phase of
the work by schools all over the nation (Gilmartin,
Kentropp, Dundon,1939).

The above exerpt is from the preface of a middle school
mathematics textbook. In that preface the author's extol the
virtues of problem solving and then procede to offer thousands of
"real life" applications, such as, "Richard said the interest on
$372 at 5% for 2 years 7 months and 23 days was $48.24. How
great an error did he make?" (p.69).

Even a casual inspection of modern textbooks indicates that
notions of mathematical problem solving have not fundamentally
changed. Innumerable problems, usually simpler, but otherwise
like the one above, can be found in any of a plethora of texts at

appropriate levels.
Perhaps more disturbing than the virtual stagnation of our
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school mathematics textbooks with respect to mathematical
problem solving are the often cited National Assessment of
Educational Progress (NAEP) reports of what are dismal results of
young peoples' performance on mathematical applications
problems. (Carpenter, Corbin, Kepner, Lundquist & Reys,1980).

Yet another detractor to what is clearly not an optimistic
picture is the fact that much of the educational and psychological
research done in mathematical problem solving has not been very
helpful. According to Lester (1983), "Kilpatrick (1969) has
characterized the body of mathematical problem-solving research
as atheoretical, unsystematic and uncoordinated, dealing primarily
with standard textbook word problems (e.g. problems involving
one-step translations from words to mathematical sentences) and
interested exclusively in quantitative measures of behavior"
(p.233).

While recent studies of problem solving seem to be generally
more theoretically serious, nonetheless with respect to real world
type applications, there continues to exist an alarming research
void. Lester (1983) claims, "...there has been an appalling lack of
research related to applied problem solving" (p.251).

Let's summarize our characterization of mathematical problem
solving. Problem solving has long been considered an important
educational endevor; one in which students often evidence poor
performance. As yet our related research efforts have not been
particularly revealing and consequently changes in actual
classroom practice are not imminent.

CONSTRUCTIVISM

If we see the development of knowledge in an organism as a
construction (Papert,1980) of reality by that organism, then, "Jean
Piaget's work on genetic epistemology teaches us that from the
first days of life a child is engaged in an enterprise of extracting
mathematical knowledge from the intersection of body with
environment" (p.206).

Thus, from the outset, humans are, in some sense, organically
interacting with their world in such a manner so as to produce
mathematical knowledge of that world. These organic interactions,
or constructions of knowledge, are, to say the least, very different
from those kinds of experiences involved in the typically
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nonoperative learning of even the most well managed of school
mathematics classrooms. Further these exchanges with the
environs are what most closely resemble "real world"
applications of mathematics. They are, in point of fact, the
real world that our classroom "real world" applications would
simulate. Now, if we consider (Furth, 1981) that, "One of the
results of Piaget's 'radical constructivism' is his refusal to take
objectivity in any but a constructivist sense. A thing in the world

is not an object of knowledge until the knowing organism interacts

with it and constitutes it as an object" (p.19) [emphasis added].
Therefore, from the above perspective, it is apparent why

students do so poorly on tests that measure performance in
applied problem solving. Since the student has come to "know"
mathematical ideas in a figurative rather than an operative or
constructivist sense, problems that ask for an understanding
which embodies knowing in a Piagetian constructivist sense
cannot, in general, be successfully solved. From another
perspective, there presently exists a pedagogical separation
between school and real life that is manifested in the distinction
between classroom exercises that the student may (or may not)
know how to accomplish, and applied problems, which essentially

embody what are new and unknown interactions; interactions
which to the student represent an as yet unconstructed reality. In

this light, as we teach our students to walk and then ask them to

float, is it any wonder that they sink? Need this be the case?

WHAT IS TO BE DONE ?

"...connection of an object and a topic with the promotion of an

activity having a purpose is the first and the last word of a
genuine theory of interest in education" (Dewey,1916, p.130).

From our interpretation of certain of the research we argue
that curricula designed to encourage conscious purposeful activity

of students is effectively a necessary condition for a greater
possibility of the development of operative knowledge.

For a constructivist perspective we turn again to Dewey and

Piaget. That both of these leading thinkers are of sufficient

philosophic proximity that each may be considered a
constructivist is not in any way a novel idea (Giarelli,1977). In

fact, it has been argued that except for differing emphasis, both
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approached genetic epistemology from what are nearly equivalent
"dialectical" or interactional conceptions of knowledge (p.1,13).
From Dewey (1944), we find the following, "Thinking, in other
words, is the intentional endevor to discover specific connections
between something which we do and the consequences which
result, so that the two become continuous" (p.145).

The above statement, representative of a radical
constructivist perspective (Von Glasersfeld, 1981), posits
thinking as an aspect of experience; that is, action is a necessary
condition for genuine reflective thought. Again from Dewey (1944),

"Thinking is thus equivalent to an explicit rendering of the
intelligent element in our experience....The starting point of any
process of thinking is something going on, something which juszi as
it stands is incomplete or unfulfilled" (p.146).

From Dewey's comments, we suggest that it is (purposeful)
actions which give rise to thinking, and not that thinking is some
encapsulated mental process, separated from action. The
implications of such statements are far-reaching. For example,
from such a view there is no beneficial distinction between a
"procedural knowledge" and a "deliberative knowledge" (Merlyn
Behr,1985). Such a dualistic view sees "knowledge" as a
storehouse of information, and explicitly segregates thought from
action. On the other hand, Dewey (1944) believes that, "A
separation of the active doing phase from the passive undergoing
phase destroys the vital meaning of an experience" (p.151).

And that knowledge is both a process and an end: "While the
content of knowledge is what has happened what is taken as
finished and hence settled and sure, the reference of knowledge is
future or prospective. For knowledge furnishes the means of
understanding or giving meaning to what is still going on and what
is to be done" (p.341).

In the work of Piaget (1969), we find a similar theme
regarding the basic necessity of action for the development of
intelligence. Be it basic sensorimotor or more complex
coordinations, the equilibration of an organism conjunction with
its environment begins, a priori with actions.

"...knowledge is derived from action, not in the sense of simple
associative responses, but in the much deeper sense of the
assimilation of reality into the necessary and general
coordinations of action. To know an object is to act upon it and to
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transform it, in order to grasp the mechanisms of that
transformation as they function in connection with the
transformative actions ....intelligence constructs as a direct

extension of our actions " (p.29).
Now, a brief summary. Our essential case is that student

outcomes in mathematical problem solving are in the relatively
dismal state in which we find them because too few of the kinds

of meaningful school activities that would make matters
otherwise are being undertaken. Piaget and Dewey
notwithstanding, in their general everyday operation, the schools

deal neither with knowledge as primarily a constructing process
that requires action for its development, nor with the goal of
conscious understanding of purpose by students which would
enable the development of the continuity of those actions.

From our perspective we now turn to recent research on
mathematical problem solving by Lesh and his associates. In their

work on applied mathematical problem solving (Lesh, Landau,

Hamilton, 1983), the researchers concentrated not on detailed

analyses of "trick" problems; i.e. cleverly novel exercises usually

of intrinsic interest to certain mathematics researchers and
cognitive psychologists, but not very appealing to the bulk of all

other people, but rather on what they considered, "realistic

problem-solving situations", involving, "easy to identify
substantive mathematical content "(p.263). The researchers claim,

"...there is a dynamic interaction between the content of
mathematical ideas and the processes used to solve problems

based on those ideas.... Applications and problem solving ... play an

important role in the acquisition of basic mathematical ideas. We

believe that applications and problem solving should not be
reserved for consideration only after learning has occurred; they

can and should be used as a context within which the learning of

mathematical ideas takes place" (p.266).
In an even stronger statement (Lesh and Akerstrom, 1981), it

is advised that mathematical problem solving researchers redirect

their energys toward investigations of subjects' "powerful
content-related processes", and away from "genera! (and weaker)

content-independent heuristic techniques". The researchers offer

their advice because they, "...reject the dichotomy between
content-independent processes and process-independent
content...", and that, "...content-independent heuristics have proven
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to be basically unteachable and of dubious value...", while,
"...content-dependent processes ...seem to be not only imminently
teachable, but also surfacing time and time again as ...processes of
critical importance in the solution of real-world problems
"(p.128).

From our perspective, the conclusions and analyses of Lesh and
his associates seem clear. Content-related processes speak to the
dialectical relation between ideas and the actions necessary to
construct knowledge. For constructivists, it may be upon just this
interactional focus where research should train its attention. On
the other hand, we suggest that content-independent processes
seek some kind of grand or universal approach to problem solving
in the abstract. As such, this kind of approach is based upon a
metaphysical notion of a presumed ability to isolate particulars
from universals (Dewey,1944) to which they are interactionally
related. Such an assumption almost certainly leads in the direction
of a mind-body dualism that separates mental operations from
actions.

FRAMEWORK FOR A MODEL

Lesh and his associates, while supporting content-dependent
process oriented research in mathematical problem solving, are
clearly not supporting the traditional classroom approach to
content. How then is this content to be considered? To this
formidable question, our short paper offers, at best, some
guidelines.

From our perspective, what Dewey and Piaget have said
generally, Lesh and his associates have more particularly
demonstrated. Our major conclusion from the work of all three is
that there is a significant link between purpose, action and
knowledge. Purpose, we suggest, informs the action necessary for
the development of operative knowledge. Knowledge is not a
collection of facts. Rather it is the interactional monitoring
process through which action is made increasingly coherent with
purpose, and it is concomittantly the state produced by this
process. Since purpose, action and knowing are linked, It therefore
follows that genuine real world problem situations, where purpose
is clear and student interest is encouraged is one scenario in
which operative knowledge nay have a credible possibility of
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developing. These situations, broadly considered, would present
problems that have mathematical content to students in a class or
small group format. The mathematics would typically appear as
one aspect within a more complex (hence, more lifelike) situation

that must include a conscious consideration of purpose. Research
designed in concert with what has been suggested might involve an
extension of the Applied Problem Solving Project (Lesh, 1981) to
include a concious consideration of values and interests reflected
in the choice of the problems. Such research remains to be done.

BIBLIOGRAPHY

Behr, M. A. (1985, April). A Competence Model For Subtraction- A
Description of Current Reparch , Invited address in the
colloquium 1A. ilii. :i .1

z a a . a nilitilt presen es a e -users !niversi y
en er or * a ema ics_ , cience and Computer Education.

Carpenter, T. P., Corbitt, M. K., Kepner, H., Lindquist, M. M., & Reys,
R. E.. (1981). Results and Implications of the Second
Mathematics Assessment of the National Assessment of
Educational Progress. Reston, Virginia: National Council of
Teachers of Mathematics.

Dewey, J. (1944). 1 n . A New York: The

Furth, H.G. )
Macmillan Company. rt Ina wo u is es in 1916.

Fu
The University o ices° ress.

Giarelli, J. G. (1977). one. . : .1. az II -I s

11 ; ; I :I I krirrnil raFTM:likriliKalill ; ., 1 Mill
inir#1151Magil*Mlitilinillt:I*WittinilarrA .: unpus is es
esis 1 niversi on a.

Gilmartin, J. G., Kentopp, H. E. Dundon, R. C. (1939). problems In
Les*lMatti rnatios, New York: Newson & Comany.

if, (1981,1. Applied Mathematical Problem Solving. educational
$tuLliea in athemajics 12 235-264. Boston: D. Reidel.

Lesh, R., Akerstrom, M. (1982). Applied Problem Solving: Priorities
for Mathematics Education Research. In F. K. Lester and J.
Garafalo (Eds.), I I. II - - ; II a

preercii, (pp. 11 . - tae p a: e ran in ns u e

Lesh, R., Landau, M. Hamilton, E.(1983). Conceptual Models and
Applied Mathematical Problem-Solving Research. In R. Lesh and
M. Landau Acquisition of Mathematics _Concepts and

p. 263 -319). New York: Academic
_Concepts

LesTgigf9e(, 1 83). Trends and Issues in Mathematical Problem
Solving Research In R. Lesh and M. Landau (Eds. ), Acquisitign 0(
klatlagMalliSafillliiff.02=12, (pp. 229-261). New York:

ca emic ress.
Papert, S. (1980). ,, , a

ideas New York: :asic : s.
Plank)., J._(1972). Science pf Eucation and the Psychology of the

New York:. the Viking Press.
von asersfeld, E. (1981). An Introduction to Radical

Constructivism. In P. Watzlawk (Ed.), IVie ErfiIl g.ung d
Wirklichkeit (pp.1-29). (English translation) Munich: Piper.

I II -,-

G6S



- 184 -

BUILDING SEMANTIC COMPUTER MODELS FOR TEACHING NUMBER SYSTEMS
AND WORD PROBLEMS

Ir It Peied Lauren B. Resnick
University of Pittsburgh, LRDC

ABSTRACT
This paper presents Issues concerning the construction of models for teaching
mathematical concepts and problem solving. As an example of this decision
making process it suggests a computer -based model for teaching natural
numbers. This model represents natural numbers together with the operations
of addition and tubtrution, and Is aimed at facilitating the solution of word
problems as well. We will show how research on children's Informal knowledge
of numbers and algorithms together with research on how children solve word
problems is taken Into account.

INTRODUCTION

Because mathematical concepts are abstract, models are needed to communicate

mathematical definitions and meanings to children. Models have been used In schools to

present mathematical concepts, and yet much current research shows that children are

developing incomplete Ideas about concepts. It is possible that some of the models, used

over the years, have been powerful, but the difficulty of handling th n In the classroom

has prevented their effective use. It Is also possible that the models have not effectively

drawn attention to those features of the concepts that are supposed to be taught. The

graphics capabilities of some of the newer computers provide a facility for addressing both

of these questions. Models on the computer are easy for children to handle using natural

movements of touching, dragging, and placing (Hutchins et al., 1985). Computers enable

many operations on the model's elements which have not been possible before. For

example, it is possible to undo a series of actions which has changed the form of the

elements (e.g., cutting and putting back together). It ls possible to link symbols to

elements of the model In graphically compelling ways. The computer can also be made a

helpful tool in telling us what the child has learned from the model (Sieeman t Brown,

1483).

We are constructing such computer-based models for elementary arithmetic. Using

terminology borrowed from research on analogies (Gentner, 1983), we can say that the

models we are developing will be the "base" for communicating information about the

"target," in this casethe mathematical concepts. Learning from this base, we expect the

child to develop a valid mental model of the target. We will describe the construction of a

computer-based model for natural numbers. The goals of the a model are to represent
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physically the elements of mathematical concepts, to enable direct manipulation of the

elements, to facilitate understanding of the concept to a degree that various situations can

be mapped to it, and to enable us to tell what the child knows, through the observation of

her manipulations.

THE PROCESS OF CONSTRUCTING A MODEL

We discuss here several of the most Important issues that must be addressed In designing

the base model.

1. A structural approach vs. a natural-environmental approach:

The first Issue In constructing a model is a philosophical one: What is the nature of the

inodel's entitles? Are they mathematical objects or real-world objects? Nesher (1987)

describes two main opinions on the nature of the exemplifications used to introduce a

mathematical concept. The natural-environmental approach suggests that understanding

of a concept emerges from dealing with real-world situations; therefore the

exemplifications should be the situations themselves, rather than a representation of the

abstract mathematical entitles. The structural approach, on the other hand, treats the

abstract mathematical entities and their mathematical senses as the reference of the

exemplifications. Real-world situations, according to the structural approach, should be

introduced instructionally only after the formal system has been es'ablished. in building a

model for natural numbers we have adapted the structural approach. Thus the model will

represent natural numbers and the various senses of addition and subtraction.

2. Mathematical structures and psychological structures:

Addition and subtraction have two mathematical meanings of "senses"--the unary and the

binary. These two mathematical definitions correspond to psychological structures that

have been identified In cognitive research on word problems (Carpenter & Moser 119821,

Nesher, Greeno, k Riley 119621, Riley, Greeno, & Heller (Mg Vergnaud (19821, and

others). Specifically, unary maps to "change" and binary to "combine" classes of

problems. By including both of these mathematical sense," in a model we hope to enable

children to connect their implicit psychological structures with the mathematical

structures that are being developed.

In addition to representing the unary and binary structures of addition /subtraction, we

also want to introduce from the start the Idea of a mathematical "sentence" (an

equation). The structure of a mathematical equation maps to the "compare" psychological

structure.
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This close connection between the mathematical structures and psychological structures

enables us to begin Instruction by Introducing the number set together with mathematical

definitions of addition and subtraction. The child learns to map between an additive

structure of the elements of the model and a symbolic number expression. The operations

have the senses which are suggested by the model's structures. At, a later stage, children

can learn to solve word problems using the same model, having available several

structures from which to choose.

3. One mode vs. se trate modes for th ffere t senses:

When several senses of a concept are to be acquired, we have to choose different

representations for them. This could call for building a set of models, each model

representing a different sense of the concept. Such an approach helps to highlight the

different senses, but may negatively affect the child's ability to Integrate all represented

meanings and attach them to the single set of numbers. To avoid this possibility we have

chosen an alternative In which a single set of elements can be manipulated according to

different structural rules In different "cones" of the screen. This permits us to represent

several meanings without having to introduce different kinds of elements. The model that

has been chosen to represent natural numbers is called the "Trains World." In this world

each number is represented by a train of a given length. The world has vtsrious zones (see

Figure 1) corresponding to the structures the child is to understand.

buff

I load unload done]

Figure 1: The Trains World. From Top left clockwise:
building zone, loading zone, fixing zone, copying zone.

Trains are first constructed in the "Building Zone." The child inputs a number and the

sone "outputs" a train the length of which matches the request. The number is also

indicated by a matching number appearing on the train. The written numbers facilitate

conversation-1.e., If the child Inputs "6," the resulting train Is referred to as a "6-train."
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The "Loading Zone" serves as a representation of the unary definition of addition,

operating on one number. In this zone cars are attached, one at a time, to a given train,

making it a bigger train. Cars can also be disconnected from a given train, making it a

smaiier train. The loading process Ls similar to the counting strategy that children use

etrly in their nuns er development (Fuson, 1982; Resnick, 1983). This zone corresponds

to the "change" story structure, In which a given set undergoes a change resulting in a

new final set.

The "Fixing Zone" serves as it. representation of the binary definition of addition,

operating on two numbers. In this zone two existing trains can be "glued" to become one

long train. Alternatively, one train can be "cut" into two trains, the sift of the smaller

trains being determined by the placing of the initial train on the cutting machine. The

fixing zone embodies a part/part/whole structure, but one seeseither the part/part or the

whole (not both) at one point In time. It corresponds to the "combine" story structure, In

which two sets are combined to form a union net.

The "Copying Zone" serves s/ a representation of an equation, having a part/part/whole

structure where the parts and the whole can be observed simultaneously. In this zone two

trains are arranged in parallel and aligned on one end. Then a "copying machine" runs

over them, creating a new train which fills In the difference between the initial trains

thus "equalizing" them. This tone corresponds to the "compare" story structure.

Any object created In one zone can be moved to another zone, where it can be operated

on. Operations done In one zone can be undone (in a different way) in another zone. T613

mobility is intended to promote the creation of an Integrated mental model of number.

4. Map between the model and symbolic notation:

We do not want the child's knowledge to remain tied Indefinitely to the pictorial

representation on the screen. Instead we Intend that the child will create an abstract

mental model of the numbers together with the operations defined on them. There is

reason to believe that formation of this abstraction will be aided if the child constructs a

mental "mapping" between the pictorial model and corresponding symbolic expressions

(Resnick & Omanson, 1986). This process is aided by referring to the trains as if they

were the numbers themselves, e.g., "a 8-train" may be called simply "the 6.' The

manipulation of trains then becomes a direct manipulation of the numbers themselves,

making it more salient that the facts discovered about trains are actually facts about

numbers.

G 72
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Another way to support the connection to the symbolic world Is by creating an area on

the screen in which symbolic expressions are written. (The symbol area is not shown in

Figure 1.) It is possible to 'yoke* an operational sone with the symbolic zone so that any

action on c train automatically produces a corresponding change In the symbolic

expression, or vice versa. With this yoking, children can work to produce desired changes

In the trains by manipulating symbols, or vice versa. This serves as a potentially powerful

form of "mapping instruction."

S. Choice of images:

Once the general structure of the model has been established, there still Is a whole logical

range of possible images for displaying the elements. The images can vary on at least the

following dimensions: a. Level of abstractness. b. Continuity.

On the C71E115100 of abstractness the elements can look more or less like trains. they can,

for example, have some train characteristics, such as wheels or a smokestack, or they can

simply look like rods (See Figure 2). A train which looks more like a real one might be

more attractive. Yet there is a possibility that a strong train resemblance might inhibit

mapping of other object:, onto the model when it Is eventually used for solving word

problems. Our experience with children Indicates that they usually work well with

abstract objects. We plan to use the abstract version, and resort to a more realistic

version only if we find that certain children cannot handle the abstract model.

3

OM II

Figure 2: Examples of train alternatives.

The continuity dimension involves several issues. Discrete elements encourage counting,

but we want to avoid counting, except for the loading zone, where cars are loaded one by

one. With continuous trains the emphasis on a number as an entity is stronger, and In the

part/part/whole structure the relations between the sets are more obvious. Another issue

In favor of a continuous element will be discussed below when we consider the Integration

of models.
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IS. Integration with other models:

A key Issue to be considered In designing models is their mathematical scope- -I.e., how

much of the number system and how many operations should a given model represent?

Models with greater scope tend to be complex and are usually avoided by Instructional

designers. Thus, rods may be used for natural numbers, pie diagrams for fractions, azd

yet other models for negative numbers and decimals.

In order to make the characteristics of a given set of numbers salient, It may well be

necessary to choose models of a limited scope. Yet there should be a way to discover the

relations between numbers represented by different models. We are currently addressing

this problem as we design models for other parts of the number system. In our train

model, the order relation is represented by the length of a train, i.e., the longer the train

Is, the bigger Is the number. This choice of comparison by length together with the choice

of continuous elements enables a connection between this model and some existing models

of fractions (e.g., strips). However, in building continuous trains we have lost the discrete

meaning of Integers, which actually differentiates them from other numbers. Further, it Is

not clear whether we can find a good link from trains to a negative- number model. We

will report on this aspect of our work at the me,:tIngs.

ON INSTRUCTION

We have built a tool for representing a mathematical concept having taken into account

principles which determine some aspects of the Instructional sequence. We have, for

example, decided to start with defining numbers and operations and only later Introduce

real world situations. There are still, though, many open questions. For example, we do

not know how much time should be spent using the model before story problems are

introduced. Further, we don't know how much structure we should put Into the child's

activities and how much free exploration to allow, There are other open issues with which

we also intend to deal--for example, the use of Intelligent coaching. In regard to this issue

we will need to consider the trade-off between the advantages of adaptive coaching and

the constraints limiting the child's activities that are often necessary to allow a computer

(even a high-powered and "Intelligent" one) to interpret the child's actions (Resnick &

Johnson, 1988). Having built the tool, and having shown In pilot work that children are

able to handle the basic manipulations of the objects, we are now developing answers to

these and related questions In studies that closely observe children while they are

manipulating the model's objects and conversing with them about their actions.

4
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THE MIAMI UNIVERSITY TELETRAINING INSTITUTE FOR
MATHEMATICS INSERVICE IN PROBLEM SOLVING: PRELIMINARY RESULTS

Jerry K. Stonewater
Miami University of Ohio

ABSTRACT

This study examines the problem solving performance
of 361 middle school students whose teachers were enrolled

in a special "teletrained" course on problem solving.

Each student completed 5 problems that covered Guess and

Check, Working Backwards, Make a Modal, Pattern secogni-

tion and Elimination. Correct answers ranged from 391 for

Patterns to 77% for Working Backwards. Process analysis

indicated that students who attempted using a specific

strategy answered more problems correctly than students

who did not use a specific strategy. No sex differences

were found, but in general, number of correct answers in-

creased by grade level. Differences in process by grade

level are dicussed.

In 1986 the Department of Mathematics and Statistics at Miami

University, in conjunction with area school districts, WCET educa-

tional television in Cincinnati, and the American Telephone and Tele-

graph Company's Training and Development Division in Cincinnati re-

ceived funding for a joint venture to establish the Miami University

Teletraining Institute (MUTI). The Institute provides "high-tech"

based inservice training in mathematics and the teaching of mathema-

tics to teachers throughout the state. Specifically, the Institute

utilises two-way audio, two-way micro-computer communication, and

video-tape between the University and locations throughout the state

to disseminate instruction and course-work to teachers1 (Stonewater

Kullman, 1985).

This teletraining system is currently being used to develop and

disseminate training for middle school teachers in mathematical pro-

blem solving strategies and applications to teaching. It was ex-

pected that the participating teachers would subsequently teach the

1 This study was supported by a grant from Title II of the

Education for Economic Security Act and administered by The Ohio

Board of Regents.
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problem solving material they learned in the course, to their own

students.

The purpose of the research repori.ed here is to describe the

effect on teachers and their students of thirty hours of teletrained

instruction in methematical problem solving and applications to teach-

ing. The intent of this research is not to compare teletraining in-

struction to other means of delivery, but to describe outcomes rela-

tive to a tit/straining environment. The research questions address

teachers' improvement in using various problem solving strategies,

the effect of training on teachers' cognitive development, and stu-

dents' improvement in problem solving ability.

Since the teletraining problem solving project is currently un-

derway, pro-post data are not available at the time of this writing.

Thus, while the presentation at the meeting will cover all three of

the above questions, the remainder of this paper will focus only on

pretest data on the middle school students' use of five problem solv-

ing strategies: Guess and Check, Working Backwards, Make a Model,

Patterns, and Elimination. In the following the problems associated

with each of the five strategies and the methodology of scoring the

problems are discussed. Then, student performance will be analysed

to determine the percent of students who answered each problem cor-

rectly and the degree to which students actually used the various

strategies to solve the problems. Also, results will be analysed to

determine if there were differences in performance by sex and by

grade level.

METHODOLOGY

To assess middle school students' problem solving ability, five

problems were developed, each corresponding to one of five problem

solving strategies the teachers would learn and subsequently teach

in their own classes: Guess and Check (The sum of two numbers is

25 and their difference is 7. What are the two numbers?); Working

Backwards (Billy played two games of marbles, but he forgot how

many he started with at the beginning. After winning his first game,

he had twizt as many marbles as he started with. After the next game,

he won ten more marbles, which gave him total of 26 marbles at the

end of both games. How many marbles did Billy have before he started

to play?); Look for a Pattern (For the following patterns, ten what

677
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the next number is: a) 1,2,4,7,11, 1 ,22,29; b) 1,1/2,1/3,1/4;

c) 1,4,9,16,25.); Make a Model (Suppose you have 5 points as hown

below. You can connect points A and 8 to form a line. You can also

connect points A and C to form a different line. In all, how many

different lines can you form with these five points?); and Solve by

Elimination (Find the number described by the clues below. Circle

the correct number: a) It is divisible by 4; b) It is larger than

8641; c) It is en even number; d) The sum of the digits is 21; e) It

is less than 9756. A list of 17 four digit numbers follows). All of

the problems were selected based on procedures recommended by Charles,

Lester and O'Daffer's (1984) An Assessment Model for Problem Solving

and as such ware process problems, varied the mathematical content

(geometry, computation, etc.), and varied the types of numbers stu-

dent worked with (integer, fraction).

Each problem solution was scored for correct answer; Guess and

Check and Working Backwards were
scored for the extent to which en

appropriate strategy was used in obtaining the solution: 0 points-no

evidence of applying a Guess S Check or Working Backwards strategy;

1-limited attempt at trying the strategy, but incomplete; 2-evidence

of correct application of
strategy that should lead to correct answer;

3-correct application of strategy and correct answer; 4-used algebra

as a solution strategy.

SAMPLE DESCRIPTION

Seventeen teachers were involved in the teletraining problem

solving project. Of the 14 teachers who adminittered the five pro-

blems to their students, three had a bachelors degree, four had soma

graduate training, and 7 had a masters degree. All but two were fe-

male; average years of teaching experience was tan.

A total of 361 students completed all five problems. Of these

students, 30 were in grade 4, 60 in grade 6, 196 in grade 7, 42 in

grade 8, and 16 in grade 9. Additionally, 17 of these students were

in a special class for the
academically talented or "gifted". Of the

total sample, 155 were male, 169 female, with 37 not indicating sex.
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RESULTS

1. Correct Answers by Problem--Correct answers for each of the

five problems ranged from low of 392 of the students who answered

all three Pattern problems correctly, to a high of 77% of the stu-

dents who answered the Working Backwards problem correctly (see

Table 1). Other results were: Guess and check, 70% correct; Model,

502, correct; and Elimination, 54% correct. The remaining Pattern

answers were 5.82 answered none correctly, 22.7% answered one of the

three correctly, and 32.7% answered two of the three correctly.

TABLE 1

Percent Correct Answer by Grads Level

Grade
4 6 7 8 9 Gifted Overall x2 DP

G 6 C 2. 0.5 7.5 94.1 76.1 25.604 5 .00if
W. Beck 43.3 80.0 80.0 73.8 81.2 100.0 77.3 26.266 5 .0001
Model 26.7 53.3 48.0 57.1 87.5 58.8 50.4 17.489 5 .0037
Pattern* 13.3 40.0 36.7 45.2 62.5 64.7 38.8 34.586 5 .0028
Elimin. 30.0 45.0 51.5 71.4 93.8 76.5 54.0 28.165 5 .0001

*represents all 3 correct

2. Correct apliation of Problem Solving Process or Strategy- -

Only slightly more than one-third of the students (33.5%) showed

solid evidence of actually using the Guess and Check strategy and

obtained the correct answer (coded "3"), while en additional 10% of

the students used an algebraic solution method, and another 12.2%

made an incomplete attempt at using the strategy (coded "1" or "2").

Thus, an appropriate strategy or strategy attempt was used by just

over one-half of the students in the sample (55.7%). Of these stu-

dents (n. 201), all but 33 answered the problem correctly; three of

TABLE 2

Ability to use Strategy (Percent)

Guess 8 Check
Working Backward

no
evidence

0
4.. 3

16.1

Improved ability to
apply strategy
1 2 3

8.9 3.3 33.5
15.0 8.9 55.7

Algebra
4

10.0
4.4

the errors came from the 36 students who attempted an algebraic

solution and 30 came from the 44 students who attempted using Guess
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and Check (code "1" or "2"). Thum, of the students who showed some

evidence of using a problem solving strategy (55.7% of the sample),

86% were able to obtain a correct solution to the problem. It should

be pointed out however, that one -third of the students coded "0"

(unrecognizenbla strategy or no strategy) answered the problem cor-

rectly, but provided no evidence of how they obtained their solution.

Thus, while it appears that only slightly more than half of the stu-

dents used the Guess end Check strategy, there may be a much higher

percentage of students who used this method in their head but did not

give any indication of tha process on paper.

A closer examination of how students used the Guess and Check

strategy indicates that many seemed to randomly select numbere for

their guesses and did not use systematic search process in finding

the correct solution. The students who used more systematic ap-

proaches either found pairs of numbers that differed by seven and

they "checked" them in order (for example (1,8), (2,9), (3,10), etc.)

until finding (9,16) worked. Others systematically subtracted each

successive integer from 25 until the correct Combination was found

(e.g., 25-1, 25-2, 25-3, etc.). Students who obtained incorrect

solutions would often confuse the "difference between the two numbers

is 7" to mean that one of the numbers was 7, the other 25-7, or 18,

resulting in an incorrect answer of (7,18).

In the Working Backwards strategy, 84% of the sample showed

some ability to use the strategy (codes 1-3), or used an algebraic

solution method. Of this group of 303 students, 257 (852) obtained

the correct answer. Five of the 16 algebraic solutions were incor-

rect and 41 of the 46 code "1" or "2" were incorrect. Although the

number of students who attempted an algebraic solution is small, the

relatively high percentage of incorrect algebra solutions (almost

1/3) is noteworthy. Non-algebraic attempts accounted for only 29% of

the incorrect solutions.

Incorrect Working Backwards answers were often the result of

performing the correct "reverse" operations, but in incorrect order

(dividing first instead of subtracting). Other incorrect solutions

would use only one of the operations (e.g. 26-1016) and stop there.

Others would fail to reverse an operation at all (multiplying 26 by 2

instead of dividing). A few students attempted to use Guess and Check

to determine the beginning number of marbles and a particularly inno-

vative fourth grade female correctly attempted to combine Guess and

Check with Working Backwards.
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3. Sex and Grade level Differences in Answers and Process- -

Chi- Square analyses indicated no differences between males and fe-

male, in distribution of correct and incorrect answers on any of

the five problems (see Table 3).

TABLE 3

Number of Males an Females with Correct/Incorrect Answers

Male Female
2 --

Guess & Check 106 49 120 49 0.2 3 1 .082
Working Backwards 126 29 123 46 3.291 1 .0697
Nodal 77 78 84 85 0.000 1 .9962
Pattern 52,52,39, 12* 73,53,34,9 3.911 1 .2945
Elimination 76 79 95 74 1.673 1 .1959

N of males 155 N of females * 169
*represents 3, 2, 1 and 0 correct

As might be expected, there were differences is grade level per-

formance. The percent of students who answered each of the five

questions correctly generally increased with grade level (see Table 1)

However, when the percent of students who correctly applied the

strategies is compared across grade level, some interesting trends

emerge (see'table 4). Here we are examining students who were coded

"3" in strategy application, i.e. only those students who applied the

strategy completely correctly.

Table 4

Percent Correct* application of Strategy by Grade level

Strategy 4 6 7 8 9 Gifted X2 DF p
Guess & Check 36.7 38.) 32.1 83.3 9 .8 58.8 234.44 20 .0001
W. Backwards 16.7 55.0 62.8 71.4 62.5 94.1 113.712 20 .0001

*"Correct" * code "3" or "4", algebraic solution

For Guess and Check, percent of correct application of the stra-

tegy (but not necessarily correct answer) remains fairly stable in

4th through 7th grades (37%, 38%, 32% respectively), but during 8th

grade the percent increases to 831-40% coded "3" plus 43% who solved

the problem algebraically. In 9th grade, 94.5% of the students solved

the problem algebraically (not all correctly, either). For gifted

students 412 applied Guess and Check correctly and an additional 18%

used algebra. Thus, there appears not only to be a jump in algebra

66_1_
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applications during 8th grade as one might expect, but also a slight

jump in correct applications
of the Guess and Check strategy.

The analysis of those who applied Working Backwards correctly

indicates that only 17.5% of the 4th graders could do so, 55% of

the 6th graders could, and 63% of the 7th graders could. For 8th

graders, 71% used a correct
strategy, as did 88% of the 9th graders.

For gifted students 82% used Working Backwards, and an additional 12%

used algebra, a surprisingly high 94% correct application.

For the Make a Model problem, two categories of classifying how

students solved the problem stood out. One common method was to draw

all possible lines connecting
all combinations of points, and the other

was to list all combinations of points that determined a line (i.e.,

AB, AC, AD, AE, BC, etc.). The selection of the more concrete drawing

method decreased with grade level, and the use of the more abstract

listing method increased with grade level. Surprisingly, no gifted

students selected the listing method. Percentage-wise, almost all

4th graders drew the lines, while only 50% of the 9th graders drew

lines. None of the 4th graders listed the combinations, while

slightly less than 20% of the 9th graders did so. So, the more

abstract method of listing was used less often, but its use increased

with grade level, while the more concrete method of drawing lines

decreased with grade level.

CONCLUSIONSWhile these results represent only small sample

of middle school children and their problem solving performance and

while difficulties remain in analysing problem solving strategies

from written solutions, some
major trends emerged in this

study.

1. Particularly in the higher
grades,studento ware better pro-

blem solvers, both with respect to correct answers and to application

of strategies, than we expected. While the problems may have been

too easy to adequately
challenge the students, they did demonstrate

facility at using both Guess and Check and Working Backwards, without

prior specific training.

2. On the other hand, much "fine tuning" of students' ability

to use the strategies is needed. Fourth graders had fairly low

scores for correct answers (range 13.3% to 53.3% correct). Much work

is needed at this level. Across the board Guess and Check was often

done haphazardly, without regard for a systematic solution nor a
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thorough analyst, of patterns within the chosen guesses to direct
future guesses. In short there was little evidence of a "beet-guess"
approach to the problems. Likewise with Working Backwards. Error
patterns reveal that students need

practice with subskills embedded in
the strategy such as reversing operations and reversing the order of
the operations. Instruction focusing on such skills to indicated.
This may also be true for algebraic solutions approaches, for which
errors were high.
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ASSESSIOUT AID AUITY IN RATUNAIICAL

PIONLIIN SOLVING IN MlOOLZ mums

Rosemary Sutton, Cleveland state University
Janeal Mika Oprea, Miami University
Elyse Fleming, CLeveland State University.

In an attempt to develop measure* to assess the

effectiveness of problem solving interventions two paper

and pencil problem solving instruments that measured

aspects of understanding a problem (e.g., interpreting the

vocabulary and diagrams, and recognizing what is given in a

problem) and problem solving strategies (e.g., using

patterns, lists, and guess and check) are described. The

tests had moderate reliebilities (Alpha e .78 for the test

for fourth through sixth graders; Alpha e .76 for the test

fur saventh .nd eighth graders). There were no significant

gender differoances on the tests but blacks scored lower

than whites at all grade levels.

Thu growing crisis in the effectiveness of mathematics

education, most severe among females and minoritiee, has recently

been brought to painful public awareness. Recent studies docusent

American students' poor performance in the area of mathematical

problem solving (o :
., Carpenter, Lindquist, Matthews, Silver, 1983;

Miller, 1985). Furthermore, there is a substantial body of research

which indicates that, by the high school years, males perform

significantly better than females on most measures of mathematical

achievement ( e.g., Lee and Ware, 1986; Peterson and Fennema, 1985)

and, at all grade levels, Asian and white students tend to outperform

Hispanics and Blacks (Lockheed, Thorpe, Brooks-Gunn, Carpenter at

al., 1983).

,
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In an attempt to alleviate these problems, a number of

intervention programs which focus on problem solving and/or

mathematical equity have been developed. These intervention programs

are important not only as a means of improving students' problem

solving performance and eliminating race and gander differences but

oleo further our understanding of the underlying theoretical issues.

An essential, but often neglected, component of any intervention

program is summative evaluation. Unfortunately, a continuing

hinderance to the effective evaluation of problem solving

intervention programs has been assessment. Traditional multiple

choice mathematics tests focus on computational performance and not

on important aspects of problem solving such as understanding the

problem, recognising extraneous information, and identifying and

using appropriate strategies. These aspects of problem solving have

been identified and studied using interview techniques (e.g., Lester,

1982, Schoenfeld, 1983). While this research method is providing

important new insights, it is exceedingly difficult to use with the

number of pupils involved in a typical intervention program.

We were recently faced with this predicament when designing a

problem solving asseamment for the evaluation of EQUALS, an intensive

inservice program 4esigned to teach teachers to increase the

confidence and competence in mathematical problem solving of their

students and to relate the usefulness of mathematics to future career

choices (Sutton and Fleming, 1987). A special focus of this program

is to address the needs of the traditionally underserved, girls and

minorities. A large sample involving 27 urban and suburban school

districts led to our decision to use a paper and pencil problem

solving instrument. The best existing instrument appeared to be one

developed by the Wisconsin Department of Public Instruction (n.d.).

Unlike most traditional multiple choice mathematics tests, The

Wisconsin Mathematical Problem SolvinR Test attempts to measure

aspects of problem solving performance in addition to computational

proficiency. This instrument is consistent with an assessment model

proposed by Charles, Lester, and O'Daffer (1984) which divides

problem solving into two components: (1) the ability to perform the

thinking processes involved in solving a problem and (2) the ability
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to get the correct answer to a problem. Each of these components can

be further divided into measurable problem solving behaviors.

Understanding the question in the problem and recognizing extraneous

or missing information, for instance, are two thinking processes

categorized under the first component while problem solving

strategies, such as making a list and drawing a diagram are

categorized under component two.

For the evaluation of this project, two multiple choice tests

were developed to assess the problem solving abilities of middle

grade students. One test, designed for grades seven and eight, was a

30-item subset of the Wisconsin instrument while the second, intended

for grades four through six, was a 20 item simplification of the

first. The purposes of this paper are to describe the psychometric

characteristics of these two problem solving instruments, and to

assess ethnic, gender, and grade differences. of these instruments.

IiirrHODS

Subjects

There were 483 seventh and eighth graders (mean age w 14.2

years) and 470 fourth through sixth graders (mean age e 12.0). These

subjects were either the students of teacher participants in the

EQUALS training program or the students of teachers matched by grade

level and district with these EQUALS teachers. (These matched

teachers were used as a comparison group in the overall evaluation).

The seventh and eighth graders, representing 24 classrooms, were 53Z

female, 23% Black, and 76% Caucasian. The fourth through sixth

graders, representing 19 classrooms, were 51Z female, 47% Black, and

48% Caucasian.

Instruments

The Wisconsin Mathematical Problem Solving Test for eighth

graders consisted of two forms and students completed only one form.

Approximately half the items on each part were designed to measure a

student's ability to understand a problem (e.g., interpreting the

vocabulary and diagrams, recognizing what is given in the problem,

6 S



-202 -

and recognizing extraneous or missing information); the remaining

items assessed problem solving strategies (e.g., using patterns,

using lists, tables and graphs, and using guess and check). For the

EQUALS evaluation, a 30 item test of items selected from both parts

of the Wisconsin instrument was created for the seventh and eighth

graders. This test is called Test 7/8. Criteria for selection

included level of difficulty (easier items were chosen because of the

inclusion of seventh grade students) and maintaining an equal

proportion of items on understanding the problem (14 items) and

problem solving strategies (16 items). Three of the 30 items were

modified slightly. On one item, the question was clarified. On two

items, changes were made that were consistent with our equity

concerns. Specifically, the name "Jack" was changed to "Juanita" and

the sport "football" was changed to "softball".

For Test 4/6 (grades four, five, and six), 18 items from Test

7/8 were modified to make them simpler (e.g., elimination of decimals

and using smaller numbers) and 2 new items were generated. Again,

half the items assessed understanding the problem and the other half

assessed problem solving strategies.

Procedure

The teachers administered the problem solving instrument to

their own classes in Fall, 1985. Reliable data on test conditions is

unavailable; however, the vast majority of the teachers have over 10

years of teaching experience and are accustomed to administering

standardised tests.

*MALTS

Reliability and Measurement Analysis

The thirty items of Test 7/8 were subjected to item analysis

(USSR RELIABILITY) and the Alpha coefficient of internal consistency

was .74 (n 513). Four items with the lowest item-total

correlations were eliminated which yielded an Alpha of .76, a test

mean of 12.2 and a standard deviation of 4.63. The Alpha for Test

4/6 (20 items) was .77 (n 416). Two items with negative item-total

'?
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correlations were eliminated and the this yielded an Alpha of .78 0 a

test mean of 9.6 and a standard deviation of 3.86. A complete item

analysis (means, standard deviations, and item-total correlations of

each item) will be presented at the con'.erence.

To assess how well the two instruments were able to distinguish

between the two problem solving components proposed in the Charles et

al. model (1984), two factors were specified in the factor analysis.

The factor analysis of Test 7/8, while not clear-cut, generally

supported the a priori categorization of the items,as assessing

either understanding the problem (Understanding) or problem solving

strategies (Strategies).
Specifically, 10 of the 16 Strategies items

loaded on Factor One (loadings > .3), 8 of the 14 Understanding items

loaded on Factor Two, 7 items did not load on either factor, and one

Understanding item loaded on Factor One instead of Factor Two. The

factor analysis of Test 4/6 did not support a two factor model.

Grade, Xtbnic, and Gender Differences

Grade, ethnic, and gender differences were assessed using

separate factorial AHOVAs on the total problem solving test, the

Understanding subtest, and the Strategies subtest. Any differences

with p4.01 were considered significant.

On Test 4/6, there were significant grade differences on the

total test, and the two subtests
(Total test, F - 45.35, df * 2,376,

p< .001; Understanding subtest, F* 32.62, df.2,375, PC.001;

Strategies subtest, F* 35.38, df. 2,374, p<.001). The Scheffi post

hoc test indicated that the fourth graders scored significantly lower

than tho,fifth and sixth graders on the total test and subtests

(p<.001), but there was no significant
difference between the fifth

and sixth grade means (Total test means: fourth grade - 7.1, fifth *

10.1, sixth grade 11.3). On Test 7/8, there were no significant

grade differences on the total test and two subtexts. There were no

significant gender differences for either group of students on the

total test and on the subtexts.

Whites scored significantly higher
than Blacks on the total test

and both subtests for both the younger
students (Total test 4/6, F *

22.97, df * 1,376, p<.001; Understanding subtest, F*12.26, df*1,375,

G )
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p<.001; Strategies subtest, Fe25.27, dfe1,374, p<.001) and the older

students (Total Test 7/8, F e 26.46, df e 1,435, p < .001;

Understanding subtest, Fe21.41, dfe1,436, p<.001; Strategies subtest,

1e11.61, dfe1,426, pe.001). On Test 4/6, the total test mean score

for Blacks was 7.9 compared to 11.1 for Whites. On Test 7/8, the

total test mean score for Blacks was 9.9 compared to 12.8 for Whites.

Information on the socioeconomic status of the students was not

available.

There was one significant grade by race interaction for Test 4/6

on the Understanding Subtest (7e7.71, dfe2,375, pe.001). Black

females scored higher than Black males whereas White females scored

lower than White males.

CONCIAISIORS

The present effort enabled us to identify problem solving

instruments that go beyond the meat of computational skills and

appear to lend themselves to the evaluation of large scale math

problem solving interventions. These instruments have moderate

reliabilities with an ethnically diverse population. These tests

also seem to be appropriate for programs which focus on ethnic and

gender equity since our findings are consistent with current research

on ethnic and gender differences (Lockheed, 1986). For example,

minority differences consistently appeared but gender differences did

not occur in grades four to eight. In addition, our intervention

evaluation indicated that Test 7/8 is sensitive to change over a

school year (Sutton and Flaming, 1987).

While these instruments can be used in their present forms, we

intend major revisions in an effort to improve reliability. Our

findings were limited by uncontrolled test conditions and many items

appeared to be overly difficult. Thus, we plan to develop a large

item pool retaining the same conceptual framework, to administer

these items under controlled conditions to a diverse population, and

to create new tests containing only those items with good

psychometric properties.

G



- 205 -

RUMENS

Carpenter, T.P., Lindquist, M.M., Matthews, W., Silver, E.A. (1983).

Results of the third RASP mathematics assessment: Secondary

school. Mathematics Teacher, 76, 652-659.

Charles, R.I., Lester, F.X., and O'Daffer, P. (1984). An assessment

model for problem solving. (Unpublished document prepared for the
Illinois Inventory of Educational Progress, Illinois State Board of

Education).

Lee, V.E. and Ware, N.C. (1986, April). When and why girls "leak"

out of high school mathematics. Paper presented at the annual

meeting of the American Educational Research Association, San

Francisco.

Lester, F.K. (1982). Building bridges between psychological and
mathematics education research on problem solving. In F.K. Lester

& J. Garofalo (Eds). aMathepliciggroblaselEalylg: Issues in

research. Philadelphia, Pennsylvania: Franklin Institute Press.

Lockheed, M.E., Thorpe, M., Brooks-Gunn, J., Casarly, P., McAloon, A.

(1985). Sex and ethnic differences in middle school mathematics

science and computer science: What do we know? Princeton, New

Jersey: Educational Testing Service.

Miller, D. (1985, April). SIMS results related to school type and

gender. Paper presented at the annual meeting of the American
Educational Research Association, Chicago, Illinois.

Peterson, P.L. and Fennema, E. (1985). Effective teaching, student

engagement in classroom activities, and sex-related differences in

learning mathematics. American Educational Research Journal,

22(3), 309-335.

Scoenfeld, A.B. (1983). Episodes and executive decisions in

mathematical problem-solving. In R. Lash and M. Landau (Eds.).

Acquisition of mathematics concepts and processes. NeW York:

Academic Press.

Sutton, R.E. and Fleming, B.S. (1987, February). EQUALS at

Cleveland State Universit : 1985-1986 Evaluation re rt.

?Unpublished document, Cleveland State University .

BEST COPY AVAILABLE



- 206 -

PERUSING THE PROBLEM-SOLVING PANORAMA:

COMMENTS ON SIX PAPERS ON MATHEMATICAL PROBLEM SOLVING

Edward A. Silver

San Diego State University

This paper presents a review of six papers (by Bachor
Lawson & Rice; Pace; Peled & Resnick; Stonewater, and
Sutton, Oprea, & Fleming). The remarks concerning
these papers are embedded in a broader commentary on
the current state of research on mathematical problem
solving as compared with the situation Kilpatrick
described nearly two decades ago. Beyond specific
comments on the six research reports, this review
argues that these papers, although quite varied In
their theoretical foundations and methodological
approaches share some commonalities, In that they

instantiationsnstantiations of trends in contemporary
research on mathematical problem solving.

Almost 20 years ago. Kilpatrick (1969) reviewed the

literature on mathematical problem solving and concluded that

"problem solving is not being systematically investigated by

mathematics educators' (p. 623). In the past two decades, the

situation has changed dramatically. During this time. there has

accumulated a considerable corpus of research dealing with the

nature of mathematical problem-eolving performance. host of the

research has been conducted by cognitive psychologists. seeking

to develop or validate theories of human learning and problem

solving. and by mathematics educators. seeking to understand the

nature of the interaction between studente and the mathematical

subject batter that they study. iioreovsr. the research tends to

be much sore systematic than that reviewed by Kilpatrick.

Theoretical Emphases

In his review, Kilpatrick (1969) decried the fact that few

studies had an explicit theoretical rationale or built on

previous research, but he noted signs of increased interest on

the part of mathematics educators in psychological theory and

research related to higher-order cognitive processes.

Kilpatrick's perception of an surging trend was apparently

6
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correct, for the current situation is quite different Prom the

one he reviewed in 1909. The influence of modern cognitive

psychology oa current problem-solving research has beau

substantial. In the United States, cost of the current research

on mathematical problea solving is based to a great extent on

theoretical formulations provided by cognitive psychology.

Special treataents of cognitive theory relevant to problea

solving and mathematic, can be found in Frederickson (1956),

Schoenfeld (1986). and Silver (1987).

In the set of papers under consideration in this review, one

sees the clear influence of cognitive theory in the work of

Lawson and Rice and also in the work of Poled and Resnick. The

protocol analysis schene proposed by Lawson and Rice is heavily

influenced by considerations of available information in working

mtaory, and it relies extensively on the cognitive fraaevork

developed by Ericsson and SIAM (1981). The work of Poled and

Resnick concerns itself with Rental models and representations

of abstract aatheaatical concepts.

Another contemporary theoretical thrust is wconstructivise

in one or another of its many form. One of the fundesental

assuaptions of recent research on mathematics learning and

problea solving is that new knowledge is in large part

constructed by the learner. According to this visa, learners do

not simply add new information to their store of knowledge;

instead they integrate new information into already established

knowledge structures and build new relationships along those

structures. This process of building new relationships is

essential to learning. Recent versions of cotatruclivisa are

largely coapatible with earlier versions, such as Piaget's

theories of human learning, although the terminology is steevhat

different.

Constructiviss is most central to the paper provided by

Pace, but the influence of a constructivist perspective is also

clearly evident in the work of Peled and Resnick. In the latter

case, a constructivist perspective on learning guided the

researchers in their construction of appropriate computer models

that could form the basis for the mental sodels that the child

would eventually construct for the concepts. The notion of
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representation is central to the constructivist perspective. In

Pace's paper, he takes constructivist perspective to argue

that increased research and instructional attention should be

paid to applied problem solving in school asthmatics. Although

I quarrel with neither his basic contructivist preselect) nor his

conclusion, I find his argument to be less than compelling.

There is neither a logical nor a psychological nocesci"y linking

the constructivist perspective on learning and the wall for the

extensive instructional use of applied problems.

Research Foci

Kilpatrick (1969) organized his discussion around five

categorise: problem-solving ability, problea - solving tasks.

problea - solving processes, instructional prognue, and teacher

influences. These categories vary in the extent to which they

are addressed in current research. For example, classical

research on problea - solving tasks and the characteristics that

contribute to teak difficulty - with its emphasis on linear

regression models for predicting task difficulty - has generally

given way to a detailed consideration of the ways in which task

characteristics interact with individual cognitive functioning.

The paper by Becher hints at a consideration of individual

cognitive functioning, but we are only presented with data

concerning the problea taxonomy. It is clear that Bachor's

taxonomy sight prove to be a useful tool in atudying children's

problea solving, especially as it i3 affected by linguistic and

sathesaticsl complexity. One hopes that the taxonomy will be

used in conjunction with modern cognitive theories to help

provide a rich account of children's problea solving and to

suggest powerful instructional sequences.

In contrast to the research on problea-solving ability

reviewed by Kilpatrick in 1969, the widespread use of factor

analytic approaches and the treatment of problea - solving ability

as a (nearly) unitary phenomenon have been replaced by detailed

studies of problea-solving processes, often involving extensive

clinical interviews. The paper by Lawson and Rice emerges iron

this tradition. Protocol analysis scheme such as ths one they
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present are fundamental tools both for data reduction, and for

data synthesis in detailed studies involving individual clinical

tattoo:view* with problem wolwwwo.

Concern for problea-solving process is also evident in the

papers prepared by Stonevater and by Sutton. Oprea. and Visaing.

Stonevater's coding of students' problea-solving palominos

included not only the correctness of their answer but also the

strategy used. The process data that were collected in the

study are quite united, however, and it would have

strengthened the study greatly if clinical interviews were

conducted so that both a richer description and a better

estimate of strategy use in the student population could have

been established. Navertheleas, the overall ail of studying the

effects on students of probles-solving instruction aimed at

their teachers is laudable, and the final report of this project

should be of considerable interest.

The paper prepared by Sutton, Oprea, and fleeing gives

evidence of concern not only for process Itut also for

assessment. As instructional progress to improve teachers' end

students' sathesatical problem solving have proliferated, it has

become evident that there is serious need for adequete

assessment tools to unsure the effectiveness of such programs.

Nora generally, there is a need for relatively easy to

administer tests that measure important problem - solving

processes. Several states (e.g.. California, Wisconsin) have

incorporated these sathematice process items into their state

assessment testa. Sutton, et el. analysed data obtained troa the

Wisconsin test to amine gender and race differences in

perforaance. Since these were multiple-choice iteas. 1 would

urge that further analyses involving distracters be undertaken.

Marshall (1983) has demonstrated the power of distracter

analysis to identify ',portant gender differences on these kinds

of process item troa the California test.

t1 QthgIQIQ9iKaLApaanlra.

In 1969, tilpetrick noted that cost studies of probloa

solving were either "one-shot cosperisons of 11l- defined
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lastheds" or °laboratory studies of arbitrary, higoly
artificial problem.' nag.bods-comparison studies have ablest

coapletalydieeppeared in contemporary problem-solving research.

bbrecom, Mghly artificial problem have been alaost completely

eliainatod from the serious research literature on mathematical

problea solving. Recent research has typically involved problea
tasks that are dram froa actual textbooks, or realistic

problem froa students' lives, or problem that are nonstandard

but appropriately related to the aathematics that students have
studied.

Pace argues in his paper that insufficient research

attention has been given to realistic application problem.

Nevertheless, in recent years there has been a noticeable

increase in research aimed at melanin; the relationship botwesn

one's informal knowledge of the world and one's formal

atheottictl knowledge. For sample, Carpenter (1986) and his

colleagues have reported that young children have the ability to

solve many types of arithastic story problems before they

receive formal school instruction. They found that many children

were able to use their somatic knowledge of the real world and

their skill in counting to solve many addition end subtraction

story probleas. Another strand of research examining the

relationship between school mathematics and real world

applications is found in the work of anthropologists (e.g.,

Camber. Carraher, & Schlimann, 1986; Scribner, 1984) vim have

found that the mathematics one uses in everyday situational

problea solving can bear little relationship to the formal

mathematics one learns in school. Persons with very United end

flawed formal mathematical knowledge can be quite skillful in

solving quantitative problems encountered in occupational

settings, end they often use invented procedures rather than

those taught in school.

In 1969, Zilpatrick argued that, given the limited state of

our knowledge about mathematical problem solving, researchers

might be well-advised to consider clinical studies of individual

subjects. Ills advice was apparently heeded, because contemporary

research has heavily emphasised clinical approaches and, to a

somewhat lesser extent, case studies of individuals. In the
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typical clinical study, explicit attention is given not only to
the knowledge that a person would need to know in order to solve
the problem but also the processes used by the solver.

The nost popular technique for studying the processes used

in mathematical problem solving has been the "talk aloud'

clinical interview. This technique, pioneered by gestalt

psychologists, has been widely used to study both the cognitive

and metacognitive aspects of problem-solving episodes. In their

paper, Lawson and Rice provide an ample of a protocol analysis

*chose that attempts to capture the problem- solving process of

an individual solver in the concurrent verbalization

accoapanyinc solution behavior. Unfortunately, the evidence

provided in their brief paper is too meager to determine the

usefulness of their scheme and its relative merits cospared with

others that have been proposed (e.g., Schoenfeld. 1955).

Some other popular current approaches have utilized computer

technology. For example, some researchers have designed

simulations of human problem solving in complex domains like

physics and mathematics. These simulation are often based on

and/or validated with actual protocols obtained from problen

solvers. A somewhat different computer-based approach has

involved the construction of 'intelligent tutors' that provide

problem-solving instruction. The interaction between the learner

and the computer tutor provides a rich data source for research

into the nature of and requirements for mathematical problem

solving.

In the papers for this meeting, the vork of Poled and

Resnick relates most closely to this trend. Their paper presents

an example of sone ways in which research on children's

cognition can inform the developers of computer software. In

their paper, they illustrate that it is the case not only that

research results can provide answers to development questions

but also that research results, methods, and theoretical

constructs can help us to formulate more appropriate development

questions and approaches.

686
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AWARENESS OF METACOGNITIVE PROCESSES
DURING MATHEMATICAL PROBLEM SOLVING

inda J. DeGuire
University of North Carolina at Greensboro

Awareness of metacognitive processes during mathematical
problem solving is an intriguing but as yet poorly understood
phenomenon. This study attempts to capture the
of awareness in a subject, rather than to directly measure Its
current level. Data were collected in a semester-long
problem-solving course and included journal entries, written
problem solutions with explicit "metacognitive revelries,"
optional videotapes of talking aloud while solving problems,
and general observation of the students. The argument for the
development of awareness or lack of it rests in the conflux of
the evidence from the several points of view. The article
presents 2 case studies from the data set--Duke, who showed
an increasing level of awareness in the course, and Chad, who
did not seem to Increase her level of awareness.

Metacognitive processes during mathematical problem solving and

their relationships to success in such problem solving is an intriguing

topic that has been discussed in mathematics education considerably in

recent years (e.g., Garofalo & Lester, 1985; Schoenfeld, 1983a). Iletacog-

nitive processes Include the control and monitoring of ones cognitive

processes, aspects that bring awareness and consciousness into the

discussion (Brown, 1978; Flavell, 1976, 1979). Schoenfeld (1983b)

included the degree of awareness in his dimension matrix of cognitive

activity. Lack of awareness of mental operations during problem solving

was hypothesized by Gurova (1959/1969) as a "substantial reason for low

achievement in the mathematical disciplines" (p. 97). Gurova's report does

not contain enough detail about the methodology to replicate the study.

Further, it seems plausible that a teacher's level of awareness of his/her

own cognitive and metacognitive processes during problem solving would

contribute significantly to her/his effectiveness as 2 teacher of problem

solving. However, neither of these hypotheses can be Investigated until

the phenomenon of awareness is studied. Direct measurement of aware-

ness (1.e., measurement of the current state of the phenomenon in a person)

may be possible at some future date but no such methodology currently

exists. For now, I have taken a lesson from studies of metacognition In

other areas (e. g., in memory, Brown, 1978) and have tried to capture the

(3 9 9
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egvelooment of such awareness over time. The present paper presents
two case studies from data collected to study awareness of metacognitive
processes during problem solving.

Method

A variety of techniques--journal entries, written problem solutions
with explicit "metacognitive revelries,* optional videotapes of talking
aloud while solving problems, and general observation of the subjects-
were used to try to capture the development of awareness from several
viewpoints over time. The data were gathered during a semester-long
course (15 weeks) on the teaching of problem solving In the mathematics
classroom. The course began with an introduction to several problem-
solving strategies.- During the rest of the course, sessions were devoted
to problem-solving episodes (usually quite rich and complex) in groups and
as a class, to discussions of problem solving (including metacognitlon) and
the teaching of it, and to problem-solving episodes led by the subjects
themselves.

During the course, subjects were given 6 Problem Sets of 2 to 5
problems each to be turned in for evaluation. The written solution was to
Include all work on the problem, including blind alleys, and was to include
a separate column for metacognitive revelries.* The evaluation gave more
weight to the solution processes and metacognitive revelries than to the
correctness of the solution. Subjects also wrote a Journal entry each
week, using a code name so that the information would not Influence their
grades in the course. The topics of the Journal entries were chosen to
encourage reflection upon their own problem solving processes and their
own development of confidence, strategies, and awareness during problem
solving. Some subjects also volunteered (as part of their course project)
to be videotaped while thinking aloud during problem solving. There were
three videotape sessions per volunteer--one immediately after the intro-
ductory phase of the course, one about midway through the course, and one
at the end of the course. The problems used in the videotaping sessions
were the following:

Videotape Session 1: Harry's Hamburger Heaven sellsmilkshakes for 80t each. It sells 320 of them a week. Harryfigures for each St Increase in price, he would sell 10 fewer
milkshakes per week. What price would maximize income?

Videotape Session 2: I have 50 cinder blocks 8" by 8" by 32"to make a 10-step staircase. The end view of the staircasewill look like the picture below. Do I have enough blocks?

a 0
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Videotape Session 3: How many different rectangles are on
an 8-by-8 checkerboard? Note, rectangles are considered
different if they are different In position or size. So, a 2-by-1
rectangle is considered different than a 1-by-2 rectangle.

The subjects in the data set were 18 graduate and undergraduate
students, all Inservice and preservice teachers of mathematics, mostly on
the middle-school level (grades 6-9, ages 11-15 years), but with some
teachers on the intermediate level (grades 4-6) and some on the secondary

level (grades 9-12). To develop the case studies presented here, 1 began by

reflecting upon my personal observations of the subjects and my know-

ledge of their work and metacognitive revelries on the problem sets

throughout the course. I then read the journal entries and the transcrip-

tions of the videotaping sessions. For the journal entries, one must

assume that, to a certain extent, the subjects wrote what they felt I

wanted to read. In the videotape transcriptions, I looked for explicit

monitoring statements. There is no way to know to what extent the
subjects may have been aware of metacognitive processes without making

explicit verbal references to them. However, the argument for awareness

or lack of it rests in the conflux of the evidence from the several points of

view, not with the evidence from any one of them.
The case studies presented here were chosen to contrast the

development of awareness (Duke) and lack of such development (Chad). I

chose subjects with similar mathematics and teaching backgrounds. Both

Chad and Duke were undergraduate students with no teaching experience

and no methods courses for teaching mathematics. Both had completed 3

college-level mathematics course with grades of A or B. Both were

preparing to teach mathematics on the middle-school level. Also, the

lengths of their journal entries and videotape transcriptions were similar,

so that merely the amount of verbiage would not contribute significantly

to differences In explicit references to cognitive monitoring. Throughout

the following descriptions, direct quotes are from the subject's Problem

Set solutions, journal entries, and videotape transcripts.

Duke

At the beginning of the course, Duke felt a "bit apprehensive,"

stating that "word problems have never been my favorite.' She described

her Initial level of problem-solving ability as "enough...to flounder myself

7
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through if necessary' but that sne frequently got "bogged down by words."
In her first Problem Set, her metacognitive revelries were limited to
statements such as "set up an equation," dratv picture to see where
circles are; and "dead end.' This last comment indicates some awareness
of monitoring but was not followed by any attempt to salvage the positive
aspects of the solution path. Her first videotape session included only 4
monitoring statements, of which 3 were almost identical.

By the middle of the course, Dukes confidence in problem solving
was Increasing. "I can now look at a problem without panic." Her aware-
ness of her own progress (or lack of it) on a problem was definitely
growing. In response to a problem-solving session in class, she described
herself as reaching "a high level of frustration. . .1 was having trouble
changing my perspective of the problem. I had the general idea of what
was going on, but couldn't see hove I needed to break the problem down into
parts." After another class session, she wrote that "I think if I had had
enough time I could have figured it out though because I knew I was on the
right track.' In her Problem Sets, Duke was beginning to include searches
for more than one solution and generalizations of patterns. The tendency
to generalize a pattern did not carry over to her second videotape session
but she did solve the problem in 2 different ways. She still included only
4 monitoring statements, but they were all different, apparently monitor-
ing different things (e.g., one on the difficulty of the solution path, "I think
I'm making this too hard."; vs. one on the compatibility of the 2 solutions,
"Hope this gives me the same answer as before.")

By the end of the course, Dukes awareness of and confidence In her
problem-solving abilities had not kept pace with the development of her
abilities. Her solutions in her Problem Sets were quite sophisticated and
rich in strategies. Yet, in approaching the take-home exam, Duke said she
felt 'frazzled" and didn't know "how I will ever be able to do. . .those
problems. They look tough." (It is true that the exam contained some very
complex problems.) After she turned in the exam and we went over the
problems in class, she described her confidence level as high and bemoaned
the fact that she had not turned in some of her solutions "because I didn't
at that point have enough confidence in what i had done." Apparently, her
awareness had not effectively monitored the correctness of her solutions.
In her third videotape session, Duke's transcript was literally peppered
with monitoring statements. She seemed to simultaneously monitor her
progress toward a solution, her progress with a chosen solution path, and
the correctness of her local procedures. She was aware that her last
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solution method (i.e., counting the kinds of rectangles and the number of
each kind) would eventually give her a solution but also that she might not

have executed It correctly. "If I didn't leave any of them out, then 1092

should be the answer...I hope
When Duke was asked to reflect upon whether she had developed

more awareness of her metacognitive processes during the course or
whether she had merely developed a vocabulary with which to express her
processes, she felt she had developed more awareness. She admitted that

part of what she learned was vocabulary, but added that "on the other hand,

I think that I am also more aware that something la going on. When I sit
down now to do a problem, I realize that my brain goes into action and that
It has all of these avenues It explores, and I can kind of watch It explore

and direct It sometimes." Such a statement is in stark contrast to her
earlier statements of "floundering' through problems.

Chad

Chad's story begins very similarly to Duke's but does not progress in

the same way. Chad also felt "very apprehensive" about the course. She

said that her previous experience in problem solving was limited to word

problems that "have a certain method of obtaining a set solution." As with

Duke, Chad's first Problem Sets contained very limited descriptions of

processes. Her first videotape transcript contained several monitoring
statements but they were all related to whether or not the income had
peaked yet and to correcting her many procedural and arithmetic errors.

Throughout the course, I had several discussions with Chad about
elaborating on her cognitive processes In her solutions for the Problem

Sets. She frequently said, "I don't know how I do It. I Just do it.... I don't

know why I did it that way.. I don't know why I quit doing it that way

and tried another way." She seemed unable to comprehend the possibility

of monitoring her own processes.
By midway through the course, we were emphasizing alternate solu-

tion paths, multiple solutions, and generalizations. Chad wrote in her

journal, "Some solutions may come easy to me yet I only see one way to

get to this solution. . .0n problems that I cannot figure out the correct
solution, I become very frustrated." In the Problem Sets, Chad rarely went
beyond a single solution and rarely generalized to an n-th case. In her

transcript for the second videotape session, there are no monitoring
statements at all. She merely drew the 10-stair picture and counted. She
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made no attempt to do the problem another way or to relate it to the
generalization of triangular numbers that we had used frequently in class
and In the Problem Sets.

At the end of the course, Chad's situation is opposite to Duke's.
Chad felt "nervous" before the exam but "confident with my problem
solving abilities...much better about the looking back experiences and I
really think that I am ready to do well." However, her exam responses
were vague and her solutions, though sometimes correct, were not rich in
strategies and processes. In her third videotape session, she did exhibit a
certain level of awareness with several monitoring statements. But the
statements were related to her confusion in the attempted solution, e.g.,
"That's not right," "I don't know how else you would go about doing this," "I
can't figure out how you would make that chart," and "It's a big difference
between those two numbers and I can't justify where either one of them
actually came from." She seems to be aware of her confusion. Yet, she
forges on to a solution anyway. "So, there would be 848 different rec-
tangles. But I can't actually justify why.' Though she does not exhibit
great confidence in her solution, she also does not seem aware that it is
incorrect or that there does not seem to be much that could have been
salvaged from her solution path.

When asked to reflect on whether she had developed awareness
during the course or only learned vocabulary to use In expressing her
processes, Chad seemed to miss the point of the distinction. She
responded In her journal, "At first it was Just vocabulary, but now it Is
used and is quite helpful. .. in the problems given, they require thought
and these ideas (vocabulary) have shown us [ways) through these problems.
So, it is not only vocabulary but useful ideas." Another journal entry
summarizes Chad's final "state." "I know and understand the sophisti-
cation of problem solving, yet I find myself still strictly thinking mathe-
matically and looking just for an answer."

Conclusion

The two subjects described here show clear differences in the
development of awareness during mathematical problem solving. I suggest
that the differences are shown not only In the number of monitoring
statements but in the substance of those statements. Chad was clearly
monitoring herself in the last videotape transcript, but the substance of
the monitoring was primarily her confusion. In contrast, Duke's monitor-
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Ing statements indicated that she was monitoring several things simul-
taneously. The substance of Duke's statements referred to 11;:g1 es
toward a solution, progress within the current solution path, and correct-
ness of local procedures.

It Is unlikely that significant progress in understanding and
measuring the phenomenon of awareness of metacognitive processes
during problem solving will come quickly or easily. My own monitoring of
our progress towards that goal suggests we have a very long ways to go
yet. I believe the study of the development of awareness will be useful In
eventually understanding and measuring awareness.
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METACUGNITION AND MATHEMATICAL PROBLEM-SOLVING:

PRELIMINARY RESEARCH FINDINGS

Joe Garofalo, SUNY at Buffalo

Diana Lambdin Kroll, Indiana University

Frank K. Lester, Jr., Indiana University

The purpose of this paper is to pnesent preliminary
findings from our current National Science Foundation
project investigating the role of metacognition in
mathematical problem solving. Specifically, the objectives
of our research are: (1) to assess the metacognitive
behaviors of grade seven children engaged in mathematical
problem-solving activity and (2) to explore the extent to
which these students can be taught to be mare strategic and
more self-awire of their problem-solving behaviors.

Metacognition refers to the knowledge and control one has of one's

cognitive functioning; that is, what one knows about one's cognitive

performance and how ono regulates one's cognitive actions during

performance. Metacognitive knowledge about one's mathematical

performance includes knowing about one's strengths, weaknesses, and

processes, together with an awareness of one's repertoire of tactics

and strategies and how these can enhance performance. Knowledge or

beliefs about mathematics that can effect one's performance are also

considered metacognitive in nature. Examples of metacognitive

knowledge include knowing that one is sloppy at computation, and

knowing that the "key word" strategy cannot be used to solve every word

problem. The control and regulation aspect of metacognition has to do

with the decisions one makes concerning when, why, and how one should

explore a problem, plan a course of action, monitor one's actions, and

evaluate one's progress, plans, actions, and results. This self-

regulation is influenced by one's metacognitive knowledge. For example,

The research reported here is being supported by National Science
Foundation Grant MDR 85-50346. The opinions and conclusions expressed
are those of the authors and do not necessarily reflect the views of
the National Science Foundation.
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if one recognizes a given problem as being complex, then she is more

likely to take time to explore the conditions of the problem and plan

methods of solution before attempting to determine an answer.

PROJECT DESCRIPTION

Our metacognition project consists of three phases: pre-treatment

assessment of mathematical performance and metacognitive behaviors,

instructional treatment, and post-treatment assessment. The pre- and

post-treatment assessments involve performance on a written test of

routine and non-routine mathematics problems, performance of selected

students on routine and non-routine problems observed through

individual interviews, and performance of selected students observed as

they work in pairs on non-routine problems. The individual and pair

interviews are being video-taped and performance is being analyzed in

terms of behaviors exhibited, strategies used, and decisions made.

The instructional treatment is being presented three days per week

for a period of 12 weeks and consists of three metacognitive components:

the teacher as external monitor, the teacher as facilitator of students'

metacognitive development, and the teacher as model. The "teacher as

monitor" component consists of a set of teaching actions for the teacher

to engage in: (1) to direct whole-class discussions about a problem to

be solved; (2) to observe, question, and
guide students as they solve

problems; and (3) to lead whole-class discussions about solution

attempts. The "teacher as facilitator" component involves the teacher:

(1) asking questions and devising assignments that require students to

analyze their mathematical performance;
(2) pointing out aspects of

mathematics that have a bearing on performance; and (3) helping students

build a repertoire of heuristics and control strategies, along with

knowledge of their usefulness. The "teacher as model" component

involves the teacher explicitly
demonstrating regulatory decisions and

actions while solving problems for the students in the classroom.

The subjects for this study are students in two seventh-grade

mathematics classes in Monroe County, Indiana. One class is a regular-

level class, the other is an advanced-level class. The instructional

treatment is being presented by one of the investigators (FKL).

SOME PRELIMINARY FINDINGS

The preliminary findings reported here consist of: (1) a very
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abbreviated comparison of the performance of an advanced-level student

(AA) with that of a regular-level student (WC) based on observations

made during individual interviews with each, and (2) reports of

classroom observations made during instruction.

Observations of AA and WC

These observations are based on two 45-minute individual interview
sessions with each student. During the interview sessions, the students

worked on the four problems given below:

Kennedy collected 225 tape cassettes and 4 old shoe boxes

to put them in. If he puts the same number of cassettes in

each box, how many extra cassettes will there be?

The six grade math teacher did an experiment with her

students. One at a time, students were to gi-e ,er change for

a 50C piece without using pennies. No student could use the

same set of coins as someone else. Now many students will be

able to give her change?

Atlas Steel makes 4 different types of steel. From a

shipment of 300 tons of raw steel, the factory produced 60

tons of type I, which sold for $60 a ton; 75 tons of type II,

which sold for $65 a ton; 120 tons of type III, which sold

for $72 a ton; and 45 tons of type IV, which sold for $95 a

ton. Raw steel costa $40 a ton. It costs the factory

$2,500 to convert every 300 tons of raw steel into the 4
types. Row much profit did Atlas make on this shipment?

There are 10 people at a party. If everyone shakes

hands with everyone else, how many handshakes will there be?

On working the "Kennedy" problem WC read the problem several times

before dividing 4 into 225. She then read the problem again, mentally
estimated 4 times 56, and multiplied 4 times 56. She read the problem

again and wrote out "56 in each box" and "1 left over." She claimed
she read it over and over "just to make sure it's division." When
asked how she usually decides which operation(s) to use, she replied

"It's the one that makes sense, and when you check it, you get the

numbers in the problem back." She did go on to explain that when

unsure, she tries all four of the operations and then picks the one that
makes the most sense. AA on the other hand, read the problem over

several times then divided 4 into 225, saying under her breath "4 into
225 goes..." She did not reread the problem again, nor did she check
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her division, nor did she write out her answer.

On the "change" problem, WC read the problem several times then

divided 5 into 50, 10 into 50, and 25 into 50. She labelled her

quotients 5c, 10c, and 25c respectively. When it was explained that the

change did not have to be in all of the same coin she immediately began

adding combinations of 5's, 10's, and 25's, first in a vertical running

total then in a horizontal series of single additions (she had trouble

tallying the coins using a running total). Her plan was to list as many

combinations as she could using at least one of each coin, add these up

as she went along, and then go back at the end to check for repeats.

She checked periodically for repeats as she went along, but so poorly

that she did not spot the ones she had. This may have been because she

didn't attend to it very much since her plan was to go back later or

because she was overloaded trying to find new combinations and tue,k old

ones at the same time. In this manner, she listed and totaled 7

combinations of coins, 5 of ohich were repeats, which she noticed only

when she checked at the end. She checked and rechecked her calculations

using a lot of pencil movements, and tallied and labelled each

combination of coins. AA's approach was very different. After Leading

the problem, she began listing combinations of coins, not by their

values, but by using q's, d's, and n's. her plan was to list all the

combinations she could. Although the specifics of her plan evolved as

she went along, her work was fairly organized. She did a lot of

tallying under her breath as she worked and used her pencil to keep

track of what she was tallying. She realized that her strategy was not

ae organized as it could be and referred to it as "a little awkward for

making sure I got them all."

On the "Atlas Steel" problem, WC read the problem many times and

mainly "looked at the numbers to try to figure out what to do." She

started adding weights, then costs, then gave up on addition. She then

began to multiply weights by costs. She used her pencil to locate the

numbers in the problem to "get the right numbers." After she added up

the resulting products she didn't know what to do. She then began

dividing the products by 300. She realized this "didn't make sense" so

she gave up. As in the previous problem, she used a lot of pencil

movements in her calculations to "keep on the right columns." AA, on

the other hand, read the problem several times and focussed on the whole

problem, not just the numbers. She realized she would have to ,ampute

income and outlay and then subtract. She worked with a "profit ,thema"

in mind. Again she talked to herself while calculating and used sel,,e
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pencil movements. She didn't "waste time" checking because she

"probably" calculated correctly. To her, the problem is solved "after

you know what to do--the rest is just unraveling it."

On the "handshake" problem, WC read the problem, asked if they

"shaEe with both hands," then multiplied 10 times 1 and 10 times 10 (and

got 1000). When asked to explain the 10 times 1 and 10 times 10, she

realized that "they ain't gonna shake with themselves." She quickly

multiplied 9 times 1, and 10 times 9, then checked her calculations and

said "ninety." After discussing her work further, she thought "it would

only be nine handshakes." She thought about it some more and went back

to 90. When the situation was modelled with three people, she shouted

"Oh my God, I just thought of something...you're not gonna shake twice."

She then divided 2 into 90, initially making a mistake because she

"worked too fast. ". AA also started with 10 times 10, but was unsure.

She talked about it under her breath and used her pencil to do the

multiplication in the air and not on the paper. She then wrote down ten

9's and said "ninety." After being informed that her answer was

incorrect she thought about the problem some more and wrote a 9 and an

6. She then asked if her first solution was indeed incorrect and after

being told that it wan, she listed 9 through 1. said "plus zero," and

added up the numbers.

In summery, WC began working on problems even before she was

satisfied that she had a complete understanding of it. She did not

spend enough time analyzing the data, exploring her understanding, and

planning a solution. This is obvious in her approach to all of the

problems. In the "Kennedy" problem she constantly went back to the

problem to "make sure it's division;" in the "change" problem she

initially misinterpreted the conditions of the problem, and after being

informed of this, immediately grasped on to another misinterpretation

and began to work, again without evaluating this new interpretation; in

the "Atlas Steel" problem she moved from addition, to multiplication,

to division hoping that one of these would "make sense;" and In the

"handshake" problem, she had to be prompted to realize that people don't

shake their own hands and that people don't shake hands twice. WC

apent a lot of time calculating and checking her calculations, even when

unnecessary (e.g. multiplication by one...). She used a lot of pencil

movements to keep on track and was able to make online adjustments of
some local actions. Also, she was very careful to tally and label

quantities when appropriate.

AA, on the other hand, was more concerned with understanding a
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problem before putting work down on paper than she was with calculating

correctly and labelling results. She started working on paper only

after she felt she had a good understanding of the problem and had

"figured out what to do." This was particularly obvious in the

"handshake" problem when her first calculations were close in the air.

She didn't use as many pencil movements as WC to keep her on track when

calculating, but instead talked to herself when working. She claimed

this keeps her attention focussed on what she's doing. She was content

that she knew how to solve the problems, and was confident enough her

calculations were "probably right" that she felt no need to check them.

Observations During Instruction

The observations reported here are in reference to the three

aspects of the instructional treatment.

The teacher as external monitor. In many cases, especially in the

regular-level class, the students were weak in the basic skills

necessary to complete the problems. Thus, much of the "external

monitoring" time was upent explaining how to do calculations or how to

reason logically, rather than discuseing metacognitive-level

considerations. Our observation at thin point is that teachers must

expect to provide instruction in basic skills and problem-solving

strategies simultaneously with instruction in metacognitive awareness.

The teacher as facilitator. One way in which students were

directed to reflect upon their own cognition was by completing self-

inventory sheets on which they listed their own strengths and weaknesses

in problem solving. In the regular-level class many students could

think of nothing to record. The advanced-level class had much lees

difficulty. Similarly, when assigned to solve a problem and then to

write a narrntive describing their thought processes as they bad solved

it, the advanced-level students complied with about a paragraph each.

The regular students, almost without exception, failed to turn in a

narrative. We suspect a combination of factors contributed to this

outcome: the weaker mathematics students may also suffer from weaker

writing skills to the extent that writing such a narrative was beyond

them; the weaker students are not as conscientious about completing

homework assignments; and the weaker students may have more difficulty

reflecting on their own thought processes.

The teacher as model. Of course, whenever the teacher explained

the solution of a problem, he pointed out the importance of rereading
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to clarify understanding, he discussed why a particular strategy was

chosen, he openly checked his calculations, and he always pointed out

the importance of comparing the final answer with the conditions of the

problem. But these actions arc no more than an elaboration on a typical

teacher's explanation. Our efforts to gu a step further, and have the

students observe the monitoring strategics used by an "expert" problem

solver as he solved a problem he had not solved before were leas than

successful at first. The teacher served as "expert," aelving, on the

spot, a problem posed by a research assistant. However, the teacher

found it vary difficult to maintain a role of "expert" problem solver.

He fell quickly into the role of teacher, and soon was explaining,

rather than modelling. Not surpriningly, the students found it hard to

focus on the teacher as an expert model, rather than as a teacher-

explainer. Some of their notes on what the "expert" did well, and not

eo well, concerned the effectiveness of what they apparently considered

a teaching demonstration rather than a demonstration of expert problem

solving. They wrote such observations no "talked too fast," "wrote big

and not on the board," didn't explain clearly," etc. A modification

of the modelling procedure, in which the atudents viewed a video-tape

of a research assistant solving a problem at a desk worked much better

as a model for expert problem solving. The students had no

expectations that the assistant should "write neatly" or "explain

clearly," since she was obviously just writing while talking to herself,

not to them. Thus, they were better able to concentrate on observing

the monitoring strategics that she used.

The above project description and data prcoentation are

admittedly very brief. Space considerations allow us to give only a

flavor of our current work. We also refrained from drawing any

definite conclusions from this work because both the data analysis and

the instructional treatment are still in progreas.

7' 9A,/



-229 -

SUCCESS AND UNDERSTANDING

WHILE SOLVING GECKETRICAL PROBLEMS IN LOGO.

Jean-Luc Gurtner

University de Fribourg and Concordia University

An analysis of the planning and debugging activities of
12-year old children solving geometrical problems in LOGO
leads to the description of four important general beliefs
these children have about successful problem solving, se-
quentiality, locality, progressive improvement and accepta-

bility.
Their performance on tacks related to previously solved

problems (figures produced on the screen), reveals three
different levels of awareness of both the solutions found

and the gel:metrical characteristics of the objects that

they have worked on, outcome awareness, solution path aware-

ness and implicative awareness, corresponding to fragmented,

integral but unidirectional and finally general conceptuali-

zation of the object.

RESEARCH OBJECTIVES

The gap between success and understanding is wide and everyone has

experienced situations where one has been successful without knowing

why, sometimes without even noticing it. Success obtained this way

cannot halever be regarde as the most fruitful for transfer and further

success. As Simon noted, transfer will be secured only if the learner

is made or becomes aware of his skills (Simon, 1980). In this perspece

tive, performance analysis should be regarded as useful as much in

ceeles of success as in cases of failure, but solvers seldom take this

point of view. The attempt to solve a problem successfully may require

so many of the solver's resources that looking for understanding at

the same time any be perceived as an obstacle. As Norman put it :

"there is no better way to ruin a performance than to think simultane-

ously about the details of its execution" (Norman, 1982, p.69).

Research funded by FCAR, Grant EQ-3004, directed by Joel Hillel,

and the MRS, Grant 81.353.0.86.
I would like to thank C. Kieran and J. Hillel for their assistance with

the collection of the data and their helpful comments.
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The play between success and understanding is particularly sharp in

ICGOwhere educators' Objectives pull towards understanding while

children mainly look for success.

In this papPr we will report on two aspects of children's solutions

in a LOGO environment. We will first Show some beliefs, in Schoenfeld's

sense (Schoenfeld, 1985), that underlie children's conception of how

to be successful while solving geometrical pro:bie:1s in LOGO. We will

then show different levels of awareness of both the soletions found

and of the characteristics of the tasks.

THE IAGO ENVIFOMENT

.The subjects in this study were six 12-year old children (4 boys

and 2 girls) of average Grade 6 level in math. They came as volunteers,

after school hours, one hour a week for 24 sessions.

Their LOGO environment consisted of a set of six predefined proce-

dures :

TRT TLT :A Rotates the turtle slowly either to the
right or the left by A degrees.

MOVE :N Moves the turtle N steps in a fixed directi-
on witluit leaving a trace.

BASELINE :N Produces a horizontal segment N steps in
lenght.

TEE :N Produces the figure
where buth line seg-
ments have lenght N.

RECT :X :Y Produces a rectangle of dimensions X and Y.

The last three procedures are state transparent (i.e. turtle's ini-

tial and final position and orientation are the same).

TASK AND DATA DESCRIPTION

For this study we used two kinds of tasks : on- and off-camputer

tasks.

In the on-omputer tasks, subjects had to write programs that would

produce geometrical pictures on the screen like the ones shown in Fig.l.

Figure LA was given during sessions 4 and 5 and Figure ID in session 6.

Special requirements were conveyed orally : for Figure IA, the baseline
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had to be drawn first and the two big tees had to just meet (no over-

lap and no gap). For Figure 1B, the outside shape had to be a square,

and inside that square, the stem (i.e. the vertical rectangle B in Fig.

1B had to be centered and of the same with as the bar (i.e. the rec-

tangle A in Fig 1B.

Fig. 1 : Two of the figures to be drawn using the commands listed
above.

A

B

Fig. 1A : The 4-Tees figure Fig. 1B : The Rectangles figure

These tasks were especially chosen because of the high degree of

interdependence among the different components. For example, in the

4-Tees figure, the choice of input for BASELINE completely determines

all the subsequent inputs to the TEE and MOVE procedures. This means

that a successful solution can only be achieved by analytical means

rather than through a strategy of trial and adjustment.

The description of the beliefs underlying LOGO problem solving ac-

tivities is taken from the careful analysis of the dribble files pro--

duced by our subjects, of the changes progressively made in the text

of their programs, and of the comments made during the activity of

solving twelve such geometrical problems.

The off-computer tasks were given at a later date to assess chil-

dren's level of awareness of both the characteristics of the figures

they had to draw and the solutions they had found. These tasks were :

The Measure Attribution Task (2 weeks after the corresponding pro-

duction task for Figure 1B; not given for Figure 1A). Given the print-

out of the figure, subjects had to express the dimensions of the fi-

gure numerically. No conditions were made on the order in which the

dimensions should be indicated.

The Input Insertion Task (4 weeks after the corresponding produc-

tion task for Figure LA; not given for Figure 1B). Subjects were given

the print-out of the figure and the corresponding program without the

inputs to the commands BASELINE, TEE and MOVE, and were asked to fill
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than in. As in the Production Task, the program had BASELINE as its

first instruction.

In these two tasks, subjects were encouraged to check their soluti-

ons afterwards.

The Description Task (4 months after, for Figure lA and Figure 1B).

Subjects were given print-outs of the figures and were asked to descri-

be verbally, among other things, any difficulties they might have had

in producing the figures and how they handled these.

The Procedure Evaluation Task (4 months after, for Figure 1A; not

given for Figure 18). Subjects were given four programs related to the

figure, that, for the same BASELINE, presented different inputs for

the central interval (distance D in Fig lA). SUbjects were asked to

decide on their oarrectness and to give reasons for their evaluation.

DISCUSSION

BELIEFS UNDERLYING THE SOLUTION OF TURTLE GEOMETRY PROBLEMS.

The debugging strategies used by our subjects can be seen to be di-

rected by the fundamental assumption that the way towards a solution

is generally by progressive matching between the current production

and the target object.

This assumption underlies at least the four following beliefs about

the sources of mistakes and the ways to success, beliefs that in their

turn focus the solver's attention to specified parts of the program.

SEQUENTIALITY: Mismatches between the current production and the target

figure can be dealt with sequentially rather than in parallel (unless

some components of the figure are related in a very obvious way). Most

of the time our subjects changed the size of the tees in Figure lA in

pairs and without changing the corresponding intervals.

LOCALITY: A mismatch between a ccupcx)ent of the production and that of

the target figure is attributable to the input chosen for the campo -

nent itself rather than to the effect of any other input. The reasons

that led to the choice of the input, whether based on visual informa-

tions, verbal constraints or determined by previous inputs are judged

irrelevant. For instance in the Rectangles figure, Karen's first at-

tempt produced an uncentered but correctly sized stem. The mismatch

was nevertheless attributed to the procedure that draw the stem and

716
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so she modified its width (which was indeed constrained by that of the

bar to meet the problem's oonditicn) rather than its placement (distan-

ce d in Figure IB).

PROGRESSIVE IMPROVEMENT: If a debugging attempt produces a mismatch

between previously matched components then go back to the previous sta-

te and abandon the debugging strategy. Seeing that the big tees were

not touching as they should, (Fig 2A), RDSeMary decided to reduce the

size of the Baseline. Changing one thing after the other, she left the

input for the central interval unchanged and got the production shown

in Fig 2B. To fix this gap she reduced the size of the central interval,

hence bringing the two big tees closer together (Fig 2C). Rather than

continuing this strategy, she then decided to reduce the gap between

the two big tees by modifying their size (Fig 2D). Of course, this

strategy, which she perhaps considered safer, produced many new mis-

matches. We see this abandoning of a winning strategy for a 'wild goose

chase" as having been dictated by the apparent regression. It is signi-

ficant that, two weeks later, she considered the state shown in Fig 2B

as having appeared earlier in her work than that shown in Fig 2A.

Fig. 2 : Effects of four successive changes of inputs carried out by

Rosemary in the 4-Tees figure.

T
Fig. 2A Fig. 2B

Fig. 2C Fig. 2D

ACCEPTABILITY: Any program that leads to a production that has all of

the target's characteristics, except for the proportions between its

components, can be regarded as successful.

LEVELS OF AWARENESS OF ONE'S SOLUTION AND OBJECT'S CHARACTERISTICS.

According to the subjects's behavior when asked to reproduce their

solutions with new initial conditions (e.g. starting with a different

input for BASELINE in the 4 -Tees figure or for the outer square in the

71 7
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Rwtangles figure) in the Production Task, and to their performance on

later off-computer tasks, we propose to distinguish three levels Of a-

wareness of the solution and of the object's characteristics. Each le-

vel of solution awareness corresponds to a level in the awareness of

the object's characteristics. These levels are neither developmental

nor according to increasing expertise, since a subject may prove to

have different levels of awareness for two sub-problems solved within

the same task.

Level 1 : OUDOWAARRENESS. In the PLUiuction Task, subjects are

able to note whether they have been successful or not on local problems

independently of their performance on the global problem, but no expla-

nation is available of the reasons for this success. This kind of awa-

reness is short-lived and the whole solution process has to be restar-

ted as soon as the specific inputs are forgotten. Later still, even

the outcome can be forgotten. In the Description Task, Ben was still

aware that he had trouble with the input for the central interval in

the 4-Tees figure, but not whether he got it correct or not.

This level corresponds to a FFtAGMENTED CONCEPTUALIZATION of the

object. In the Measure Attribution Task, for instance, most of the di-

mensions are estimated visually, leading to some inconsistencies.

Level 2 : SOLUTION PATH ANARENESS. Subjects are able to reconstruct,

in the Description Task, a correct solution, by retaining the necessa-

ry steps from their previous attempts and dropping the rest. Awareness

of success is accompanied by awareness of the reasons for it. Working

with relations, subjects may solve the problem starting with different

inputs. But the solution path is not fundamentally changed. NO soluti-

ons for sub -problems emerge from the global solution. For instance,

none of our subjects gave, in the Input Insertion Task, inputs to the

TEE procedures that were appropriate to the chosen BASELINE, even if

they had found the input to give to the BASELINE in the Production

Task by using the sizes of the 'tries.

Such a level of awareness of one's solution corresponds to an INTE-
GRAL but ONIDIRECIICNAL CONCEPTUALIZATION of the object. Dimensions in

the Measure Attribution Task will be consistent because all the dimen-

sions can be computed, in some convenient order, as functions of others,

unlike in the Input Insertion Task where the order is imposed.
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Level 3 IMPLICATIVE AWARENESS. A successful strategy can not on-

ly be reconstructed but the whole solution may be re-planned to be more

general. Changes in the way of handling local problems may be derived

from the global solution. Anticipation may lead to computation of the

sizes of the tees rather than to guesses.

This level of awareness of a problem's solution corresponds to a

GENERAL CONCEPTUALIZATION of the object and of its characteristics.

OaCLUSICN

This study shows that 12-year old children show some spontaneous be-

liefs about where their programs are faulty when evaluating the outco-

mes of such programs. They also have their own criteria for success.

Delayed investigations about their understanding of solutions and of

the problems they worked on makes clear that success with LOGO often

leads to less understanding than what was hoped for by researchers.

Three different levels of awareness have been described, and good paral-

lels appear between the awareness of solution and the conceptualization

of the problem, confirming the
piagetian hypothesis about the nature

of awareness (Piaget, 1976).

Mathematics educators should be alerted to the fact that correct-

looking productions do not necessary mean that the student have solved

the expected problems. The many ways that lead to a particular target

nay allow the intrinsic problem to be circumvented.

Special efforts should also be taken to develop original ways to re-

inforce in children's minds an interest
in understanding and in being

aware of one's own work, not only on the computational but also on the

mathematical level.
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INTERACTIVE DOMAINS, NETACOGNIT1ON AND PROBLEM SOLVING

Lynn Hart
Kennesaw College

The Problem Solving and Thinking Project is documenting
evidence of metacognitive activity of individuals during
mathematic?' problem-solving and identifying additional
phenomena that may affect problem-solving performance. This
paper presents preliminary results for Jill, an inservice
teacher who is participating in the Project. Although Jill
was not successful, in solving either of two nonroutine
problems attempted, regular and frequent evidence of
monitoring and regulation of cognitions was found.
Additional analysis produced domains that may be
interferring with her problem-solving performance. While it
is premature to make any conclusions based on this work, it
lays the groundwork for further analyst!: in the Project.

This paper presents results of identifying and analyzing individual

metacognitive activity during mathematical problem-solving sessions and

additional phenomena that may affect problem-solving performance. The

research Is part of the Problem Solving and Thinking Project sponsored

by the National Science Foundation, currently completing the first year

of a thren year study. We are conducting a naturalistic inquiry driven

by the assumptions (basic beliefs) of the naturalistic paradigm. These

assumptions have shaped and influenced the focus of our inquiry, our

choice of methodology, and our analysis techniques.

FOCUS OF THE INQUIRY

The most recent results of the National Assessment of Educational

Progress (Lindquist. Carpenter, Silver, A Matthews, 1983) indicate that

children In the UniZd States are generally competent in mathematical

computation skills, however, they are unable to problem solve. We

assume a relationship between mathematicsl problem-solving performance

and metacognitive activity (Garofalo & Lester, 1985; Mart 1 Schultz,

1985, 1986; Schoenfeld, 1983; and Silver, 1985). Specifically, the

monitoring and regulation of one's knowledge, beliefs, and strategies

may impact problem-solving performance. From preliminary work the

assumption seems substantive and persuasive but we cannot refute or

support it until we systematically study metacognition in the context of

mathematical problem solving.
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We have not accumulated sufficient knowledge on the nature of

metacognitive activity to know whether the right questions are being

asked, essentially we are "begging the question." The "questions"

presented below, therefore, are only given to establish boundaries for

our study; they define "the terrain, as it were, that is to be

considered the proper territory of the inquiry" (Lincoln d Guba, 1985.

p. 227).

1. What categories (domains) of phenomena associated with an

individual's problem-solving performance can we identify? While we have

assumed the substantive theory of metacognition, we are not implying

determinancy. The simultaneous influencing of factors makes it

impossible to sort out a single causality. Metacognition is only one of

many factors that simultaneously influence problem-solving performance.

It is important then to find the range of domains that influence

problem-solving performance.

2. What evidence of metacognitive activity can we find? This

question focuses on the assumed domain of metacognition. If an

individual is in a problem-solving situation, what can we look for that

indicates monitoring and/or regulation of cognitions?

THEORETICAL PERSPECTIVE

While naturalistic inquiry generally rejects the use of an a priori

theory, we are assuming a general theory of metacognition (Flavell,

1976; Garofalo I Lester, 1985) as representing the state of the art in

mathematics education. Although the assumptions of the theory are not

apparent, we do not find it inconsistent with our inquiry paradigm. For

a more thorough discussion of our perspective see Schultz (1987, these

Proceedings).

RESEARCH DESIGN

Due to the unpredictable interaction expected and found in the

environment, the design was allowed to emerge rather than to be

completely constructed preordinately.

The subject. The subject for this paper is Jill, one of 15

inservice teachers in our Problem Solving and Thinking Project. She is

a young, high school mathematics teacher completing her first year of

teaching mathematics.

The setting. Jill participated in The Institute on Problem Solving

and Thinking, a tuition-free, master's level mathematics education course
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that we developed and taught as part of our project. It served as a

context for the initial stage of our data collection. In addition, Jill

has continued on with the project as a volunteer, long-term subject.

The methods. Two methods for collecting qualitative data were

observations and interviewing. Observations of Jill were of her solving

textbook word problems familiar to her before one of her classes,

solving an unfamiliar nonroutine problem in a small group, and solving

an unfamiliar nonroutine problem alone. A structured interview was

conducted before and after she solved the problem alone. Combining the

two methods helps to make distinctions between what Jill does

(observation of problem-solving behavior in several contexts) and what

she says she knows or believes (interviewing). This triangulation

provides validity for our results.

The data. Three videotapes were made of the observations and

interview. Data are transcriptions of the three tapes. The first

protocol is of Jill teaching her class. The second protocol is of Jill

with one other Inservice teacher solving an unfamiliar nonroutine

mathematical problem. The third protocol is of Jill solving an

unfamiliar nonroutine problem in a think-aloud session with the

interviewer. This last transcription includes the guided interview.

ANALYSIS

Constant comparison. This qualitative strategy was used to begin

developing an answer to our first research question: What categories of

phenomena can we identify that are associated with an individual's

problem-solving perfomance? It involves scanning the data for

categories that emerge, 1.e, looking for patterns and identifying

domains. While this process begins initially on a "feels right" basis

that relies on tacit knowledge, by constantly comparing incidents in the

same and different categories we eventually begin to develop properties

of the categories and rules for membership.

Parsing the protocols. The parsing technique was used to assist us

in answering our second research question: What evidence of

metacognitive activity can we find? The protocol of Jill working alone

and the protocol of Jill in a group were parsed into periods of time

when a single set of like actions (episodes) occurred. The time between

episodes (transitions) when the decision is made (or not made) to

continue on with a process or to start in a new direction are critical



-239-

points where evidence of monitoring and regulation may be apparent.

Details of this process are described in Hart and Schultz (1985, 1986)

and Schoenfeld (1983).

RESULTS

Although our second research question is subsumed in our first in

the actual analysis results for question 2 emerged first. The

discussion is more appropriate then in that order.

Question 2: Evidence of metacognitive activity. The monitoring

and regulation components of metacognition were
coded separately in the

protocols. Both verbal and inferred
evidence of these were found in the

data. Verbalized monitoring occasionally occurred without verbalized

regulation and vice versa. In those cases, inferences could usually be

drawn fram the transcript about non-verbalized activity. The following

are examples from Jill's transcript while working in a small group

trying to solve the following problem: "I'm a proper fraction in

simplest form. The product of my numerator and denominator is a

multiple of seven. Their sum is a perfect square. Who am I?"

1. After initial reading of the problem J111 says: "Do you know

anything about this?" (evidence of MONITORING); and "Maybe we could

talk about what the terms mean?" (evidence of REGULATION).

2. In the third transition there is no verbal evidence of

monitoring. From her verbalized regulation we infer evidence of

monitoring because she abruptly stops discussing terms and says: "So,

let's take a fraction like X over Y," (evidence of REGULATION).

In the transcript of Jill working alone on the problem "Can you

find two fractions in simplest terms with
different denominators whose

difference is 2/13?" we
found evidence such as the following:

3. After working a few moments on a problem Jill asks: "Can I have

two fractions whose difference eventually in reduced form is 2/13?

(evidence of MONITORING); and "O.K. let me see if I can start with a

common denominator of 26." (evidence of REGULATION).

4. Again after working for a few more minutes she says: "Oh, do

these two fractions have to have a different denominator?"
(evidence of

MONITORING); and "O.K., what if I have 13 as a
denominator and 2 as a

denominator" (evidence of REGULATION).

Question 1: Categories of phenomena. After the protocols were

analyzed for evidence of metacognitive
activity, they were analyzed for

patterns. Regular and frequent monitoring was
observed, from which two

categories emerged:
monitoring of her knowledge

and monitoring of her

r4 I-%
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understanding. Knowledge in this use was defined as information and
beliefs she brought to the problem-solving session. Monitoring of
understanding became defined as assessment of the progress of the
problem process. An example of monitoring her knowledge is when Jill
comments while going over the vocabulary in the problem that "there
aren't a heck of a lot of perfect squares." She changes her direction
and begins listing perfect squares. An example of monitoring her
understanding occurred when she says "This isn't getting us anywhere."
At this early stage of our research the properties of these categOries
are still loosely defined. They do, however, serve as a beginning for
our thinking.

While no obvious categories emerged for regulation of cognitions it
was observed that all Jill's regulation was done as a result of her
internal monitor rather than an external monitor such as another group
member or an interviewer.

Four major categories emerged from searching the protocols for
patterns and identifying other domains that Influence Jill's
problem-solving process. They have been loosely labeled Time, Ease,
Embarrassment, and Other. After indicating locations of these on the
transcripts, Jill was given the opportunity to respond to our
observations. Some of the groupings are based on her responses. The
following are typical statments that fell into each domain. They are
direct quotes.

Time. 1. We don't have a time limit on this do we? 2. It will
take me longer to write It down. 3. 1 could figure it out If I had more
time.

Ease. 1. It would be easy if my first 2 fractions had a
denominator of 13. 2. It would be easy if I didn't have to have
different denominators. 3. It would be easier If I could read it.

Embarrassment. 1. I'm embarrassed. 2. I'm sounding foolish
talking out loud. 3. You're enjoying this aren't you? (This comment was
placed into this category as a result of Jill's reaction. When asked to
elaborate she said she was embarassed and wanted to stop and regroup her
thoughts).

Other. Other items of interest were identified and as yet do not
fit into a category. 1. I want to know the answer. Tell me what I did
wrong. 2. Is this what you wanted? 3. It would be helpful if you had a

standard way to do these problems.

Pi rl 4
7
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CONCLUSIONS

What can we say about Jill's iaetacognitive behavior? What

information does this give us on understanding the relationship of

problem solving, metacognition, and other factors? In both

problem-solving sessions Jill demonstrated regular and frequent

monitoring and regulation of her knowledge and her understandings.

Also, an evaluation of her monitoring indicated productive awareness.

Yet she was unable to solve either of the problems. We hypothesize

other factors are interacting and influencing her level of performance.

There appears to be a powerful belief that it is necessary to solve

problems quickly in order to be a "good" problem solver and not be

"embarrassed." If these related beliefs are driving her problem-solving

behavior they may be interferring with her ability to perform

successfully on the problems. Her beliefs may have incapacitated her to

such a degree that she is unable to live up to the picture she has of

good problem-solving performance.

It is expected that these characterizations and interpretations of

Jill will continue to evolve as data from other subjects are reviewed.

This initial conceptualization will be filtered, organized and

interpreted through several more phases of refinement. Our "problem" is

to make sense out of this, not just as observers but as participators as

well, for after all, we became a part of Jill.
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HETAOOONITION: THE ROLE OF THE "INNER TEACKER"(2)

Ichtei HIRARAYASHI and Kelichi SH1GEHATSU

(NARA University of Education, Japan)

ABSTRACT

The nature of metacognition and its implication to

mathematics education is our ultimate concern to investigate

through a series of our researches. We argued in the last

paper that metacognition is given by another self or ego

which is a substitute of one's teacher and we referred to it

as "inner teacher". In this paper we will show a more

concrete description of metacognition of children through

their recorded responses. Especially we will prove that

there is a close correlation between pupils' metacognition

and their performance in mathematics.

INTROOUCTION

In our last paper, we presented the concept and the roles of Omer

teacher in the research of metacognition. There we paid attention to

children's two ego: one Is the acting ego and the other is the executive

ego which monitors, assesses, and controls the former. This executive

ego Is really a substitute or a copy of the teacher from whom the pupil

learns. in the teaching-learning
context, we refer to the executive ego

er the subject of metacognition as the inner teacher.

In this paper, we will investigate more clearly the concept of the

metacognition through pupils' recorded responses of their solving

mathematical problems.

Roughly speaking, we could regard "metacognition" as the

knowledges and skills which make the objective knowledges active in

one's thinking activities.

There are a few proposals on the categorization of "metacognition"

in general but here we will follow to the suggestion of Flavell's and

adopt the next three divieiono:

1. on the self

2. on the task

3. on the raten.

Our unique conception is that these metacognitions are thought to

be originated from the teacher him/herself. Teacher cannot teach any

knowledge per .Ye directly to pupils but teach it inevitably through

hlo/her personality with the metacognitions whatsoever.

( 4 t
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To express more clearly, teachers give any knowledge or skill

always with its monitor who is to manage the pupil as executor. In

another word teaching is the activities to settle another self for owl
in pupils' mind as the substitute of their teacher.

It is well known that teacher and their method of teaching are the
most important component in education especially in mathematics
teaching. Our intention is to clarify the implication of this old

educational common sense and give it a scientific analysis and develop a

more effective method of teaching mathematics.

The most crucial point of our research is to investigate what part
of teachers' activities is introduced as their pupils' cognitive
elements. And as such, our final aims of research would be as follows:

1. to make a list of teachers' activities in teaching

2. to sake a list of pupils' thinking activities in their learning

3. to compare both lists and make a list of setacognition
4. to establish the relation between pupils' mathematical

performances and their commanding metacognitions

6. on the basis of these reflections, to develop more effective

method of teaching in mathematics.

In this paper, we hope to contribute to attain 3.,4. of the above
aims.

THEORETICAL FRAMEWORK OF THE RESEARCH

Logical Model of Netacogniticn

At first we propose a logical model of metacognition, which will be

also available to understend the meaning of several technical terms such
as "metacognition", "metaskill", "metaknowledge", "monitor",

"assessment", "control", etc..

As an example we wish to observe the case of a pupil who, being
given a verbal problem and asked to solve it, thought that

"It is a long problem, it is difficult and I should read it

carefully."

This process of the pupil's thought is paraphrased as follows:

141: it is a long problem.

Kt: if it is a long problem, it is difficult.

Ct: it is difficult.

MMC1

Ka: if it is difficult, we should read it carefully.

C2: we should read it carefully.

72
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We should like to formalize this cognitive process in a chain of

syllogisms like in logic as follows:

Acting

ego

1:117-11

awareness --411. Ni.. -.- monitor

1(1.0.---metaknowledge

control Ci...---assessaent

MeRCI.Hmonitor

ga.s.---setaknowledge

control -- -- C2.46.-- assessment

Executive

ago

Fig. 1 A Model of Netacognition

1) MI is the fact that the acting ego was aware of from the

confronted problem situation, and ways of awareness and their adequacy

are monitored by another ego that is the executive ego.

2) K1 is a proposition which comes from the executive ego. We

Identify this with the metaknowledges which is what we wish to analyse

about its nature end its origin.

3) CI is a conclusion of modus porters from two premises N2 and /2$

but it is also assessed by the executive ego on its adequacy in this

situation.

On this model we could have a psychological interpretation of each

step.

(1) Minor premise Mi comes from the problem confronted; it is an

information given from the problem through the monitoring of the

executive ego.

(2) Major premise Kt comes from inside of the learner through

his/her reflection..

(3) Conclusion C is not a mere logical consequence but it is also

a result of one's assessment upon the urgent problem situation, and this

conclusion will control the direction of the thinking and often becomes

the minor premise of the following syllogism as is shown in the diagram.

(4) Furthermore we could suppose some mechanism which guides the

whole process, choosing appropriate information, remembering a suitable

knowledge and not losing the way. We should like to call this mental

mechanism "metaskill", which is not the specific skill such as the

calculation or drawing, but seem to have a very general nature, and

analysis of this metaskill will be our another theme that we wish to

7
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Pursue hereafter.

(6) Finally we would like to refer "metacognition" to the whole

chain of these syllogism including metaskills.

METHODOLOGY OF THE RESEARCH

Giving a verbal problem to children, we asked them to solve it and

at the same time to write what they thought in solving it. They are

sixth grade pupils, already learned multiplication and division by

common fraction.

An example of the problem:

Thereisanelasticistring.Wheriwepullitoutby-3 of
5

its length, it becomes 64 cm long.

How long it was before pulling?

We decompose pupils' recorded responses sentence by sentence and

classify these sentences into several categories. Here are some

protocols:

(1) In case of a pupil A (boy, average level)

1. This problem Is the same as that I did last.

2. I feel I have forgotten half of it.

3. I think I may do it, if I show it on the line.

(and drew a diagram, which is omitted here.)

4. Ah, it's hard.

6. (omitted)

6. (omitted)

7. 1 did, 1 had the answer.

8. But I wonder it is correct.

9. Teacher said it is an easy problem but it was hard,

perhaps because I was about to forget.

10. There may be another way to think but it is all that I can do.

11. Then so much for this problem.

(2) In case of a pupil A (boy, below average)

1. It's a long problem.

2. I hope teacher's help.

3 0
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3. I don't like a difficult problem.

4. I like science better than math.

6. 1 can make mistake: it's not the examination.

6. 1 may well understand If I draw a diagram.

We divide pupils into three groups according to their previous

performance in mathematics, and examine the characteristic features of

their recorded responses from the view points of metaknowledges.

RESULTS AND DISCUSSION

1) In these short pupils' self-descriptions we can clearly discern

three kinds of cognitions, the typical example of which is shown

Incidentally in the first three sentences of the pupil A.

In I. This boy Is trying to organize the given problem into his

existing system of knowledges.
(task)

In 2. He has enough ability to reflect himself in solving the

problem.
(self)

In 3. He has the knowledges of strategies to apply to this

specific problem situation.
(strategy)

2) The most remarkable fact was that there was a great distinction

among characteristic features of each performance group. This is

exemplified by responses of the sixth grade pupils to the next problem.

problem: It takes 12 minutes to go from A-station to B-station by

bicycle with speed 240 m per minute. But Yamada wishes to go

through this way on foot. His speed is 60 m per minute. How

many minutes does it take for him?

The above average group: Most of this group will not express

themselves so much, but only describing
abbreviated process of solving.

How long does it go in 12 in., if it goes 240 in a minute?

I had the distance from A to B.

The average group: They seems to like chattering, but rather have

a negative attitude.

It's trouble some for me.

I can understand.

It's not the examination, no I can do mistake.

The below average group: The most impressive was their badly
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negative attitude near to hostility against mathematics.

* It's my weak point.

It's a disagreeable problem.

3) In the above average group, pupils seem to understand the

problem very easily, whether or not they can solve it. To know or to

understand something means to place it in one's existing system of

knowledges and give it an appropriate position that it should deserve.

These able pupils can do this very smoothly, almost unconsciously of

their reflection efforts, and only describing the process they really

followed. But less able pupils seem to be suffering from many varieties

of prejudices toward problem and mathematics in general before they

choose some believable devices of challenging against the problem.

4) There are negative expression in case of below average pupils,

as we showed some of them. We think these expression are originated

from the teacher's attitude of teaching until this time.

According to the statistics out of curiosity of someone in our

country, the most frequent utterance of mathematics teacher during the

lesson is "Understand?"; often it amounts to several times in a minute.

This kind of utterance would be the most harmful to foster the healthy

metaknowledges, because,

1. it sounds something like authoritarianism to compel pupil to

understand anything that teacher says as infallible.

2. It generate a fear or an inferiority complex toward mathematics

and it's learning.

3. it generate the belief that mathematics is absolute and the

only way to learn It is to learn by heart.

In stead of "Understand?", we recommend the often utterance of

"What do you want to do next?". This asking would stimulate pupils'

autonomous thinking and urge their active participation in the classroom

activity.

CONCLUSION

1) We could have a more clear idea about concept of metacognitlon

that we called "inner teacher". It is another self or ego who is

watching, controlling, criticizing the original self like the teacher

they have learned from.
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2) We highly appreciate Flavell's categorization of metaknowledge.

In addition to this we noticed from the pupils' responses that we could

divide these metaknowledges in some other categories: one is

posttive-negat/ue and another is senerml-specific, thoegh these

distinction are not absolute but relative to the problem situation and

the person. Positive and general metecognitions play a powerful role in

the cognitive activities and they should be favored in the teaching of

mathematics.

3) Though we have not yet closely examined, we had an insight that

there Is an intimate correlation between metaknowledge of self and

performance in mathematics. Less able pupils are apt to have negative

views toward themselves, but we could not yet decide of which is cause

or result of the other. We also believe that the teacher is responsible

for cultivating their positive metaknowledge of themselves.
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THEORETICAL PERSPECTIVES ON INQUIRY INTO PROBLEM SOLVING.
KNOWLEDGE ACQUISITION, METACOGNIT1ON, AND TEACHING

Karen Schultz
Georgia State University

This paper gives the theoretical perspectives forresearch in progress on metacognition and problem solving.
First. a world view of learning, teaching, and teacher
training of mathematical problem solving is described as
supported by the new paradigm" of Schwartz and Ogilvy.
This is followed by the assumptions made in our research,
which are described according to the assumptions of
naturalistic inquiry of Lincoln and Guba. Finally, the
focus of our inquiry is developed which essentially aims at
identifying what our research questions should be.

The purpose of this paper is to present the theoretical perspective
of the Schultz and Hart research on metacognition and problem solving
currently supported by the National Science Foundation. (See Hart,
1987, in these Proceedings for project description.) In order to do
this, it is first necessary to explain our world view of learning,
teaching, and teacher training of mathematical problem solving. This is
outlined according to Schwartz and Ogilvy's (1979, 1980) seven
characteristics of the "new paradigm," which come from disciplinary
world views such as those from chemistry, psychology, philosophy,
mathematics, etc. Second, our assumptions for researching learning,
teaching, and teacher training of mathematical problem solving are
explained according to a naturalistic paradigm of inquiry outlined by
Lincoln and Guba (1985). There are five assumptions of an Inquiry guide

called the "naturalistic paradigm" whose tenets are subsumed by the same
world view as Schwartz and Ogilvy. It is the method of choice,
especially when humans are the objects of the research. This section of
the paper is outlined according to these five assumptions. Finally, it
will be possible to explain the focus of our inquiry. Discipline state
of the art literature and theory will be considered throughout.
Judgement calls are made as to the relevance and applicability of the

literature and theory to the world view and paradigm presented.

LEARNING, TEACHING, TEACHER TRAINING, AND PROBLEM SOLVING

Complexity. Diversity and interactivity are characteristics of
our reality. Schwartz and Ogilvy (1979) say that it is "in principle

73 4
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impossible to separate a thing from its interactive environment. (p.

10). in terms of this characteristic, there are at times arbitrary

boundaries between learning, teaching, and teacher training. There is

undeniable interdependence between the ecosystems of student and

teacher, and teacher and teacher trainer. Teaching and learning for

knowledge acquisition through the development of productive

problem-solving behaviors (Lesh, Landau, & Hamilton, 1983) requires a

reciprocol engagement of systems resulting in such roles as learner as

teacher and teacher as learner. Kilpatrick's (1985) metaphors of

reflection and recursion suggest that one steps outside the system in

order to give meaning to experience. Current theory on teaching and

learning mathematics as a constructivist activity supports this notion

that neither process nor content is an absolute (Cobb & Steffe, 1983;

Confrey, 1985; Maher & Alston, 1986; Steffe, 1986).

Heterarchies. It is believed that if there is order In our

"realities," many elements exist side by side. Which element is

predominant at any moment depends on "interacting variables" often

imposed by human thinking for the sake of discussion rather than as

determined by nature. An example is discussion of accommodation and

assimilation which describe the equilibration process (Piaget, 1973).

These are useful terms for us since disequilibrium is a state of one's

cognitions when problem solving. Which comes first, however, is often

determined by way of rhetoric In scholarly communication. The

application of heterarchy to the teaching and learning of mathematical

problem solving includes the belief that the orders of teaching then

learning, knowledge acquisition then problem solving, or cognition then

metacognition is a function of a scholar's mind not of laws of nature.

Facilitation of learning or problem solving rather than teaching by

command is viewed as the most useful process for effecting change.

Authority of teacher over student or teacher trainer over teacher gives

way to voluntary mutual association. This, too, supports the idea of

"teacher as learner" developed above.

Holography. This term is used metaphorically to describe the

models that we use to describe the nature of the world. Images one has

of a system or an organism are "projected" so that complete information

from the whole Is found in any of its parts. This may be seen in

cognitive psychology by the shift from use of mechanistic to organismic

models to characterize how children develop cognitively (Carpenter,

1980). The shift was from a stimulus-response concept
(machine) to a

concept of a multidimensional,
developmental, dynamic, Interactive concept.
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(a living organism). Another example of this characteristic is found in

explanations of mathematical knowledge acquisition, which is no longer
viewed through a curriculum of concepts, properties, algorithms, skills,
and problem solving tending to promote disjoint knowledge. Rather, it
is "seen" as a total process of evolving within-concept systems,
between-concept systems, systems of representations, and systems of
modeling processes brought on by real problems (Lech, Landau, Hamilton,

1983). For example, one could look at a learner's understanding of

fraction to determine his or her understanding of partition (within

concept), or understanding of the relationship between whole numbers and

fractions (between concepts), or what written, verbal, or concrete
systems are used to communicate fractional ideas (representation and

modeling). Let's put this in the context of problem solving. To
effectively accomplish teacher training in problem solving, it is our
view that this is facilitated by teachers reflecting on not only
themselves in the process of learning, but the teacher trainers in the

process of teaching, and their students in the process of learning.

Observing and reflecting on outcomes of each party involved as it
relates to the whole "picture" is a potentially useful strategy to
impact change.

Indeterminancy. It is no longer considered completely possible to

determine a future state of the world. Schwartz and Ogilvy (1979) say
that ambiguity about the future is a condition of nature. For us,
precise outcomes of teaching mathematics cannot be predicted. For both

teaching and mathematical problem solving are complex systems and

teachers and students are complex organisms. Moreover, the very nature
of the processes used for determining a Learner's state of knowledge,

problem-solving ability, or teaching ability affects the outcomes!

Formal or informal measurements of these things are determined by the

relationship between learner and teacher, or teacher and teacher

trainer. Even these relationships, however, are an indeterminant.

Mutual Causality. The synergistic relationship of these seven

beliefs is particularly noticable here, where mutual casuality and

heterachy cannot stand alone. Mutual causality means "simultaneous

influencing of factors over time in such a way that it is no longer

relevant to ask which caused which" (Lincoln & Guba, 1985, p. 54). This

supports our interpretation of Polya's (1957) stages of problem solving

not as linear, but rather as both cyclic and mutually responsible for

actions throughout the problem solution space. Even though a problem

solver may say he or she really understands a given problem, it might

not be until several strategies later before true meaning of the problem

'736
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statement is absorbed. To move on to another example within this fifth

characteristic, even though a teacher models a certain set of beliefs

and teaching behaviors, learner outcomes are influenced ;)), yet a complex

of mutually interacting "causes." The idea of In.'leencing or

facilitating replaces those of teacher as authority. The, s a shared

authority among knower, learner, and known.

Morphogenesis. The traditional perspective was that change was a

result of assembling separate components according to some plan.

Morphogenetic thinking supports the notion that change evolves from

chaos when the "system is open to external inputs" (Schwartz i Ogilvy,

1979, p. 14). Catastrophy theory is mathematics' way of explaining

this. What this means is that learning outcomes are not attributed to

controlled treatments, but rather to very complex systems and organisms

arising through very dense and complex teaching/learning interactions.

Learning to teach mathematical problem solving or learning problem

solving itself as a student, teacher, or teacher trainer is viewed as

change that is not only continuous and quantitative but discontiuous and

qualitative as wel. The ability to solve a problem has been studied

macroscopically (Hart 4 Schultz, 1985, 1986; Schoenfeld, 1983) through

episodic parsings, which identify locations where.significant changes in

the solution space occur. Our interpretation of what starts change is

supported by morphogenesis--that it wasn't the singular event of a

reflective moment by a problem solver, but rather an indeterminant

networking of thoughts and behaviors that eventually led to a major

shift in the solution space. It helps to go back to the conceptual

models construct as an adaptive structure to describe knowledge

acquisition as evidence of metacognitive (reflective) activity. Within-

and between-concept systems and systems of representation and modeling

processes are labels attempting to give an Interpretation of the

evidence of metacognitive behaviors and explain what happens as a result

of managerial decision making (Schoenfeld, 1983). New understandings

are made possible by the monitoring and regulation of cognitions--a kind

of monitoring and regulation of one's own chaos. Who else is better

equipped to do this but one's self? We believe that conceptual models

evolve this way from less stable to more stable forms and from being

less integrated to more integrated with other
models through a plausable

complex of Influences that one eventually "makes sense" of.

Perspective. Objectivity is now seen as an illusion. However,

subjectivity, as the other extreme, is not the suggested atlernative.

Rather, it is perspective--"a view at a distance from a particular

focus" (Schwartz & Ogilvy, 1979, p. 15). In fact, multiple perspectives
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are needed to get a more complete picture of the phenomenon. What is
believed about mathematics, problem solving, teaching mathematics, or

learning mathematics influences what is seen (believing is seeing)

(Garofalo A Lester, 1985). To facilitate learning, the teacher takes

the learner's perspective. To facilitate teaching, the learner takes

the teacher's perspective. Rachlin's (1982) process approach to algebra

instruction supports taking different perspectives of an algebraic

concept or procedure. He encourages moving from the generalization

perspective of an idea or procedure, to flexibility of approach where

the student is to switch from one mental operation to another. Finally,

the student is to engage in reversibility of mental processes as a

switching from a direct to a reverse train of thought. That is, he

believes that changing perspective of algebraic ideas and procedures

enhances the depth of understanding.

BASIC RESEARCH ASSUMPTIONS OF THE NATURALISTIC PARADIGM

Reality. There are multiple constructed realities (Do we create

what we research?) that can only be studied holistically (Lincoln

Guba, 1985). Therefore It is no longer considered useful to hold

certain variables constant in order to study the influence of one or two

other variables. Given this assumption, we have read the literature and

learned the theories. We have experienced, observed and meditated on

learning, teaching, and teacher training of mathematical problem

solving, but still are unsure of what questions to ask. The stated

problem is the inability of students in the United States to be

successful in problem solving. We (Schultz and Hart) go on tacit

knowledge that the milieu of our investigation should be teacher

training in problem solving.

Knower and Known. The researcher and those being researched have

an interactive relationship. To study a person means In part to study

an Interfacing of one's self with that person. This assumption means

that if we are to study teachers during inservice training, we are

ourselves subjects of study as well. Data collected on the

investigators is subject to analysis in order to better interpret that

of the teachers. Moreover, to enhance and maximize the expansion of

teacher data, teachers continue in a participant/observer role with the

researchers, where the activity is Interpretation of data and taking

opportunities to obtain more data.

Generalization The research goal is to generate idiographic

statements on differences, primarily in the form of working hypotheses

738
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that describe the subject of study. Our intent is to generate

hypotheses, to decide what questions should be asked. The question of

parmount importance, then, is "What are the questions?"

Causality. There are plausible influent , as on a web, making it

impossible to distinguish causes from effect,. Given this assumption,

we need to study the whole web. Therefore, we have taken as our objects

of study ourselves as teacher trainer/inquirers, teachers, and their

students. We are all learning problem solving. In a constructivist

format, we are all teachers and learners.

Values. Lincoln and Guba identify at least five corollaries in

which inquiry is value-bound. Inquiries are influenced by inquirer

values, by choice of paradigm, by choice of substantive theory applied,

by content under study, and by whether the first four corollaries are

congruent or conflicting with each other.

THE INQUIRY

The goal of the Problem Solving and Thinking Project is to document

evidence of metacognitive activity of individuals during mathematical

problem solving and identify additional phenomena that may interact

during problem-solving performance.
This documentation is being used to

investigate the complex and interactive environment influencing problem

solving. The "questions" we hope to answer are: (a) What categories

(domains) of phenomena associated with an individual's problem-solving

performance can we identify? (b) What evidence of metacognitive

activity can we find? (See Hart (1987) in these Proceedings for

elaboration.)
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WHY IS PROBLEM SOLVING SUCH A PROBLEM?

Reactions to a Set of Research Papers

Frank K. Lester, Jr.

Indiana University

Countless generations of teachers have voiced concern about the in-

ability of many of their students to solve any but the most routine ver-

bal problems despite the fact that they seem to have "mastered" all of

the requisite computational skills and algorithmic procedures. Un-

fortunately, until rather recently researchers have seemed content to

attribute problem-solving difficulties almost exclusively to cognitive

aspects of the problem solver's performance. Today there is growing

sentiment for the notion that a such broader conception is needed of

what mathematical problem solving involves and what factors influence

problem-solving performance.

I begin my comments with a discussion of the categories of factors

that play prominent roles in an individual's success or failure in solv-

ing arithmetic. probless. I do this in order to establish a basis for

my reactions to the set of papers on metacognition and problem solving.

What Influence. Problem- solving Performance?

An Individual's failure to solve a problem successfully when the

individual possesses the necessary knowledge stems from the presence not

only of cognitive factors, but also of non-cognitive and metacognitive

factors that inhibit the correct utilization of this knowledge. These

factors can be placed into five broad, interdependent categories:

knowledge, control, affects, beliefs, and socio-cultural conditions. It

in not my intention to discuss these categories in detail, but it seems

appropriate to make a few comments about each of them.

Knowledge

IL is safe to say that the overwhelming majority of research in

mathematics education has been devoted to the study of how mathematical

knowledge in acquired and utilized. Included in this category are a

wide range of resources that can assist the individual's mathematical

performance (cf., Schoenfeld, 1985). Especially important types of

renounces are the following: facts and definitions (e.g., 7 is a prime

number, a square is a rectangle having 4 congruent sides), algorithms

(e.g., long division), heuristics (e.g., looking for patterns, working
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backwards). and the host of routine, but not algorithmic, procedures

that an individual can bring to bear on a mathematical task (e.g., pro-

cedures for solving equations, general techniques of integration). Of
particular significance to this discourse is the way individuals
organize, represent. and ultimately utilize their knowledge. There is
no doubt but that many problem-solving

deficiencies can be attributed to
the existence of "unstable conceptual systems" Mesh, 19851. That is,
when individuals are engaged in solving a problem it is likely that at
least some of the relevant mathematical

concepts are at intermediate
stages of development. In such cases, to the eitent that problem sol-

vers can adapt their concepts to fit the problem situation they are suc-
cessful in solving the problem. Furthermore, since mathematical con-
cepts evolve from situations, it is natural to suggest that there is a
close link between conceptual knowledge and problem-solving performance
(Vergnaud, 1982).

Control

Control refers to the marshalling and subsequent allocation of

available resources to deal successfully with mathematical situations.
More specifically, it includes executive decisions about planning,

evaluating, monitoring, and regulating. One aspect of control processes

that has become increasingly popular as an object of research in recent

years is regulation of cognition. This aspect of control together with

knowledge about cognition and beliefs constitute what is currently
referred to as metacognition.

I might point out that metacognition, as defined and discussed in

several of the preceding papers, is not really a new construct. Indeed,

metacognition seems closely related to Skemp's (1979) notion of "reflec-

tive intelligence" and to Piaget's (1976) construct "reflexive abstrac-
tion." Furthermore, metacognitive behaviors correspond very closely to

the executive components in some information-processing models of cogni-
tion (e.g., Sternberg, 1980) and to conceptions of problem solving

(e.g., Poly., 1957).

Affects

This domain includes individual attitudes and emotions. Mathe-

matics education research in this area often has been limited to exam-

inations of the correlation between attitudes and performance in mathe-
matics. Not surprisingly, attitudes that have been shown to be related

to performance include: motivation, interest, confidence, perseverance,

willingness to take risks, tolerance of ambiguity, and resistance to

premature closure.

7 I?,



259

Typically, emotions are subjective reactions to specific situa-

clone. Of course, emotions can have either a facilitating or debilitat-

ing effect on the individual, but negative emotions (e.g., frustration)

are not necessarily debilitating nor are positive emotions (e.g., loyl

necessarily facilitating. There is a growing body of research to sup-

port the notion that emotions and cognitive actions interact in impor-

tant ways (handler, 1986). Most of this research has been restricted

to the study of the conditions under which certain emotions occur or to

the nature of an individual's behavior when in a particular emotional

state.

To distinguish between attitudes and emotions I choose to regard

attitudes as traits, albeit perhaps transient ones, of the individual,

whereas emotions are situation-specific states. An individual may have

developed a particular attitude toward some aspect of mathematics which

affects her or his performance (e.g., a student may greatly dislike

problems involving percents). At the same time, a particular mathe-

matics task may give ries to an unanticipated emotion (e.g., frustration

when little progress is sad* toward solving a problem after working

diligently on it for a considerable amount of time). The point is that

an individual's performance on a mathematics task is very much in-

fluenced by a host of affective factors, at times to the point of domi-

nating the individual's thinking and actions.

Beliefs

Schoenfeld (19851 refers to beliefs, or "belief systems" to use his

term, as the individual's mathematical world view, that is, "the per-

spective with which one approaches mathematics and mathematical tasks"

(p, 45). Beliefs constitute the individual's subjective knowledge

(i.e., not necessarily objectively true) about self, mathematics, the

environment, and the topics dealt with in particular mathematical

tasks. For example, my colleagues and I have found that many elementary

school children believe that all mathematics story problems can be

solved by direct application of one or more arithmetic operation and

which operation to use is determined by the "key words" in the problem.

Naturally, this belief has a very powerful effect on the way they solve

problems.

It seems apparent that beliefs shape attitudes and emotions and

direct the decisions made during mathematical activity. In my own re-

search I have been particularly interested in students' beliefs about

the nature of problem solving as well as about their own capabilities

and limitations.

7 3
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Socio-cultural Conditions

In recent years, the point has been raised within the cognitive
psychology community that human intellectual

behavior must be studied in
the context in which it takes place.

That is to say, since human beings

are immersed in a reality that both affects
and is affected by human be-

havior, it is essential to consider the ways in which socio-cultural
factors influence cognition. In particular, the develop& Tit, under-
standing, and use of mathematical

ideas and techniques grow out of so-
cial and cultural situations. D'Ambrosio (1985) argues that children
bring to school their own mathematics

which has developed within their
own socio-cultural environment. This mathematics, which he calls "eth-
nomathematica,* provides the individual with a wealth of intuitions and

informal procedures for dealing with mathematical phenomena. The point
then is that the wealth of socio-cultural conditions which make up an
individual's reality plays a prominc.nt role in determining the individu-

al's potential for success in doing mathematics both in and out of
school.

Relationship Among the Categories

As I mentioned earlier, these five categories are interdependent.
In particular, socio-cultural conditions directly influence the forma-
tion of attitudes, emotions, and beliefs, as well as control and knowl-
edge utilization. Affects influence both control end knowledge but not

beliefs or socio-cultural conditions, whereas beliefs directly influence
all the other domains except socio-cultural conditions and control
directs only the ways in which knowledge is utilized. In my iew, it is
vital that future research gives serious attention to investigating the

nature of the interrelationship among these sets of factors.

some Thoughts about Current Problem-solving Research

Given the foregoing perspective as a backdrop, .my approach to
analyzing these reports was to look for underlying themes and issues
rather than to enumerate flaws and .shortcomings. More specifically, I

tried to identify fundamental concerns
or questions which seemed to be a

motivation for these researchers' efforts, and in a larger sense for
many of the types of research studies presently being

conducted by math-
ematics educators on the topic of metacognition and problem solving, and

to relate these concerns to one or more of the categories of factors
considered earlier in this paper. Consequently, although my remarks are

restricted to theme seven studies, they apply in a general way to all of
the work in this field of inquiry.
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What Good Is Inert Knowledge? (K. M. Bart)

In his classic essay, "The Aims of Education," Whitehead insists

that the central problem of education is one of "keeping knowledge

alive, of preventing it from becoming inert ..." (Whitehead, 1957, p.

5). K. Hart's primary concern is that students often fail to adopt gen-

eralizable, formal, school-taught procedures and instead persist in

using their own "naive" (her term) methods. As a result they have great

difficulty not only with symbolic-level computations, but also with ver-

bal problems that are remote from their direct experiences. That is.

these students have a warehouse of inert knowledge that is useful only

under a very restricted set of circumstances. Her conjecture, which she

attempts to back up with very disheartening descriptions of lessons

taught by three volunteer teachers, is that teachers do not make ap-

propriate links between the child's concrete, familiar, informal knowl-

edge and the symbolic, unfamiliar, formal world of mathematics. I think

this is a quite reasonable conclusion to draw but it does not go far

enough. That is, it is simply not sufficient to establish a bridge be-

tween concrete models and symbols. At least one other bridge is needed

as wells a bridge from the child's reality to the concrete models of

that reality. Without this transitional link it is likely that the

child will learn how to manipulate the models in a rote manner only,

thereby developing inert knowledge. My point is that if only rote

knowledge is acquired thtough experiences with concrete models, then the

teacher will h..ve a very difficult time indeed creating meaningful

link between this knowledge and a more symbolic, formal form.

Finally, K. Hart has focussed her attention exclusively on the

knowledge category of problem solving. Children may choose to continue

to use their own "ungeneralizable" procedures because as they learned

these procedures they also learned how to monitor and evaluate their

use. Can the same be said of the school-taught procedures? It seems

plausible that in addition to falling to establish links between con-

crete and symbolic procedures, teachers tend not to help their students

learn how to take charge of their own mathematical behavior, that is,

the students are not learning how to control the new knowledge they are

acquiring.

What Does It Wan to Be Successful at Solving Problem? (Curtner)

Some years ago a colleague of mine, who had just heard Seymour

Papert speak about LOGO, informed me that when children worked in a

LOGO environment it was inevitable that they would learn with (rela-
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tional) "understanding." A. incredible as this statement seemed to me
at the time, my unfamiliarity with LOGO forced me to withhold comment.
Since that time I have read many articles and listened to many
testimonials about the merits of LOGO. Only recently has its effective-

ness in mathematics learning begun to be subjected to systematic,
scientific scrutiny. Ourtner's research is an example of the best work
in this area. In particular, his work demonstrates that success in
solving LOGO problem does not necessarily mean that it was solved with
understanding. But the merit of his research does not rest solely on
this unsurprising result. Rather, his results forcefully illustrate

that students' beliefs and their level of awareness of their solution
efforts play very influential roles in their problem-solving behavior.

I have two cautions to add about the implications of the results of
this research. First, Gartner observed that the students seemed to be
directed by an assumption that solution could be obtained by progres-

sively matching the current production and the target object. I have no

concern bout the legitimacy of this assumption, but this sort of
"means-end analysis* seems somewhat natural given the nature of the
problems posed (i.e., the goal state is given: the problem is one of
finding a means of attaining that goal). It seems unlikely that stu-

dents would make such an assumption if other types of mathematics prob-
lems were used. Since this assumption underlies the four beliefs about

the nature of their solutions, h of this type with different

kinds of problems would likely yield a very different set of beliefs.

Second, since metacognition training (i.e., training students to be more

aware of their thinking and to be more reflective about it) is rare in

mathematics instruction, the students' lack of "planfulnese in their

solutions may simply reflect a belief that such behavior is unnecessary

when solving mathematics problems.

How Important Is It to Save a Good Sense of What You Know? (DeGuire)

There are three general approaches to problem-solving instruction:

teaching for problem solving, teaching about problem solving, and teach-
ing via problem solving. A teacher following the first approach would

focus instruction on the acquisition of those mathematical concepts,

skills, and processes that are useful for solving problems. The second

approach involves the teacher modeling good problem-solving behavior or

directing students' attention to salient procedures and strategies. The

third approach, the method advocated by Polya, involves teaching mathe-

matic with a problem-solving perspective. DeGuire has undertaken the
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study of students' awareness of their metacognitive processes in the

context of a course on problem solving that seems to be a combination of

the first two approaches. Because her study is not pimply about the de-

velopment of awareness of metacognitive processes, but is also about an

approach to metacognition training, I think it likely that there was

some interaction between the students' development of awareness and the

nature of the training they received. Perhaps if the course had been

structured differently, very different outcomes would have resulted.

Under the best of circumstances metacognitive processes are ex-

tremely difficult to get at and I was struck by the care with which she

designed the study. DeGuire correctly points out that the methodology

for studying metacognitive behavior does not presently exist. In par-

ticular, I as concerned, as she no doubt is as well, about the validity

of self reports (journal entries) as a source of data about metacogni-

tive awareness. Does the fact that student is unable to write cogent-

ly about her thinking mean that she is unaware of her thinking? At the

same time, is a nicely worded statement evidence of good awareness, or

might it simply indicate glibness? A similiar difficulty exists in at-

tempting to analyze students' written work. Consider, for example, the

case in which a student works on a problem but does not appear to have

used a particular skill or strategy. What can be concluded about this

student's behavior? That he or she does not know how to use the

strategy? Or did not fecognize that the strategy could be used? Or

simply chose not to use the strstegy7 To complicate matters further, if

the written work on a paper indicates that particular strategy was

begun but abandoned in 'favor of another, is it reasonable to claim that

the student had decided that the first approach would lead nowhere (a

metacognitive decision) and so gave up on it in order to pursue a dif-

ferent strategy?

finally, I was a bit disappointed by DeGuires unwillingness to

tell the reader just what she thinks she has learned from her efforts to

understand awareness. However, despite my reservations about her data

sources and my disappointment with her reticence to share her insights,

I think she has made good start toward understanding the role aware-

ness plays in problem solving.

Do We Have an 'Inner Teacher' who Directs Our Learning? (Dirabayaehi

Shigematsu)

Hirabayashi and Shigematsu suggest that each of us has an "inner

teacher" which functions as cognitive traffic cop, directing the flow

7 '7
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of all the rental traffic that is preaent during ethematical activity.
This in itself is not a novel notion. that is new tie that these re-

searcher posit that this homunculus is a copy of the teacher from whom
the individual learns. furthermore. the (physical) teacher influences

student learning only indirectly since idea% transmitted by the teacher

reach the student only by passing through the intuit teacher. Thum, the

teacher's primary role in the learning process should be to assist stu-

dents in the matablishment of this inner teacher. The site of their re-

search' then is to investigate how a teacher's actions become a part of

the student.% inner self. I am struck by the very clomp parallel be-

tween this research and that of Garofalo, Kroll and /Miter (discussed
later'. 10th groups are interested in the relation between eietacogni-

tion and mathematical activity and both seem to believe, that the teacher

plays a central role in the formation of metacognitive skills.

Alrabayashi and Shigematsu are doing very important work and I intend to

follow their progress closely.

I wee especially intrigued by Hiraboyeshi and Shigneatsu'a method
for classifying students. responses. They describe a ',logical model of

metacognition that serves AM a scans for analysing students. responses
during problem solving. If my understanding of their modal is correct,

it appears that it is too general to be of much value in identifying the

dynamics of the very close link between metacognitivo decisions and cog-

nitive actions. I urge them to consider the framework for the macro-

scopic analysis of problem-solving protocol% that Schoenfeld (1985) has

devised.

Are There Aay 'driving Forces in Problem Solving? (Schulte a L. Mart)

Karen Schultz and Lynn Hart have adopted a perspective toward the

study of mathematical problem solving that is essentially the same As

the one I articulated at the beginning of this paper. That is, they be-

lieve that mathematical activity, in particular problem solving, is in-

fluenced by a host of interdependent factors, one of which is notacogni-
tion. Thus, they are conjecturing that problem solving has several

driving forces and their efforts have been directed toward identifying

just what these forces are through the use of a research paradigm that

allows the forces to emerge as the study progresses. / applaud their

willingness to engage in what they call "naturalistic* inquiry, but I as

concerned that their desire to be free from the constraints imposed by

adopting a preexisting theoretical stance may cause them to flounder un-

necessarily, and I do not understand how interviews can be regarded AO
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BEST COPY AVAILABLE



- 265 -

"natural.' Also, it behooves an researchers to attempt to make clear

what they believe, however tentatively, about the phenomena they are

studying. To say that one does not want to be shackled by the use of an

a priori theory is well and good perhaps, but this does not obviate the

importance of specifying as clearly as possible the biases and underly-

ing beliefs one has about the phenomena under investigation. It is un-

clear to me from reading their papers just what their biases are.

The four categories that emerged from their protocol analysis fit

nicely into the categories I discussed in the first part of this paper:

Furthermore, the fact that the individual failed to solve either of the

problems she attempted despite engaging in a variety of appropriate

metacognitive behaviors provides a nice argument for the presence of

other "driving" forces for her performance.

Why Is Metecogsition So Difficult to Study? (Garofalo, Kroll s Lester)

Some years ago, a manuscript I had submitted for publication was

rejected, as one reviewer put it, for reasons cited by the author. I

vowed at that time never again to point out to potential readers the

weaknesses end limitations of my research. Thus, I will refrain from

making evaluative comments about the study currrently being conducted by

me and my colleagues, Joe Garofalo and Diana Kroll. Rather, I will make

a few general observation, about our work in the hope of enlightening

others as to the difficulty of doing research on metacognition.

(1) Inter-task variability with respect to metacognitive processes

in very high. When problems are chosen it is imperative that considera-

tion be given to their potential for eliciting behaviors associated with

the aspects of metacognition that is of interest. For example, problems

with superfluous information might be included for their potential for

requiring metacognitive behaviors associated with the identification of

important information (an aspect of developing an adequate representa-

tion of the problem).

(2) Inter-person variability with respect to metacognition is also

very high. The differences between the students discussed in DeGuire's

report amply illustrates this point. Also, the differences in metacog-

nitive processes between our regular-level and advanced-level students

suggests that metacognitive skills may be closely tied to mathematical

ability. It is important that researchers describe the characteristics

of their subjects (e.g., instructional history, previous mathematics

achievement, beliefs, attitudes) as completely as possible.

(3) Asking problem solvers to "think aloud," keep written records

of their thinking, or work cooperatively with a partner have typically
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proved to be less successful than we had hoped. Thinking aloud during

problem solving is often unnatural and sometimes has debilitating ef-

fect on performance. Written retrospective accounts of one' thinking

have provided very little information for us. This may be due in part

to the students' inexperience with this sort of activity. Cooperative

work in small groups has been cited as a natural way to get students to

talk aloud and to share their ideas openly. Unfortunately, our experi-

ence has been that most students find it quite difficult to do this. We

suspect that this reticence is due to the students' beliefs as to what

is appropriate classroom behavior and to an atmosphere of competition

that is fostered by teachers (here is an example of a social condition

that results in a belief that in turn affects performance). I should

add that our difficulties may be due partly to the ages of the children

we have been working with during the past six years (6-13 years).

(4) As we delve more deeply into the nature of metacognition we

are becoming more convinced that it cannot be studied in isolation from

cognition and other factors that affect mathematical performance. In-

deed, it is possible that metacognition is not really distinct from cog-

nition, rather, it is a fundamental part of it.

A Final comment

While an enormous amount of work lies ahead, progress is beginning

to be made toward bringing into sharper focus the kinds of factors that

influence problem-solving behavior. Aa a result, the prospect seems

good that h will one day be able to provide mathematics teachers

with specific guidance as to how to make problem solving a more integral

part of mathematics instruction.
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THEORETICAL ANALYSIS: STRUCTURE AND HIERARCY,

HISSINO VALUE PROPORTION PROBLEMS

Behr, M. and Harel, O. Post, T. Leah, R.

Northern Illinois Univ. University of Minn. WICAT System Ina

A theoretical analysis of problem structure for missing value

proportion problems is presented. Three variables: order

(location) of the unknown, unit of measure, and divisibility
identify 512 problem atruoturee. A problem solving model

based on problem presentation, problem representation, prob-
lem operators, and solution strategies is presented. There

are three classes of representations: understanding, inter-

mediate and procedural. A mathematical group of eight trans-
formations which solvers use to transform problem presenta-
tions or representations to other representations are de-
fined. Two problem operators which instantiate on procedural
representations give a set of 14 solution strategies. A

preference hierarchy for using these strategies is hypothe-

sized. These considerations lead to a partial difficulty
hierarohy on the 512 missing value proportion problems.

A missing value proportion (MVP) problem involves three given

values and an unknown to be found under the constraint of maintaining

the proportion relation. Variables which affect performance on MVP

problems have been classified by Tourniaire and Pules (1985) into

student- and task-centered, and the latter subolaesified as structural

and contextual. This paper presents a theoretical analysis of selected

structural variables to give a detailed desciption of MVP problem struo-

tures. This leads to hypotheses for hierarchies of problem complexity,

and of preference for instantiating problem operators as solution

strategies, and to a partial hierarcy of problem difficulty. This

analysis will make a substantial contribution to this research area by

providing a theoretical structure to guide the manipulation of these

structural variables.
The conceptual process of problem solving is described in terms of

a problem presentation, problem representations, problem operators,

knowledge of the problem domain, and solution strategies (i.e. instances

of the problem operators). Investigations in problem solving found that

the problem representation formed by the solver is dependent on the

problem presentation on the solver's knowledge of the problem domain

(Green, 1978; Chi, Fetovich, ()lamer, 1981). Problem difficulty is also

a function of the problem representation.

The research was supported in part by the National Science Foundation

under grant No. DPE-8470077. Any opinions, findings, and oonolusions

expressed are those of the author and do not necessarily reflect the

views of the National Science Foundation.
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PROBLEM PRESENTATION

Any verbal MVP problem involves tuo statements which express a
ratio between two quantities, we refer to these as per statements. One
of these, the closed per statement, relates two known quantities; the
other relates one known and one unknown quantity -- the open per state-
ment. The structural variable or order, is defined in terms of the
location of the unknown (left or right) within a per statement, and in
terms of the location of the open per statement (top or bottom) with
respect to the closed per statement. This defines four problem oat.-
gories as BL (bottom left), BR, TL, and TR.

A second structural variable is wilt measurA, On the subvari-
able of Revere apace. MVP problems vary according to whether one or two
are involved, and for those with two measure spaces, whether the quanti-
ties within, or between, per statements are from the same or different
spaces. Here we identify three categories of HVP problems -- one-by-
one; one measure specs; .we-)v -one: same measure spew; within per state-
ments, but different between; two-by-one: different measure spaces with-
in per statements, but the same between. The subveriablf, dimension
distinguishes between different units within a measure !Apace, minutes
and hours, for example. Dimension yields four euboategvies of the one-
by-one and two subcategories for each of two-by-one and one -by -two.
(504 Hard and Behr, in preparation.)

A third structural variable, left to a subsequent analysis, is the
partitionability of the quanitity to which the unit of measure refers.
Example: Money vs. child. Our observation is that this may affeot the
choice of operation -- multiplication or division -- whioh a child makes
in formulating a solution procedure for a MVP problem.

The divisihili0 variable (or integer ratio), whioh we have extend-
ed to pairs of rational numbers, has been shown in prior research to
affect problem difficulty. When an integer ratio exists the direction
of the givisibilite will affeot problem difficulty. The variable of
common divisor is related to divisibility. It appears that children
have an order of preference to operate with a pair of numbers which (a)
have an integer ratio, (b) have a common divisor other than 1, and (a)
are relatively prime (Bohr et al, in preparation).

The four levels of the problem variable order,. eight of unit of
measure sixteen of divisibility. identify (4x8x16) 512 MVP problem
structures. Of these, the 256 with dimension 1 torn the subclass of
ratio problems and the remaining 256, those with dimension 2, the sub-
class of rate problems.

PROBLEM REPRESENTATIONS AND PROBLEM OPERATORS

Our MVP problem solving model is conaistent with that proposed by
Simon and Hayes (1974). In order to solve a MVP problem we assume the
solver has a set of knowledge structures about the problem. This in-
oludes knowledge of: the initial and goal states of the problem, problem
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operators (information processes) that transform a given problem state

into another, and conatrainta under which the operators can be applied.

We refer to problem states formed ey the solver to determine a solution

path from the initial proolom state (the problem presentation) to the

goal state as problem representations. Our conceptualization of the

solution process is that a solver uses one or more problem representa-

tions for understandinK the problem, and intermediate representations

for exploring the relationships among problem components in order to

choose the appropriate problem opeatora, and finally, the solver will

arrive at a choice for a procedural representation on which an operator

will be inatatiated an a solution strategy. The procedural representa-

tion that a solver forms will refloat both salience of the structural

variables and the interaction of these with the solver's preference for

how to instantiate a problem operator.

We distinguish three types of problem operators for MVP problems.

The first class consists of structural transformations by which the

solver, responding to certain structural variables, changes the problem

structure. Changing the direction of the divisibility, or the order of

the unknown, are possibilities. The second class consists of the unit

rate operator. This transforms a closed per statement of the form "a

per be to an equivalent one of the form "1 per b/a" or "b/a per 1."

The third class consists of procedural operators. These are applied to

a procedural representation to solve the MVP problem. The first class

of operators transform intermediate representations to other representa-

tions with the ultimate goal of aohieving a procedural representation.

The unit rate operator transforms a procedural representation into

another procedural representation. The procedural operators act on com-

ponents of the problem structure in a procedural representation to

arrive at 4 value for the unknown.

To illustrate the structural transformations we consider an MVP

problem of the form "a per b, o per x.* The total of eight atructural

transformations, which are of three types, form a group of order eight

under ordinary composition of transformations. The first type, rate

reciprocation changes the problem structure to "b per a, x per o."

This transformation gives the reciprocal of each within-par-statement

rate pair. The second, ger statement reciprooation, interchanges the

order of the two per statements to get the problem structure

"c per x, a per b." The third, measure apace, reciprocation. changed the

structure by interchanging b and a or a and x. For a MVP problem with

two measure spaces this transformation changes the quantities in the per

statements so each per statement is changed from a within measure space

comparison to a between space comparison or vice versa. It changes the

structure "a per b, a per x" to "a per c, b per x" or to "x per b, c per

a."

Applying the procedural operators requires additional knowledge,

called procedural knowledge, of how to instantiate them operators for a

particular MVP proolem. Involved is a sequence of finding the relation-

ship between the quantities in the closed per statement (the RCQ opera-

4
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tor) and transposing that to an operation on quantities of the open per

statement (the ROQ operator) to find the unknown. Consistent instantia-

tions oe the RCQ and ROQ operators results in an identifiable strategy.

A :strategy is valid if it observes appropriate constraints and invalid

if any problem constraint is violated. The frequently observed addition

strategy is invalid because it violates the constraint of maintaining

the proportion relation. Among the valid strategies we consider several

instances of a multiplicative stragegy.

A multiplicative strategy begins by instantiating the RCQ operator

by determining the relationship between the two known quantities in the

closed per statement and expressing this relation in the form of a

multiplication or division equation. This equation has an unknown value

u. Let v denote the computed truth value for u. Next the ROQ opera-

tor is instantiated by using y and the known quantity of the open per

statement in a multiplication or division equation to find the value of

the unknown. Thus a multiplication strategy involves sequential instan-

tiations of the RCQ and ROQ operators with some combination of multipli-

cation and division equations. We classify a multiplicative strategy

as: a division strategy (DS) or a multiplication strategy (NS),

when the RCQ operator is instantiated with a division or multiplication

equation, respectively. Ve thus lases the strategies MS (positive

division), and LIDS (negative division). Moreover, the equations which

are used to instantiate these operators can be formed SO that the value

needed to be found in either case appears in a missing value equation or

as the amasser to be found in a direct computation equation. In the

firat case the equation is indirect (I), and in the second direct (D).

Further analysis leads to the following list of 14 strategies or solv-

ing MVP problems: PMS-ID, PMS-II, PDS-DD, PDS-DI, PDS-ID, PDS-DIg, PDS-

II, PDS-Iia, NMS-ID, VMS -II, MDS-DI, NDS-II, and NDS-ID, where

the a means that appears as the result, rather than operator or

operand, in the equation for ROQ.

PREFERENCES FOR INSTANTIATING THE RCQ AND ROQ OPERATORS

Our next objective is to hypothesize a hierarchy of children's

peferentie for these :strategists. To instantiate the RCQ operator ohil-

dren suet consider the direction of the operation (left or right ) and

also its type (multiplication or division). Instantiation of the RCQ

operator involves two given quantities a and b and an unknown quantity

u. The equation that 13 formed to give the relation between a and b can

involve a, b, and u in one of two types of operations and in one of

three roles of operator, operand, or answer. Considerations, too

lengthy to discuss in this brief report, lead us to six ways to in-

stantiate the RCQ operator (See Harel and Behr, in preparation). Under

the constraint of an integer ratio (noninteger ratio involves other

conAideatlanz) these nix ways, listed in the assumed °mist.. of ohil-

dren's preference, are as follows:

1. Computing left to right or 2. computing right to left, and finding u
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to multiply to the smaller of a and b to given the larger.

3. Computing left to right or 4. computing right to left, and finding u

to divide into the larger of a and b to give the smaller.

5. Computing left to right or 6. computing )it to left, and dividing

the smaller of a and b into the larger to u.

Once the RCQ operator has been instantiated, to instantiate the ROQ

operator judgments need to be made about tour variables: preservation

of operation direction, preservation of operation type, the role (opera-

tor, operand, or answer) in which to use v, the computed value of u, in

the known-to-unknown relationship and the level of structural equiva-

lence between the RCQ equation and the ROQ equation. (See Harel and

Behr, in preparation, for information on structural equivalence.) All

possible equation pairs by which RCQ and ROQ operators can be in-

stantiated for a MVP problem of the form 0a per b, c per x" are given in

the Table. Similar information for a problem of the form *a per b, x

per d" is given in Harel and Behr (in preparation).

Analysis of Strategies and Preference Heirarchy for Instantiating the
Mg Operators for the Procedural Representation: a plink,. o per x

RC()

Eqn

ROQ

Eqn

Strategy WAIRRCQ1

Preference

Index

Direction

Preserved

Operation

Preserved

Structural R(RCQ)
3

kquivalence

1 OXV,c PMS,ID Yes Yes C KU 1

2 aup.b xiv=c NW-II No No P UK 5

3 xic=v NMS-II* No No N 0 9

4 xXv..c PMS-II Yes Yes C UK 2

5 bxuNt cw-x 2i -111 No No P KU 4

6 cix-v NMS-II* No No N 0 9

7 civic PDS,ID Yes Yes C KU 1

8 a:ur-b xXv,c NDS-II NO No P 1K 5

9 coc=v PDS-II* Yes Yes N 0 7

10 x+v=c PDS,II Yes Yes C UK 2

11 bitPa cXv-x NDG-ID No No P KU 4

12 )0c..v PAS -II* Yes Yes N 0 7

13 c:xmi PDS-DI* Yes Yes C 0 3

14 aitpu civx 1E5 -D0 Yes Yes N KU 6

15 xXv'c NE&E4 No NO N 1K 8

16 x+cmv PAS -DI* Yes Yes C 0 3

17 bia=u xXv.c PD6-DI Yes No N U( 6

18 cXv,-.7x PD6,10D No Yes N KU 10

1RCQ R ROQ denotes the relationship between ROQ and ROQ. 2C, P, N denote

respectively, complete, partial, or no equivalence. 3R(R0Q) denotes the relation-

ship between the known and unknown quantities in the open per sentence according

as the equation for the ROQ operator relates than left to right in the order known

to unitnam (KW, unknown to known (UK), or relates them as operator and operand (0).
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PARTIAL DIFICULTY HIERARCHY OF PROBLEM REPRESENTATIONS

An analysis for which we refer the reader to Harel and Behr (in

preparation) leads to the identification of exactly 18 procedural repre-
sentation structures (Pi, ia1,2,...,18). Further analysis based on the
preference hierarchy for instantiating the RCQ and ROG operators and

further assumptions (see Hayti and Behr, in preparation) allows us to
order these from most complex to least complex; we assume the notation
to be such that this order is Pi, P2,".,P18. The total set S, of the
512 problem representations is partitioned by the group of eight trans-
formations into subsets, Sio. The subset Si,j is the set of all prob-

lems prepresentations which are mapped by a transformation Tj unto the
procedural representation Pi. For m g n, the intersection of Sm,j and
Sn,j is empty; that is, there are no two problem representations which

get mapped by different transformations unto the same procedural repre-
sentation. We next consider the sets the82,j, S3, j ..... S180, the

sets of problem representations whoib are mapped by Tj unto Pi, P2,

respectively. We take the previously established order of

complexity on the procedural representations Pi to P18 as an imposed
order on the set of preimages, Si,j to 518,j. We define this imposed

order to be the order of problem difficulty on this collection of prob-
lem representations. This leads to the following partial (in the Bence

of partial order) diffioulty hierarchy on the set of 512 MVP problem

structures (Let > denote greater in difficulty).

31,1 > 32,1 > 83,1 > > S18,1 (Level 1)

51,2 > 32,2 > 33,2 > > 518,1 (Level 2)

51,8 > 32,8 > 33,8 > > 318,8 (Level 8)

Finally our analysis shows that it is not possible to order the levels

(Level 1 through Level 8) according to difficulty.
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MULTIPLICATIVE STRUCTURFS:

DEVELOPMENT OF THE UNDERSTANDING OF RATES (INTENSIVE QUANTITIES)

Alan Bell and Barry Onslow

Shell Centre for Mathematical Education, University of Nottingham

Patterns of error in verbal problems requiring selection of
an operation show that there is considerable confusion
concerning the numerator/denominator roles of the two
quantities comprising a rate. This conceptual obstacle
shows itself in difficulties with the inverse relationship
between, for example, grams per penny and pence per gram, a
tendency to choose additive complements (1 and 1) rather
than multiplicative ones; the more speed, less time relation

for fixed distance; and the general inability to perceive
the relations among the three quantities in such cases as
constituting an integrated whole. This study used large

group testing and interviews; it was followed by a teaching

experiment.

Extensive research now exists on the understanding of certain aspects

of multiplicative structures, in particular on the beginnings of

multiplication, on proportion, and on single-operation problems in

contexts. Our own work in this field has mainly been on the last

topic, single-operation problems, and has had an emphasis on the

design of teaching which embodies the results of research on

understanding. The work to be reported here concerns the concept of

rate, that is of an "intensive quantity" which is the quotient of two

extensive quantities. Examples are speed, unit price, miles per

gallon, density, map scales, measure conversion factors, proportions

in mixtures; such quantities are very common.

It has been shown that the recognition of the appropriate operation in

problems involving such quantities is subject to distractions arising

from the well-known numerical misconceptions,
Sensitivity to the

distinction between partition and quotition in rate problems is

revealed, not in general by difference in facility, but by a sharp

difference in the pattern of errors; partition structures give rise to

more reversal errors, quotition structures to more multiplications.

These dominant errors are equivalent in both cases to n confusion

about the numerator/denominator roles of the two quantities

constituting the rate. (Bell, Fischbein and Greer, 1984; Bell,Greer

and Grimison, in preparation). This observation was the starting

point of the present work, which consists of a cross-sectional study
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of the understanding of the rate concept in a sample of 598 students

aged 11-14 in British secondary schools. Interviews and group tests
were timed. A teaching experiment followed.

The test began with a question probing the acceptance of a small/big

operation in two problems, one concerning the price per gram of a 250g

pack of butter costing 44 pence, the other asking for the length of

each piece of ribbon, if 150 pieces were cut from a length of 27
metres. In the latter case, 28% chose the correct operation, in the

former only 16Z. Thus, although for many pupils small/big is

unacceptable, it is more so in the two-quantity problem than in the

simple partition question.

In another interview, a pair of girls argued with themselves for

several minutes to decide whether 88 grams for 44 pence would be 2

pence per gram or half a penny per gram. The confusion appears to be

of the roles of different quantities; the expreassion 'kilometres per

minute', to a person who is not attuned to the crucial significance of

the word 'per', does not display clearly whether it is like kilometres

or like minutes. In a direct test with two matched questions,

appearing, spaced, within a test, in different order for two split
halves of the group, a sharp difference in difficulty was observed;

there was also a tendency for the 'per' question to be answered

correctly more frequently by pupils who had met the 'in one minute'

version first. See Table 1.

1 correct
A before B B before A

A. A rowing crew covered a 3 kilometre
course in 7.2 minutes. What was
their speed in kilomtres per minute?

28 39

B. A rowing crew covered a 3 kilometre
course in 7.2 mintues. How far did
they row in one minute?

54 61

(W,114 middle and upper ability 13-15 year old pupils).

Table 1

The potential confusion here was shown starkly in another question in

the main test which offered a direct comparison.
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Q2. In France two local shops sell raisins at 20 grass per franc.

e) Raisins are cheaper at Pierre's.

b) Raisins are cheapter at Claude's.

c) Both shops are selling raisins at the same price.

d) It is impossible to tell who is selling raisins at a cheaper

price.

Which is correct? Why?

Correct answer and explanation 55

Correct answer, incomplete explanation 13

Both shops are the same 17

Impossible to tell 5

Omit or unclassifiable 10

Figures in this and subsequent tables are all X ages, N-598

Table 2

We have 17% +5% of pupils who do not distinguish these prices, even

with the choice offered as clearly as this. The quality of

explanations varied from one-dimensioned remarks such as: "1 franc is

cheaper than 20 francs"; to corect ideas but without calculations:

"Because you get 180 more grams at Claude's; to the 3% which

mentioned that one price was 400 times the other.

A somewhat more complex question on the same point produced a much

lower level of response.

Q3. Prices can be written in more than one way. Find any pairs of

flags which show the ease price written in different ways.

7 6'
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One or both correct pairs a + e or d + f 21
Ignore rate, choosesamenumbers 44
There are none 9

Pairing I with 6

Omit, unclassified 19

Table 3

Interviews confirmed that the responses as shown in the table were

firm convictions. 4 grams per penny and 4 pence per gram were "the

ease, just swapped around"; and a and a couldn't ever be the same,

because "that's 4 grams per penny and that's I penny per gram". The

pairing of with suggests a possible awareness of connection, but a

feel for values more closely linked, less dramatically different than

I and 4.

A question which tested the firmness of grasp of the inverse

relationship with more difficult fractional values And in a content

somewhat less familiar than price is shown below.

Q4. A cyclist travels 2/5 kilometre per sinute.

a) 2/5 sinute per kilometre
b) 3/5 minute per kilometre
c) 2i minutes per kilometre
d) 2 3/5 minutes per kilometre
e) It is impossible to tell the number of minutes per kilomtre.

Which is correct? !Thy?

Correct choice with adequate or partial explanation 8 + 8
Ignore rate, choose same number (a) 27

Impossible to tell 29
3/5 or 2 3/5 5

Omit, unclassified 23

Table 4

There were, in the written tasks and the interviews, a number of

occasions on which aspects of understanding of the general network of

relationships among speed, distance and time or unit price, weight and
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cost were revealed. For example, Roger, aged 13:

R: Distance + time apes'

Int: Why?
R: Ka + hours km/hr

Two questions tested further awareness of the inverse relationship,

this time in the context of speed and time.

Q5. It takes Peter 8 minutes to run a mile. Harry runs twice as fast

How long does Harry take to run a mile?

77% responded correctly, and 15% gave the directly proportional

answer of 16 minutes.

Q6. Caroline travels 100 kilometres at 34 kilometres per hour.

Francis travels 100 kilometres at 44 kilomtres per hour.

a) Caroline takes longer to complete the journey.

b) Francis takes longer to complete the journey.

c) They take the same amount of time.

d) Cannot tell.

Which is correct? Why?

In this case, 62% were correct,
while 22% chose the more speed, more

time response (b). Typical wrong explanations were: "the lower the

kph the faster"; "Caroline has a lesser time number than Francis";

"Caroline is goiug to get there quicker cos she's only got to do

34 kilometres".

18 pupils who had made this type of response were interviewed; 16 of

them maintained the same point of view even in discussion.

A written test question asked directly for the selection of correct

alternative forms of the relation speed distance x time.
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Q7. I can calculate the speed of ay car using the following rule:

Speed - Distance Timm

Circle the other rule(s), written below, which are also true. If

there are no other rules which are true, put a tick in this box

a) Time Speed x Distance
b) Distance Speed Time
c) Speed Distance x Time
d) Time - Distance 1- Speed

e) Distance Speed x Time
f) Distance Time 1 Speed

Correct, d and e 6

Choosing only one correct form 6

Choosing correct and incorrect forms 17

Choosing all the division relatious 4

No other rules true 39
Omit, unclassified 22

Table 5

The choice of incorrect forma is leas surprising than the large
percentage selecting 'no other rules'. For them, it seems, the given
formula is a fixed rule. They ars rejecting the possibility that what
is essentially the same relation between the three quantities can have
different aspects.

The choice of incorrect forms is less surprising than the large
percentage selecting 'no other rules'. For them, it seems, the given
formula is a fixed rule. They are rejecting the possibility that what
is essentially the same relation between the three quantities can have
different aspects.

Further questions tested the ability to maintain correct choices of
operation in questions with excess or insufficient data.

In the teaching experiment which followed this diagnostic tes'ing,
problems similar to those on the teat, but somewhat richer, were used
to provoke conflict and lead to diccussion. Concept-focussed games,
and exercises in making up questions were also included. For details
see the references.
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QUALITATIVE DIFFERENCES AMONG 7-TH GRADE CHILDREN IN SOLVING A NON

NUFAERICAL PRCPOHTIONAL REASONING BLOCKS TASK

Guershon Hanel and Merlyn Behr

Northern Illinois University

Tomas Post

University of Minnesota

Richard Lash

Moat Systems, Inc., Orem, Utah

This study aimed to examine differences In the problem
representations and strategies employed by low performance and high
performance 7grade children in solving a non numerical
proportional reasoning task. The non numerical task, which was
developed especially for this aim, involves weight and number
relationships between blocks -- a derivative of the density concept.
Three categories of representations and four categories of operators
were used by the children. The differences between these
representations and strategies are like those characterized In research
of expertnovice differences among adult solvers In other domains of
problem solving, such as physics problems.

The process of solving a problem starts with the formation of a problem
representation which happens In two stages: (1) converting the problem presentation

into Internal mental entitles and relations among them; (2) selecting operators to
produce new states of knowledge from existing states. The problem solving process

proceeds by applying a solution strategy, which means searching the goal state by
instantiating the operators previously selected. In certain problem domains, such as

physics problems (e.g. Chi, Glaser, and Ross, 1981; Larkin, 1977), the role of
problem representation in the solution process Is well documented in the research of
problem solving. In the domain of proportional reasoning research, on the other hand,

the matter of problem representations has been apparently Ignored. The efforts have

This research was supported in part by the National Science Foundation under grant No.

DPE8470077. Any opinions, findings, and conclusions expressed are those of the authors

and do not necessarily reflect the views of National Science Foundation.
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been to investigate the effect of context and structural variables on children's

performance in solving proportion problems without considering the mental processes

that account for this effect. This Is a second study in our attempt to investigate the

cognitive aspects of proportional reasoning. in the first study (reported in this volume

by Behr, Harel, Post and Lesh) we analyzed missing value proportion problems and

suggested a problem solving model which takes into account problem presentation,

problem representations and operators.

The study reported here investigates differences between low performance and high

performance grade-7 children In forming initial representations and selecting

operators In the process of solving a non numerical comparison proportionality task.

Data reported suggest differences In children's problem solving stages which are like

the novice-expert differences characterized by other studies with adults in physics

problems (e.g. Chi, Glaser and Rees, 1931).

PROCEDURE

The research paradigm used was that of a modified teaching experiment which was

replicated at the two experimental sites, De Kalb, III. and Minneapolis, Minn over a

period of about 17 weeks. A total of 13 grade-7 children, nine at each site,

participated In the research. Each site Involved three children judged to be of low

mathematics ability and achievement, three of middle ability and achievement and three

of high. The major assessment consisted of four one-on-one interviews. The tasks in

this report were given as nine problems, among more, In the third interview.

The task involves two pairs of blocks (A, B) and (C, D). Blocks A, C and B, D

were constructed from the same kind of unit-blocks, A' and B', respectively; ,he

unit-blocks in A were larger In size than the unit-blocks In B. The number of

unit - blocks in A was smaller than the number of unit - blocks In C, and these

numbers remained constant across tasks. Three different instances of blocks B and D

were used, B0, and 111, and DA, Do, and Di, respectively; the number of

unit-blocks within each of the pairs (B.1, D.1), (Bo, Do), and (B1, D1) was one

less, the same, or one more compared to the number of unit-blocks In A and C,
respectively. The subjects ware asked to Judge the weight relationship between C and

an instance of D based on one of three given weight relationships, less than, greater

than, or equals, between A and an Instance of B.
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The dime pairs (A, B) reflect 3 different number relationships. This crossed

with the gime possible weight relationships, <, and -, results in nine. possible
given weight and number relationships. Each of these relationships can be associated
with a requirement to find the weight relationship between C and one of the !brim
Instances of D. This results In 27 possible problem situations. The nine problems
selected and presented to the children are described In detail In following table.

Item Pair (A, Bi)

presented

Given weight

relationship

Pair (C, DI)

presented

Correct weight

relationship to be found

1

2

(A, Bo)

(A, Bo)
.
.

(C, Do)

(C, D.1)
.
>

3 (A, B.1) . (C, D& <
4 (A, Bo) > (C, 0.1) >
5 (A, B1) > (C, CY ,
6 (A, 8.1) , (C, 00) Undetermined
7 (A, Be) < (C, D.1) Undetermined
8 (A, B1) < (C, Do) Undetermined
8 (A, 8.1) < (C, Q1) <

agnzdulaly_sdjailkigh,Liask. Traditional tasks used In research on proportional
reasoning Involve the requirement to decide which of the relations equal to, less than,
or greater than holds between multiplicative relationships a/b and c/d. The
nnnnumerlc proportion task used in this study Is more complex than these standard
proportion tasks because several relationships must be inferred and coordinated before

the final relational judgment can be made in the criterion component of the task.
Qualitative proportional reasoning is involved in two episodes in the solution of the
blocks task: one is the coordination of the number and weight relationship between A
and B to determine the weight relationship, it possible, between A' and B'; the other
is in the coordination of the weight relationship between A' and B' and number
relationship between the added amounts, uA' and to determine the weight
relationship between C and C.

RESULTS

Two processes in the children's responses were examined: one process, reflecting
the Initial representation of the problem, relates to how they initially viewed the
structure of each block and how they Interpreted the relationships between these
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structures; the other process, reflecting the strategies children used to solve the

problems, relates to the Inferences they made to find the final answer. These

representations and strategies were separately classified Into 3 and s different

categories, respectively.

We kientified throe different initial problem representations of the blocks task,

Structure, Complement, and Atomic; listed in order from most to least sophisticated.

Stnzire representation. If the Structure Representation was used, each block

was envisioned as consisting of two parts, deck and top, and the obsarvabio number

relationships between the tops and between the decks within the pairs (A, 13) and (C.

D) were identified. This representation also included the property that each of the

pairs (A, C) and (B, 0) was constructed with the same size unitblocks, A' and 13%

respectively. The following figure describes elements in thls representation including

the given f..pd the required relations between the weights of the blocks.

given
90'

DeckilitTinbeirrei Oriih'i rt Dec k
Block A Block B

Tor4`liumbar relationst4"0 Top

unit blocks

AT,

unit blocks

unit blocks

ua

unit blocks

Top 4..Number relettonshi p.,* Top

Block C fturnber relationship Deck
Block 0

t... Deck*. ?..
----___weittreletionship rmIireil......_-----

...

Complement representation. If the Complement Representation was used, the

children attended to the fact that the number of units In C (and D) was greater than

the number of units In A (and B). They also attended to the property that the

corresponding blocks were constructed with the same size unit-blocks. Due to these

noticed qualities of the blocks, their representation focused on blocks C and D, where

C was viewed as an addition of units on A (and D as an addition of units on B). The

following figure describes this representation as a network of two states, 1 and 2. In

state 1, blocks A and B and the relation between their weights are given; stale 2 is

a result of changing state 1 by adding units blocks to A and B and getting C and D,

respectively.
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Atera_LfigLOSItatatkla. If the Atom Representation was used, the children viewed

each block, separately, as consisting of individual unit-blocks, and the number

relationships between the tops of the blocks was considered. Elements of this

representation are shown In the following figure.
0. Block A Top Block C Top

1E * .a. 14

SE 1 t
1 13.
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i I

t
1
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a 2 ill 122

Et t E ''
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lock B Top lock D Top

Five main categories of distinct strategies were identified; listed in order from

most sophisticated to least sophisticated, they are as follows: Matching, Balance with

three distinct instantiations (Complete, Incomplete, and Deficient), and Counting.

Melina strategy. If the Matching Strategy was used, the child would begin by

looking at the relationships between pairs of blocks (A, B) and (C, D). The child

would first notice that the number of unit-blocks within the decks of these pairs is

equal. Then, he or she would determine the number relationship, g, between the

number of unit-blocks in the tops of A and B, respectively, end the number

relationship, between the number of unit-blocks In the tops of C and D,

respectively. The next step would be to acknowledge the given weight relationships,

W, between blocks A and B and the required weight relationship, W., between

blocks C and D. Children would then observe one of two relations between

relationships: One was that the number and weight relationships between A and 8

are the same relation (<, or >), i.e. g-W; the other was that the number

relationship between A end B and between C and D are the same relation (<, or

>), i.e., LI-R.. Depending which relationship was determined by a child, one of the
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following two rules, or operators, was instantiated:

(1) p.-W Weil; (2) peg.
Imposed matching strategy. Problems 3, 4, and 7 (see the above table) can not

be solved by the Matching Strategy because neither one of the sufficient conditions

pep. or 11W in the above rules holds; this posed a problem to those children who

depended on this strategy. After finding they were unable to solve a problem using the

Matching Strategy one of two avenues were taken. Either the children would use a fall

back strategy (i.e., fall back to a less sophisticated strategy) or would use a derivative

of the Matching Strategy, which we call the Imposed Matching Strategy. When using

this strategy, the child would suppose an equals number relationship between the tops

of blocks C and D, so the sufficient condition 'i.e.. would hold and rule (1) could

be applied to conclude W.W. Based on the latter relationship he or she would

conclude the required relationship between C and D.

balance strateay. Within the Balance Strategy category, there are three different

instantiations: Complete, Incomplete, and Deficient.

Damp lata, balance strategy. If the child solved a task using the Complete Balance

Strategy, three relationships were considered. First the children considered the

relationship between the weights of A and B. This can be visualized as blocks A and

B on a pan balance. The children went on to determine the number of blocks added to A

and B which created blocks C and D. At this point blocks C and 0 are on the pan

balance. In order to determine the relationsnip between the weights of C and D, the

children used the weight relationship between the unitblocks A' and B'.

theamplete balance strategy; The Incomplete Balance Strategy is similar to the

Complete Balance Strategy. First the Children considered the relationship between the

weights of A and B and then determined the relationship between the number of units

added to A and B to solve the problem. Thus, this strategy Ignores the relationship

between the weights of the unit blocks.

Deficient balance strategy. In the deficient Balance Strategy only the relationship

between the number of units added to A and B was considered to solve the problem;

the other two relationships, the number and weight relationship between A and B,

were ignored.

Counting strateay. The most simplistic strategy was the Counting Strategy in

which the answer to the task was determined by comparing the number of unitblocks

in C and D.
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RELATIONSHIPS BETWEEN REPRESENTATIONS AND STRATEGIES

An analysis of the relative sophistication of the representations and strategies

descnbed earlier and the relationships among them will be discussed in Harel and Behr

(in preparation). A concise description of these relationships is shown in the diagram

below. The diagram shows that the most sophisticated representation -- Structure

Representation -- calls for Matching Strategy, Complete Balance Strategy, or

Incomplete Balance Strategy in this order of frequency; the less sophisticated

representation Complement Representation calls for Incomplete Balance

Strategy and Deficient Balance Strategy and Counting Strategy in this order of

frequency; and Atom Representation calls only for Courting Strategy. This result is

consistent with current theories in problem solving which attribute qualitative

differences between a novice and an expert to variability in the quality of their

problem representations, especially, In the initial stage of problem analysis. An

expert's reasoning about a problem leads to a problem representation that contains

structural features of the problem. This representation is superior to that of a novice

whose reasoning leads to a representation which incorporates only the surface features

at the problem. The sophisticated problem representations of the expert lead to

successful solution strategies, while the more primitive representations of the novice

lead to unsuccessful solution attempts (see, for example, Chi, Glaser and Rees, 1981).

Representations Strategies

Structure Cells for

Complement Cells for

Cells for

Matching

Complete Balance

--e.
Incomplete Balance../
Deficient Balance

oinCreD
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MULTIPLE REPRESENTATIONS AND REASONING WITH DISCRETE
INTENSIVE QUANTITIES IN A COMPUTER-BASED ENVIRONMENT.

James J. Kaput, Clifton Luke, Joel Poholsky, Mine Sayer

Educational Technology Center, Harvard University

We describe several linked-representation learning environments that support
learning about and reasoning with the multiplicative structure of discrete
Intensive quantities. We also describe an icon-based calculation environment
that supports the fundamental cognitive actions underlying these reasoning
processes. The environments described are part of a larger set that spans the
various subconstructs of intensive quantity and which is being extended to
include formal algebraic representations as well as representations of
continuous intensive quantities. By explicitly linking actions on concrete iconic
representations to their consequences in more abstract and formal numerical
and graphical representations, we expect to enrich and make more flexible
student cognitive models of intensive quantites and the operations on them.

INTRODUCTION

For the past several years our research group examined student reasoning with intensive
quantity. This complex web of concepts involves three different aspects, each with
corresponding task types: (1) quantitative multiplicative structure (missing value
problems), (2) homugcneity- intensivity (sampling tasks), and (3) order (comparison
tasks). We concentrate here on the first aspect, describing the different software learning
environments developed to support concretely-based strategies for traditional missing
value tasks. A fuller description of all parts of our software is available in Kaput &
Gordon (1987). Out motivations, detailed rationales for the learning environments, and
descriptions of empirical work associated with their development and refinement are
available in Kaput (1985), Schwartz, et al (1985), and Kaput. et al (1986), so will not be
repeated here. The learning environments will described in the order that we tievelonecl
them n .her than in the order a student would typically encounter them.

A central objective of our leaning environments is to ramp students from their concrete,
situation-bound representations of intensive quantities to more abstract and flexible ones.
The model for introducing discrete intensive quantities at the concrete level involves
regular arrays of icons that the students can manipulate as if they were actual objects. To
provide long term curricular coherence, we decided that tables of data and coordinate
graphs would be the primary abstract representations for the concept of intensive quantity,
to be connected later to formal algebraic representations. Our technique for linking these
representations cognitively is to provide experience with them linked eybernetically in an
appropriate learning environment.

hrw ,
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THE STARTING POINT

We initially constructed the following three-representation environment. One window
each is reserved for iconic, numerical, and coordinate graphical representations of an
intensive quantity that the student enters into the computer. The intensive quantity is
usually associated with a story - for our purposes let us assume that we arc planting trees
in a park so that every two trees will shade three people. Hence the student selects and
then distributes copies of appropriate icons in a model cell that will come to specify the
intensive quantity, e.g., 3 "person" icons per 2 tree icons. (The two trees can even be
situated so as to "shade" the three people.) This model cell is then replicated to fill an icon
window which eventually will contain identical rectangular cells. After the preliminary
actions setting up the situation, the screen provides a table of data window labeled by the
appropriate icons, and a coordinate graph window, whose axes are similarly labeled.
(See Ilse Figure below.)

As the student clicks the MORE button, the cells in the icon window are highlighted,
corresponding number pairs are entered in the table of data, and the corresponding points
are plotted on the coordinate graph. (Thus the intensive quantity is modeled in the
coordinate graph as the slope of a line of discrete points.)

With each click, the latest number pair and the latest point are highlighted to correspond to
the number of icons of each type that are highlighted in the icon window. In the figure
below, we see the result of 5 clicks of the MORE button. By clicking on FEWER the
highlighting process proceeds in reverse; however, the previously deposited number pairs
in the table and is on the 'A: .hrernain.
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$

11,11111111.
A t to
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By clicking on the boundary of any of the windows, the student can turn off that
particular representation, so that prediction tasks are possible, e.g., with the table of data
turned off one could ask "What number pair will be highlighted if we now clicked on
MORE 3 times." Turning off particular representations also helps to control both the
novelty when introducing new representations as well as the amount of information on the
screen at any particular time.
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THE BOXES STRATEGY

The main objective of the Linking Environment is to introduce the two abstract

representations and to link them with theicon representation and to one another. But we

initially used it with various representations turned off to pose missing value problems,

problems such as: How many people would be shaded by 14 trees in ourpark?

Sixth and seventh graders had experience with the rectangular cell layout of the iconic

representation, in paper-pencil as well as computer based activities. A surprising number

of them generated the following "boxes strategy" to solve the missingvalue problem:

"Let's see, there are 2 trees per box and so there are 7 boxes of trees. There will be 7

times 3, that's 21 people."

This is a "divide and then multiply" strategy based on an intermediate decomposition of

the sets of icons into subsets describable using the intensive quantities

2 trees/box and 3 people/box.

These subsets then support a particular sequence of computations. The first is a quotati ve

division a division of an extensive quantity by an intensive quantity - divide the given

number of trees by the number of trees/box to get the number of boxes. Then multiply

this number of boxes by the number of people/box to get the required number of people -

the product of an intensive and an extensive quantity.

The divide and multiply strategy amounts to the stepwise solution of the following

(scalar) algebraic proportion whose left side involves trees, whose right side involves

people, and which overall is a statement about equality of numbers ofboxes: 14/2 = x/3.

Described more fully, the left side is
14 trees

2 trees/box

and the right side is
it people

3 people/box

Since its algebraic solution is isomorphic to the boxes strategy, the rectangular icon array

has produced a very concrete realization of the solution process.

MISSING VALUES PROBLEMS WITH CONCRETE ICONIC FEEDBACK

In our next environment, designed specifically for solving missing values problems, the

overall appearance and initial actions taken by the student to specify an intensive quantity

are similar to that of the Linking Environment. But instead of driving it from

representation-independent MORE and FEWER buttons, the student either (1) enters

numbers in the table of data or (2) specifies points (by pointing and clicking) in the

coordinate graph. In particular, the student provides the corresponding number of an

ordered pair when given the other number and the underlying ratio.

By clicking on the boundary to activate the window, the student can view the

consequences of his/her input in any other window, most importantly in the icon

window. There the computer fills in as many cells as possible identical to the model cell,

so an inappropriate input results in cells that do not match the model as in the Figure on

the next page. In this case the student can try another input. Correct inputs are preserved

as pairs in the table of data and points in the coordinate graph to serve as guides for later

inputs. Note, however, the calculations and reasoning, while guided by the structure of

17 4
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the available representations, are done off -line.

NEXT - THE ICON-BASED CALCULATION ENVIRONMENT

We therefore decided to build an icon-based calculation environmentengaging the studentin the grouping, matching and counting acts which are at the heart of the primitiveconcrete strategies we previously observed, and which, in effect, the computer does whenproviding the the above iconic representation of the solution to a missing value problem.Here, two of the four pieces of information in the data table of the next figure determinethe type of problem that needs to be solved.
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value problem. To solve it, the student groups icons in the two "warehouses" and then
sends them into the cells, involving only grouping (to "grab" a set of icons), matching
(the respective contents of the boxes) and counting to complete such a missing value
problem.

Although more than one distribution strategy is possible (depending in part on the
conditions under which the problem is solved), the "boxes" strategy has aperfectly
concrete embodiment in this context: distribute 14 trees into 7 cells (a concretely executed
quotagyehyision), and then match each of the groups of 2 trees with a group of 3
people, yielding the layout below. Using the Test command, one can get a progress
update on one's progress at any time. In the Figure below, the Test command was
requested to confirm the successful completion of the task.

This environment embodies a wide range of actions and problem types, too varied to be
described in the space available. For example, when given the respective totals,
determining the underlying ratio in simplified form is a challenging distribution task (the
requirement that the ratio be simplified is equivalent either to the requirement that the total
number of icons per cell be a minimum or that the number of boxesbe a maximum); and
by changing the allowable actions, one can force a different solution strategy for a
missing values problem. See (Kaput & Gordon, 1987) for full details of these learning

envoronments.

CONCRETELY BASED MULTIPLICATION AND DIVISION

'As a further step backward towards what we feel is theconceptual bedrock that will
support viable thinking patterns for the longer run, we devised a single icon calculation
environment that utilizes similar primitive acts on a single set of icons that are active
concrete versions of multiplication of intensive by extensive quantities, and partitive and
quotative division. Again, the computer monitors the student's actions and, on request,
provides feedback and opportunity to alter the chosen distributions. Our last Figure.

7Th
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below, is a screen after successful completion of a quotative division task, but before aprogress request.

Note that, alternatively, by providing the the number of hexes instead of the total aunterfix, one has stated a =ill& division problem. As is the case with the two-icon
environment, the computer stores all the numerical information about successful problem
solutions in a table which can be called up for inspection and hypothesis-building.

4*

4*

CONCLUDING REMARKS

The series of learning environments introduced here extends to include the more formalrepresentations embodied in equations andactions on equations. Indeed, the overall
approach is to link such abstract representationsexplicitly with those already established
to form a smooth ramp upward from the concrete to the abstract, where movement on that
ramp is accomplished through student-initiated actions on those representations, and
where theatjAdents themselves inspect the consequences of their actions in whiulever
representation 1b deem appropriate.

This sequence of multiplicative structure learning environments is intended to be used
over several years, beginning with the single icon calculation environment soon after
addition and subtraction have been introduced in the early grades. The two-icon
calculation environment comes next, followed by the linking environment, the multiple
representation missing value problems environment, and finally, the equations
environment.

Each of these discrete, intensive quantity environments has a gelatinous analogue, where
the discrete objects are replaced by line segments, and where the primitive grouping,
matching and counting acts have continuous analogues. They also embody parallel
linkages to the more abstract representations, which then serve to represent both the
discrete and continuous worlds.

Despite the widely acknowledged value of concrete manipulatives, they are not widely

777
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used in schools for two reasons: (1) They impose a difficult classroom management
problem, and (2) It is difficult to use them in ways that adequately expose the connections
between actions on the manipulatives and the corresponding) ctions on their formal
mathematical counterparts. Cybernetic manipulatives solve both of these problems,
although at some cost. (It is not yet clear how much prior experience with physical
objects embodying certain properties is needed before these properties can be effectively
used in a computer representation of those objects. It seems likely that this will depend
largely on the familiarity of the objects and the properties that are being drawn upon for
mathematical purposes. In the object-based environments that we have worked with,
essentially no particular properties of the objects were being called upon except their
discreteness. In other cases, e.g., Dienes Blocks (Thompson, personal communication,
1986), very particular properties are being used to represent mathematical structures.)

The more powerful microcomputers now becoming available in the schools will make
possible a whole new effort to return action to student mathematical learning, And since
we are now able to link actions on concrete representations of
mathematical ideas systematically and explicitly to the more abstract
representations that are at the heart of mathematics' power, we may be
more able to engender that power in students.
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STRATEGIES USED BY COLLEGE STUDENTS ENROLLED IN DEVELOPMENTAL
MATHEMATICS TO SOLVE PROPORTIONAL REASONING PROBLEMS

Laura Coffin Koch

ABSTRACT

This study investigated the effect of two instructional
rational number units on the strategies used by college
students enrolled in developmental mathematics to solve
proportional reasoning problems. Strategies varied from
problem to problem, but the unit value strategy was the
most widely used correct strategy. The use of the additive
strategy did not carry over from one context to another,'
implying that the context of the problem influences the
selection of strategies used. Although the unit value
strategy was the most commonly used correct strategy on tho
protest, students were unable or unwilling to apply this
strategy in all situations. It appeared to be a successful
strategy for students when the problem involved whole
numbers, however, students did not use it when the problem
contained fractions or decimals.

INTRODUCTION

This paper will report the results of a study that investigated

the effect of Instruction within the conceptual field of

multiplicative structures on strategies used by college students

enrolled in developmental mathematics to solve proportional reasoning

problems.

Vergnaud (1983) suggested that interrelated concepts should be

taught as an organized unit, which he calls a conceptual field. One

such conceptual field is that of multiplicative structures. This unit

includes the connected topics of: multiplication, division,

fractions, ratios, rational numbers, functions, dimensional analysis

and vector space. The teaching of these interrelated topics over a

period of time would allow students to see the relationships between

them and would give the students time to comprehend numerical

relationships over a broader scope rather than smaller isolated units

with little or no relationships.

77
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Remearoh in the areas of proportional reasoning has indicated

that the numerical structure of the proportional reasoning task

affects the subjent's ability to solve that teak (Rupley, 1981;

Karplus, Pulus, and Stage, 1983; and Abramowitz, 1974). This would

seem to Indicate that rational number skills play a crucial role in

proportional reasoning ability, although Holler, Post, and Behr (1985)

found that the students saw no relationship between rational number

skills and proportional reasoning. This may be due to the fact that

in the schools topics such as fraotiona and ratio and proportion

are taught in separate units and the relationship is not made obvious

to the students.

College students enrolled in developmental mathematics courses

lack rational numbers skills, although many of the students have taken

oeurses in both elementary school and high school that focused on

rational numbers. In addition, more than 50 percent of all college

ntudentn aro not yet formal operational ;Chiapette, 1976) and art

unsuccessful on proportional reasoning tasks (Thornton and Fuller,

19(11).

The subjects in this study were students enrolled in several

developmental mathematics courses at the University of Minnesota.

Students were pretested with respect to proportional reasoning

ability. Subjects were then randomly assigned to either a

sequentially based treatment of rational numbers topics or to a

multiplicative structures treatment of rational numbers topics. Each

of the treatments looted four weeks. After completion of the

insteuetional units, the subjects wore retested with respect to

proportional reasoning ability.

An investigation of the strategies that students use prior to

1
truetion and after instruction should shed some light on the

strategies that may or may not have been initially developed or

enhanced by the instructional treatments. One question from the

Karplus Stick figure pretest and posttest and four questions from the

proportional reasoning pretest and posttest were selected to analyze

the strategies used by students both prior to instruction and after

instruction. The questions were selected because they were

representative of the entir- tx:4. The questions chosen include
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problems with: 1) integer components and an integer solution (I-I);

2) integer components and a non-integer solution (I-N); 3) decimal

components and an integer solution (10-I); 4) fraction components and

an integer solution (F-I); and 5) two separate contexts (rate of

walking (W) and scaling (5)).

RESULTS

The results indicate that on the Karplus Stick Figure pretest

many strategies were used in attempting to solve the problem, most of
them were incorrect. The most widely used incorrect strategy was the

additive strategy. This is consistent with earlier findings (Karplus,

1983a). On the posttest, the percent of students who correctly solved

the problem increased and the use of the additive strategy decreased.

Although there are no elearout strategies used across class groups and

across treatments, it does appear that the students were able to set

up the problem using measure space notation and solve the problem with

calculators or in their heads. The other posttest strategy that was

used in correctly solving the problem was the rule-of-three strategy.

An examination of the students' changes in strategies from the

pretest to the posttest on the Karplus Stick Figure Test indicates

that 11 percent of the students in the multiplicative structures

treatment group used the same strategy on the posttest and the

pretest. Of the students that used the same strategy on both

instruments, 7 percent used the incorrect additive strategy. In the

sequentially based treatment group, 27 percent of the students used

the same strategy on both instruments. Nineteen percent used the

incorrect additive strategy on both the pretest and the posttest.

The results suggest that, on this particular measure, the

multiplicative structures treatment helped limit the use of the

incorrect additive strategy more so than the sequentially based

strategy.

A variety of strategies were used on the I-I question of the

proportional reasoning pretest. However, the unit value strategy

appeared to be used by most of the students. The use of the unit

value strategy decreased markedly on the posttest. The use of the
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rule-of-three strategy increased from the pretest of the posttest.

These results would be expected since the instruction focused on three

strategies: scalar, function, and rule-of-three. In addition, many

students did not show their work. Very few students used incorrect

strategies in solving this problem.

Unlike the results on the Karplus Stick Figure Test, the use of

the additive strategy was used very rarely on either the pretest or

the posttest on the I-I question of the proportional reasoning test.

Only 7 percent of the students in the multiplicative structures

treatment group in each of the three class groups used the same

strategy on both tests. In the sequentially based treatment group, 12

percent of the students used the same strategies on both the pretest

and the posttest. In both treatment groups, all of the students that

used the same strategy on the pretest and posttest, used correct

strategies.

The results indicate that the most widely used correct strategy

on the pretest was the unit value strategy. On the posttest, the most

widely used strategy was the rule-of-three strategy. The use of

measure space notation was used by many students to help solve the

problem. The use of the unit value strategy declined again for this

problem from the pretest to the posttest.

The findings suggest that on the I-N question of the proportional

reasoning test again the unit value strategy was the most widely used

correct strategy on the pretest. Over all, more than 50 percent of

the students were unable to solve this question on the pretest. The

use of the unit value strategy decreased from pretest to posttest.

There was no consistent method or strategy used across subjects on the

posttest.

The additive strategy was rarely, if ever, used on the D-I

question of the proportional reasoning test. On this particular

question, 7 percent of all of the students in the multiplicative

structures treatment group used the same strategy on both the pretest

and the posttest. In the sequentially base(' treatment group, 12

percent used the same strategy.

17, t
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The results of the D-I question suggest that most students who

solved this problem correctly on the pretest were unable or did not

explain their procedures in obtaining the correct. solution. Although

this problem contained fractions, more students were able to correctly

solve this problem than the

question used only integers

solution. The F-I question

answer that was an integer.

that proportional reasoning

more difficult for students

I-N question on the pretest. The I-N

in the problem, but had a non-integer

used fractions in the problem, with an

This would lend support to the theory

problems with non-integer solutions are

than problems with integer solutions. On

the posttest, the majority of students either did not or were not able

to give an explanation as to their procedures used to solve the

problem.

On the F-I question of the proportional reasoning test, the

additive strategy was not used. This could be related to the fact

that this particular problem irvolved the use of fractions. Fifteen

percent of all of the students in the multiplicative structures

treatment group and 15 percent of all of the students in the

sequentially based treatment group obtained correct answers on both

the pretest and the posttest without showing work.

CONCLUSIONS

During instruction, students in both treatment groups were taught

to solve proportional reasoning problems by setting them up in measure

space notation and then using a scalar procedure. If the problem did

not appear to have an integer solution, studen,..s were instructed to

try a function procedure. Most problems were solved this way.

However, in each of the treatment groups, some students recalled

learning the rule-of-three mathod. This procedure was then reviewed,

but related to the scalar or function procedure. These were the only

methods used to solve proportion problems in the treatments. Unit

values were discussed extensively and were found, but were not used to

solve proportion problems.

A wide variety of strategies were found on the posttest. Many

students were able to solve problems correctly on the posttest without

showing any work, even though they were instructed to do so. The use

CM (
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of the calculator may have been a factor. Students were not always

consistent in the use of strategies from one problem to another. This

may be due to the context of the problems and/or the numbers used. In

other words, the numerical structure of the problem and the context of

the problem are factory in the selection of strategies chosen to solve

proportional reasoning problems, even following instruction designed

to increase proportional reasoning ability.

On the Karplus Stick Figure pretest, the most commonly used

strategy was the incorrect additive strategy. This was true for both

treatment groups. On the posttest, a larger portion of the students

were able to correctly solve the problem, but there was no one

predominate strategy. The use of the additive strategy did decrease

from pretest to posttest.

Altnough the unit value strategy was the most commonly used

correct strategy on the proportional reasoning pretest, students were

unable or unwilling to apply this strategy in all situations. It

appeared to be a successful strategy for students when the problem

involved whole numbers. Students did not use it when the problem

contained fractions or decimals.

In examining the students' strategies, it is evident that prior

to instruction the most commonly correct strategy used was the unit

value strategy. This result is consistent with that of Bezuk (1986),

and Heller, Post, and Behr (1985). After instruction, however, the

use of the unit value strategy declined and the use of the rule-of-

three strategy increased. The results of this study do not support

Vergnaud's (1983) findings with French students that the scalar

procedure is widely used. Although some students did solve problems

on the posttest using the scalar procedure, the number was not that

great, especially in light of the emphasis made on the method during

instruction.
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PROBLEM SOLVING WITH SCHEMATIC PROCEDURES

ILLUSTRATED BY WORD PROBLEMS BASED ON

PROPORTIONAL AND INVERSELY PROPORTIONAL FUNCTIONS

Wilfrled Kurth, Unlversittit OsnabrUck, W.-Germany

Our Investigation shows that schematic proce-
dures for solving problems In direct and
Inversely proportions do not necessarily lead
to greater success among the students. Often,
schematic procedures even represent an addi-
tional subject of Instruction, which remains
obscure, and, therefore, Is a source of
additional errors.
Apparently the students don't concentrate on
solving the word problems but on the schematic
procedures to solve them. The students'
concentration on numbers and ratios and their
personal ways of thinking collide very often
with the schematic procedures Introduced In the
classroom.

Solving word problems which are based on proportional and

Inversely proportional functions Is mainly taught in the

seventh grade in the schools In the Federal Republic of

Germany. The students, who are about thirteen years old,

have already obtained some knowledge of fractions and

rational numbers.

in order to solve the word problems, I.e. to calculate the

fourth data on the basis of three given ones, schematic

procedures have been Introduced: these procedures show the

rules In a special optical way.

The common procedures - the rule of three, the method of

fraction operators, and the fractional equations - can be

demonstrated by means of a (proportional) problem:

14 kg apples cost 50 DM (German marks).

Wow many kilograms will you get for 24 CM?



rule of three:

1. determination

of the typo of

function:

proportional

304 -

fractions operator:

1. determination...

tractional equation:

1. determination...

2. 58 DM - 14 kg 2. qu(kg) pr(DM) 2. qu(k ) pr(DU)
441 DM - -.kg x 24

24 DM -4 211-10-Ykg . 29
S6 56 56

... 6 kg x 14 14 58

3. x 14.21= 3. X - 141'14

14.:21.
58

58 x 14 24

x 14.24

58

x 8

There are, of course, variations of the procedures. In

particular, you could also start using the method of

fractional equations with the following equation:

x 14
24 68

For some time the working group "tern-Lehrforschung in der

Mathematikdidaktik" ("Teaching-learning-research within

mathematics didactics") at the University of OsnabrUck has

been engaged In the question In which way the schematic

procedures influence the students' problem solving behavi-

our.

The Investigation was started at the "Hauptschul"-level,

which represents that kind of school within the tripartite

school system In the Federal Republic of Germany, where

less gifted students go to.

A first test was developed and later on given to nineteen

groups of students In the eighth and ninth grade - a total

amount of nearly 300 students.

The test Is composed of twelve typical word problems with

very little text (see above) Just as they do occur In our

767
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schools very often.

In Vlet at al. (1988) and Vlet & Kurth (1986) the Influence

of tie text variables on the problem solving procedures Is

discussed. These first Investigations show that on the

average only 40 % of all the problems were answered

correctly, the proportional problems are solved more easily

(50 %) than the Inversely proportional ones (30 %).

We are now mainly Interested In the way students handle the

procedures for solving problems.

It Is striking that the students often do not fall to

understand the content of the problem, but rather consider

the form of the problem as a demand for using the acquired

schematic procedure and than fall to remember 1st.

This becomes very clear when !coking at the Interviews

which were done with some students In order to get more

Information on the problem solving process. Most of the

students simply have a quick glance at the text and

proceed to the schematic procedure at once; they start

recalling fragments of the procedure, which then are combi-

ned In a wrong way, or they mix up certain parts of the

rules for solving proportional and inversely proportional

problems. Futhermore the students can not explain or give

reasons

for the steps they use to solve the problems. A student's

solution procedure of our previous example by means of

the method of fraction operators may be given as an

Illustration:

66
1:24 DM

24

66 DM

x 6 kg

6

788

14
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Students do not remember the principle behind the procedure

but only the stencil, I.e. the shape. It even happens that

the students use procedures belonging to totally different

problems, e.g. they calculate percentages which have no

connection with the word problems.

Apparently the schematic procedures didn't lead to a bet-

ter problem solving behaviour, but represent an additional

subject of instruction, which remains obscure, even diverts

from the proper problem, and finally leads the students to

a procedure with which he Is not successful.

Speaking In support of schematic procedures teachers stated

that classifying and organizing favour a better comprehen-

sion of the rules, avoid making errors, and, consequently,

are a help for less gifted students. This point of view

may derive from the fact that performance tests mostly

take piece at the end of a teaching unit when the students

still remember the squired procedures quite well.

Within three months - from the end of the teaching unit to

the day of the memory test - two teaching concepts deve-

lopped by our working group showed a remarkable decline

of correctly remembered solution procedures (for further

Information see Freking & Handke (1987)). Due to our

Investigation It Is to be doubted that schematic proce-

dures do help leas gifted students.

Now our working group Is Investigating differences concer-

ning the behaviour In problem solving between those stu-

dents who have already acquired such schematic procedures

and those who have not. For that purpose a new test with

ten problems (five proportional ones, five Inversely

proportional ones) was developped. As our first tests show,

students are extremely dependent on numbers and special

rations. The new test uses - referring to Investigations

of Noelting (1980) ano Karplus et al. (1983) - different

combinations of ratios for the three given data a,b,c In

the text (e.g. b:a Integral and C:8 nonIntegral etc.).

Although the Investigation has not yet been finished, we

can tiready state the following:
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- Students who have not been Instructed to solve

proportional and Inversely proportional word problems

go into the problem more deeply and do not look for 1.

method.

- Their strategies for solving the problem are to a

high degree adjusted to the chosen ratio; they make

use of integral ratios In particular, that means,

students

use the "within strategle" or the "between strategy"

so called by NoeitIng (1880). We also noticed this

behaviour among students who have already acquired a

fixed method, but It was less dIstInt.

- However, there are also students who follow a uniform

strategy, i.e. they either look for any relations

between the two co-ordinated data, that Is preferring

a 'within strategy" (according to the rule of three)

or relate the two data of the same units first, that

Is preferring a "between strategy" (according to the

method of operators).

- There are types of errors which play a less important

role among Instructed students: the numbers and ra-

tios lead to incorrect starts In that the students

only use two out of three data, and use additive

Instead of multiplying strategies.

The role of schematic procedures within these processes

has to be clarified by the current Investigation. How-

ever, we can already state the following facts:

- Schematic procedures alone cannot increase the

students' competence, because an Important part of

the solution, i.e. the question which type of func-

tion Is In hand, can only be managed within the

context of the actual problem.

The Interviews often showed that the students tried

to apply schematic procedures to this question, too,

by concluding the type of function from a tabular

representation of the three data.

- Much as schematic procedures signify clearness and

structure for an expert, they often only mean
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additional, sometimes very formal information to the

laymen (in this case : the students).

- Schematic procedures unnecessarily complicate sol-

ving problems with "simple" ratios and, therefore,

are incompatible with the fact that many students

prefer following a simpler solution procedure.

Those students don't think according to

any schematic procedure that requires extracting the

operations from the text first and working out the

numerical values afterwards, but the very way of

extracting la already Influenced and regulated by

numerical values and possible difficulties.

- Schematic procedures may conflict with a student's

personal way of thinking; this may happen, e.g.,

when a student is looking for relatInns between

co-ordinated data on his own initiative (i.e. he Is

considering the rule of three), but Is to be deter-

mined to make use of the fraction operators.

However, according to our Investigation we cannot and

should not reject schematic procedures as such. On the one

hand a part of the students does, of course, benefit by

them, on the other hand schematic procedures are a means

to carry out important didactical intentions, like organi-

zing the solution procedure and emphasizing the conceptual

background.

The reason why we only partly succeed In doing so Is that

we still have to investigate the relationship between

variables of the students (for example preferring a spe-

cial strategy), of the problems (for example special

numbers and ratios) and of the schematic procedures (for

example the strategy, on with the procedure is grounded)

more closely.
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THE RSSESSMENT OF COGNITIVE STRUCTURES

IN PROPORTIONRL RERSONING

Matthias Reiss (PH Karlsruhe). Merlyn Bahr (Northern Illinois
University). Richard Lash (WICAT Systems) & Themes Post (University

of Minnesota)*

It is the goal to assess the conceptual background fur
proportional problems. In terms of cognitive science we have
to distinguish between declarative and procedural knowledge.
Although' the conceptual background is part of declarative
knowledge it is usually assessed by procedural tasks. We
present a more direct way to cognitive structures in
proportional reasoning using NOVAK's runcept maps. The
students have to describe the relations between concepts
verbally end write them down on a poster. The students'
Implicit theories can be described pictorially. The Individual
student is viewed as a ttwewetleion rather then a problem
solver.

An Increasing of studies Neve ceecor'r -t cn issues related to
rational numbers wad proportions (fiehr & el., 1984; Welting. 1980;
Siegler & Vag., 1978, Hesemenn, 1987). Traditionally, difficulties In
this domain are assessed by Interviews. Students WOW* rational number
tasks and the authors describe the mast common errors. These errors are
the basis for analyzing strategies involved. Karp lus & el. (1974) and
Melting (1980) suggested that faulty qualitative reasoning was the basis
for many incorrect solutions. Hart's studies show that students tend to
use additive operations where multiplicative operations would have been
appropriate. The same author (1985) reported In her study about

'This research wee sapperted by contract OPE-8470077 frost the National
Science Fewedetlee. The first anther lives in West Germany. the ethers In the
United States. We wessid else like to Meek Ann Homilies. (harshen Harrel. and
Shari Lersee for their cepereties.
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proportion tasks that students prefer whole numbers where the use of fractions

would have been more adequate.

Ilesemenn (1987) emphesIzes that 'Irma,' existing concepts and schemata are of

central importance fur mathematical learning. Often they exist before they

become an issue In mathematics education. Therefore it can be productive to see

IM student not only In his or her rule as a problem solver, but also as a

theoretician. Often students have an Implicit Worry about mathematical concepts

and they see relations between concepts not Intended by teachers end textbooks.

Students' errors may be seen in a different perspective taking this implicit

theory into consideration.

OtOONIIIVE UMW ON PROPORTIONNI RELOTIONS

In cognitive psychology a distinction Is medr Mtween a procedural knowledge

about rules and a declarative knowledge about facts. Anderson (1983)

Incorporates these two forms of knowledge Into his psychological model of

memory. lie distinguishes Ipelwnmp procedural rules formulated in condition-

action pairs and factual knowledge in the farm of strings, spatial images, and

abstract propositions. The procedural rules make up a productioa system and are

stored In the production memory whereas the factual knowledge can be retrieved

from the decloretivo nmstory.

Anderson not only distinguishes between declarative and procedural meloory hui

adds a third component, the working memory. The declarative memory contains

rather general elements of knowledge and can be described es long term memory.

In contrast, the working memory consists of rather volatile elements of knowl-

edge that can be characterized as short term memory. Finally, the procedural

memory Includes productions, 1.e. a set of rules which expresses the contingency

between elements of knowledge in the form of condition- action pairs. In our cue

productions could be rules for handling fractions whereon the declarative

knowledge would be involved while talking about the conceptual background of

fractions.

794
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Declanitivo
Memory!

Retrieval
Storage

Warring
Memory

Production
Memory

Nateb/
bftlate
'sties

(Anderson, 1983, p. 19)

In Anderson's model information originates In the environment and comes late the

cognitive system via perception; it is encoded end stored In working memory. In
our case the student perceives the Indies bar which Is encoded in working
memory. It lees net have any meaning se far. The information from perception is
transmitted to the declarative memory GM the fraction bar becomes a signal for

fraction leeks. Because the working memory only has a limited storege capacity,

storage of perception is tompwery and retrieval is fast. Perceptions are finally
stored in the declarative memory for a long period of time. They we related to
other objects end events, which Is the basis for complex information retrieval
from the declarative memory. More general aspects of the object or events era

constructed so that information retrieval becomes mere efficient.

It Is not only the object that is stored, but this object as part of a whole class of

objects. Fractions e. g. can have the attribute to be reduceeble. This information

Is transmitted to the working memory and from there to the production memory.

If the conditions for a reduceehle fraction match with the numbers of a given
fraction, the production memory initiates the action of reducing the fraction in
the working memory. This is a cognitive activity which is finally performed by
actually writing the reduced fraction on a sheet of paper. If the conditions de not
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match with a given fraction, more information about fractions in general and

about the specific task is retrieved from the declarative memory and transmitted

to the production memory via the working memory. This process of information

retrieval and matching condition-action pairs is continued until the solution is

reached.

Problem solving in this model is conceptualized in terms of declarative and

procedural components. As mentioned earlier research related to rational number

concepts usually starts with the calculation procedure applied by the student.

Errors in the procedure are interpreted as deficiencies in conceptoal understand-

ing. Using Anderson's terms, mathematics education usually starts with
procedural knowledge and Infers the structure of declarative knowledge on this

basis.

The assessment of declarative koowledge about proportions

It appears to be worthwhile to try to mass declarative knowledge directly. In

studies of artificial Intelligence declarative knowledge is often described In the

form at semantic nets. The concepts ere nodes, the relations between the concepts

are links. These relations are well defined: a concept can be a sepercencept of

another one (ISA link). It can be characterized by certain properties (IIASPROP

link), and it can have certain parts (HASPART link).

This form of describing declarative knowledge did not seem to be appropriate for

the 7th graders we interviewed. The links in semantic nets are too well defined

and do not allow space for ambiguities In cognitive structures. That is why we

decided to make use of the experiences Novak & el. (1983) had In physics educa-

tion. Novak developed in assessment procedure that he called 'concept mapping".

This involved concepts written on cardboard thet had to be ordered on the table:

similar concepts near each other, dissimilar concepts far away from each other.

The students had to explain what they sew on the table and to describe relations

between concepts orally. Finally these descriptions were written down in the

form of arrows between concepts and sentences defining their relation to each

other. The result was a map on the table that described the students' implicit

theory about the domain an a conceptual basis.

In order to demonstrate the assessment method, a concept of one of our students is

included. The concept map should be reed in the following way: one has to start

781;
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where the arrow orininstes, read the! concept, reed the link, and finally reed the
concept where the arrow points to. In the case of doubts arrows it can ba read in

both directions.

The concept map on the preceding page Is the product of an intensive Interview
( 45 minutes) with Jon. He is a good student, he usually was one of the first
students able to answer a difficult question. In spite of his remarkable qualities
In solving numerical problems, his concept map reveals some misconceptions in

the domain of proportions. He Is able to describe what a fraction is, but be cannot

relate the concept proportion to other concepts la a consistent manner. He seems

to mix up proportion and portion. As long as ha describes concepts within appli-

cations of proportionality concepts, he finds a mare or less meaningful way to use

them (distance, miles, time, hours, speed; water, orange concentrate, mixture).
Put rate, ratio, proportion, part and number do not really fit into the system and
are used incenherently. Although for Jon proportion is the same as ratio and as

part, he does not VW a direct connection between ratio and part. Following this
logic ratio had to be the same as part. The fact that be does not mention this
connection reveals ambiguities in the use of these concepts.

Using this technique in the domain of proportions, it was possible to discover
conceptual misunderstandings even In good students. Usually they did not connect

all concepts that were related to each other. The results were islands of concepts

which often were consistent in themselves, but proved to be relatively isolated

from each other.

Concept maps reveal Important aspects of declarative memory but certainly are

not Identical with this form of knowledge. They may be useful for diagnostic
purposes es well as for monitoring the students' conceptual background. In
contrast to Meier (1987) the underlying model assumes that It is possible to-
separate operative aspects and the conceptual background (or in Anderson's terms

declarative and procedural knowledge). Dirtier argues that these are two sides of

the same coin. Anderson's model views them as two components of a dynamic

system interacting with each other. We used Anderson's model because we wanted

to focus on the students' conceptual background and therefore had to separate it

from operative aspects.

79 h
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CONJECTURAL SOFTWARE, VAN HIELE LEVELS AND PROPORTIONAL REASONING

Hugh Vincent

Middlesex Polytechnic

and

University of London Institute of Education

The development of new conjectural software, which allowed

pupils to construct and validate ratio-tables, led to the

construction of long-term courseware based on a proposed

van Hiele model of proportional reasoning. The courseware

was examined in terms of slow-learning adolescents'

consequent thinking and insight into the proposed base-level

van Hiele structure of proportion. Pupils response to the

learning environment reflected their cognitive style. The

proposed van Hiele base-level structure provided a framework

in which pupils, teacher and researcher could communicate.

These factors seemed to account for the pupils long-term

acceptance of the learning environment and the demands it

placed upon them.

Following the work of IOWO and the views expressed by an international

panel of the 7th PME conference, Streefland proposed a 'theory' for the

long-tern learning of ratio (Streefland, 1983, 1984 & 1985). In his

'theory', he outlined the possible key role of the ratio-table in the

learning process.

That key role is an issue of the current research which entailed the

development of courseware based on specially developed software which

allowed pupils to type in the first line of a ratio-table and then check

any subsequently entered lines against the initial line.

Since only one line needed to be displayed at a time, the software could

be run on a calculator size device with a one-line display (Vincent,

1987a). To simplify keypad and display requirements, feedback and

error-trapping techniques were developed which used the cursor to signal

a correct item or a (syntactically) incorrect key-stroke, no other

feedback being required.

G 0
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Early Field Work

Early field work entailed pupils using an enhanced micro-based
simulation called MATHSPAD (Vincent, 1987b) to check and accumulate

numerical results derived from a variety of proportion based activities
not connected directly with the computer (using 'ready reckoners',

reading scales, reading graphs and so on).

Early exploratory work indicated that the simulation program could

elicit sustained deep thinking from pupils of a wide ability and age
range. It also became clear that the software could accommodate a

variety of learning theories and that the environment it provided could
be upgraded to support different levels of thinking (Dreyfus, 1984;

Dreyfus & Thompson, 1985)

A van Hiele Model of Proportional Reasoning

This research took the view that slow learning adolescents who failed to

gain insight into structures of proportion may have done so because
their level of thinking did not match the instruction they were given.

Van Hiele (1986) was concerned that teacher and learner 'see' a topic in
the same way; that instruction

matches the level of thought of the pupil

and that the pupil acts with insight.

Van Hiele models of teaching and learning require the stratification of

thought into levels relating to the way that people 'see' a topic at
each level. They contain prescriptions for moving pupils from one level
of thought to the next, levels that are necessarily recursively related
(Hoffer, 1983). They take as their starting point people's initial
(naive) understandings and perceptions and, in so doing, focus on, and
give legitimacy to, thought at the base-level. Van Baalen described this
base-level as:

the level at which people (including the pupils) think in their
daily lives, with which they have their experiences, and with which
they make their decisions. (van Baalen, 1980)

The current research proposes a van Hiele model of proportional
reasoning in which base-level thinking corresponds loosely to the use of
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'build up' strategies to solve missing value problems (Hart, 1984).

Multiplicative and fractional comparisons, if used, mainly serve to

determine the steps used to 'build up the answer'. The epistomological

outlook is that proportion problems can be solved by the combination and

'fine tuning' of existing proportional pairs, the agents of which are

addition, 'small' integer multiplication and division (seen as repeated

addition and 'sharing' respectively). This outlook needs no

justification by the pupil: it is 'seen to work' in intuitively

understood contexts.

With respect to the proposed van Hiele model, pupils begin to think at

the next level when they abandon attempts to build up toward the answer

and, without using higher level conceptualisations of ratio (Karplus,

Pulps & Stage, 1983; Noelting, 1980) meaningfully use multiplication and

division to construct strategies, initially based on evaluating and

applying multiplicative comparisons.

The Courseware

Courseware was designed which used the opportunity afforded by

screen-based ratio-tables to take slow learning adolescents back to the

base level (Vincent, 1987b). Van Hiele has called this 'telescoped

reteaching'. It consisted of a series of narrowly focused

proportion-based tasks designed to acquaint pupils with proportion

structures across a wide variety of contexts viewed in terms of

base-level thinking. These 'level specific' environments corresponded

loosely to van Hiele's first two learning phases of 'information' and

'guided orientation' and mainly entailed the completion of

(screen-based) ratio-tables. The ratio-table was used to record results

accumulated from meaningful context-bound activities and not

specifically to highlight operational features of proportion (Seeger,

1984).

However, as the screen accumulated only correct results (the software

did not allow pupils to enter a new item until the current item was

displayed correctly), pupils could use patterns discerned from earlier

results as a basis for idiosyncratic algorithmisation as a first step

toward higher-level thinking. This was further encouraged by providing

only limited fall-back strategy or limiting the range of a table, scale

or ready reckoner.

t fl C7
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Field trials of base-level courseware.

The courseware was used with two volunteer groups of slow-learning

adolescents of about 10 pupils each in the 14 to 15, and 15 to 16 age

range. The trials were respectively one term (1 hour a week for 13

weeks) and one year (1 hour a week for 40 weeks).

Pupils progression through the courseware was closely monitored. Pupils

who experienced difficulties were given guidance. Taped interviews were

conducted with pupils during and after the course. Tests were also

administered after the course.

Pupils seemed to respond well to the learning environment offered by the

computer simulation but for differing reasons. Despite following
identical courses and performing identical tasks, pupils exhibited

markedly different mathematical behaviours. They seemed to use the

environment in ways that reflected their individual cognitive style.

This may have contributed to pupils long-term acceptance of the learning

environment.

Conclusion

Completing screen-based ratio-tables was shown to be an effective way
for slow-learning adolescents to begin to explore structures of

proportion. The proposed base van Hiele level seemed to provide a

coherent structure in which these slow learning adolescents, teacher and

researcher could communicate. A small number of pupils began to

construct strategies that reflected higher level thinking in relation to

the proposed van Hiele model.

U 0 3
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RATIO AHD PROPORTION: A SYNTHESIS OF EIGHT CONFERENCE PAPERS

Merlyn J. Behr

Northern Illinois University

The paper by Laura Coffin Koch investigated the question of whether
two different treatments to teach strategies for solving proportion

problems would differentially affect the types of strategies,

particularly invalid strategies, that learner's use. Each of the two

treatments considered the concepts associated with a multiplicative

conceptual field (Vergnaud, 1983). One of the these treatments taught

the concepts in sequential manner, the other in a manner which

apparently attempted to integrate the concepts as a conceptual field. An
important finding is that the different instruction methods did

differentially affect learners continued use of invalid solution

strategies. It would thus seem that use of invalid solution strategies

may be amenable to change under certain instruction treatments.

The pre-and posttest tasks reflect the structural variable of

divisibility and the contextual variables of number type (integer,

decimal, and fraction) and rate type (rate of walking and scaling). The

results corroborate earlier findings of the strong affect that the

variable of divisibility has on performance in solving proportion

problems. The study also reports findings consistent with those reported

by Heller, Post and Behr (1965) about how frequently given rates are

changed to unit rates in solutions of proportion problems.

The results seem to suggest that problems which have a fractional

answer (value for the missing value) are herder than problems that have

on integer solution but involve fractions or decimals as problem

components. Why might this be true? Unfortunately, the author's report

dues not give enough information about the problem structure to make any

hypotheses. Nevertheless it would seem that there is lurking behind this

result some important questions about variables that affect learner's

performance on multiplication and division operations. Thin io suggested

because any nonadditive st:ategy would require using either a

multiplication or division computation. The finding that students are

not always consistent in their use of strategies from one problem tJ

another is consistent with earlier results. This finding highlights the

important question of how a solver's choice of solution strategy depends

on such matters as problem context, number type, and other variables such

as the structure of the problem presentation and the structure of problem

805
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representations which arc formed by the solver.

The paper by Wilfried Kurth inestigated the strategies used by

students at the "hauptschul level." These students had apparently been

taught three gkeJlepatac procedures for solving missing value direct and

inverse proportion problems through their regular class instruction.

These schematic procedures, using the terminology of Vergnaud (1983),

were the rule of three, scalar operator, and function operator. The

following observation is of interest not only to proportion problem

solving research, but to problem solving research in general. The author

suggests that these students did not seem to fail to understand the

content of the problem, but nevertheless they considered the form of the

problem as a demand for using one of the learned schematic procedures.

Most of the students gave a cursory reading of the problem and then

proceeded directly to the schematic procedure, often recalling only

fragments of the procedure and mixing up aspects of one or more

schematic procedure.

It would appear that we see in these results some difficulties which

arise for students when instruction emphasizes the learning of solution

strategies ilbOILL conceptual understanding of what it means to reason

proportionally. The issue of whether students are responding to the

syntax or the semantics of a proportion problem likely underlies the

students difficulties. This raises several questions: What is the

semantic content of a proportion problem? What does it mean to reason

proportionally; that is, what do students need to understand in order to

solve proportion problems sigaithiginjja? Another observation made by the

author is that while schematic procedures may indicate clearness and

structure for an expert, to the novice they may mean only additional

information, for which additional instruction is necessary in order to

use or understand the procedure.

The research reported in these two studies seems to have an emphasis

on solution procedures. Moreover, it would appear that the instruction

failed to emphasize the conceptual knowledge of what a proportion is and

what solving a proportion problem involves. They fail to get at the

basic issue of helping children to reason proportionally. I think more

emphasis needs to be placed on the fact that what we do in solving a

Proportion problem is to determine a relationship between a pair of

numbers and then: (a) transfer that relationship to an operation on a

third quantity to find n missing value, or (b) determine whether or not

the same relationship holds between a second, or successive pairs of

numbers. It would appear that we have the cart before the horse. It is

BEST COPY AVAILABLE
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not that teaching solution strategies will lead to the ability to reason

proportionally, but rather that conceptual knowledge about the meaning of

a proportion will give the foundation for the development of valid

strategies. Then, practice with the strategies, in order to automate

them, and continual interaction with the conceptual knowledge about the

fundamental issue of proportionality will lead to higher performance on
proportion problems.

There is an issue of syntax versus semantics of proportion problems.

It seems that the syntax of proportion problem can be translated to

syntactical structure such as a measure space diagram without considering

the semantics of the problem. What is the semantic° of a proportion

problem? Consider the problem

6 candies for 10 cents,

17 candies coat how many cents?

The conceptual knowledge for solving this problem is that there is a

relationship between 6 candies and 10 cents and a way to express that

relationship in terms of an operation or function -- multiple by 3

candies per 5 cents. The function rule, multiply by the extensive

quantity 3 candies per 5 cents or 3/5 candies per 1 cent, is an

"equalizer", "exchange rate", or "matcher", between 6 candiee and 10

cents, and must also be the equalizer between 17 candies and "how many

coots." The "equalizer" 3/5 candy per one cent is what allows for the

tamA.ciou

6 candies x (some quantity) =talk 10 cents

to be formed.

The paper by Kaput, Clifton, Poholsky, and Sayer introduces an

entirely new dimension on the matter of translating among several

representational systems. Earlier work by Bruner (1966) and Dieees

(1967) demonstrated the importance of having multiple types and levtle of

representation to facilitate the learning of mathematical concept..

Subsequent work by Behr, Lesh, Post, and Silver (1983) suggested that

meaningful learning depended
,
on flexibility in translating ideas between

several modes or systems of representatiGn. Since that time the concept

of a representational system has been made more precise (Kaput, 1983;

Lash, Poet, and Behr, in press; Goldin, 1985). The work reported here by

Kaput et al. represents a giant step forward in providing a model of

curricular material that makes the desirable use of several

representational systems possible. Moreover, the work represents a major

step forward in providing an exemplar of a medium in which translation

among systems of representations is possible. The objective of the work
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is to provide cybernetically cur,Lrulled learning environments which move

learners true urtuntion-bound representations to more abstract and

flexible ones. The cybernetic control allows or the effect of some

maeipulation within one representational system to be observed by the

learner in that system and one or more other systems simultaneously or

sequentially. The specific materials reported on in this paper concern

the matter of intensive quantity and related issues of ratio and

proportion. The work represents a major stride toward providing a

leaning environment for students to learn these difficult concepts, yet

it leaves unanswered or raises several questions. The paper repeatedly

refers to the intensive value of a ratio or rate. Do learners perceive

a ratio as a single entity with (intensive) value, or is a ratio a pair

of distinct numbers? Do most novices to the cone;! of ratio see it only

an a correspondence between two extensive quantities rather than as a

third derived intensive quantity?
Moreover, it appears to be an open

question as to whether three materials move children to the direction of

perceiving intensivity. These questions ore likely related to the

question raised by Behr, Wachsmutli, Post (1985) about whether or not

children perceive a fraction as representing a single number, or value.

The paper by Hugh Vtncent attempts to bring together the research on

proportion problems and the levels of thought according to the Van Miele

theory. Me defines bane-level thinking in terms of the use of build up

utra:egien which children are known to use to solve missing value

probleoa. Transition to the next level occurs as the buildup strategy is

nbandone6 and strategies began to depend on higher level

conceptualizatione of ratio. Thin is characterized by meaningful use of

multiplication and division which is based on an initial evaluation and

application of multiplicative relationships. A computer/calculator

instructional package was developed to facilitate thin transition which

was bared on the theory proposed by Streefland (1984, 1985). The

instruction presented partial ratio tables and required learners to

complete the table. A feedback mechanism in the instruction was designed

to nudge students away !row
the buildup strategy to the mule acceptable

multiplicative strategy. The authors found that the ratio tables were sin

effective way for slow learning students to begin to explore structures

of proportion and that the proposed
hose level from the van Miele theory

did provide a level at which teachers and students could commorcate.

Thin study provides another instance in which instruction on strategies

for solving proportion problems
facilitated learner's use of "higer

level" strategies. Some questions which arise from these interventron

n 0
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studies are: What characterizes instruction that raises the level of
strategies that a student applies to the solution of a proportion
problem? To what extent dues a student's choice of a "higher level"
strategy have a commensurute improvement

in the learner's understanding

of proportion and proportional reasoning?

The semantic content in which
a proportional relationship is embedded

and the syntactical structure of this relationship are two classes of

variable (problems context and problem structure) which are known to
affect performance on proportion problems. The paper by Behr, Harel.

Post, and Lesh outlines a theoretcal analysis of the problem structure

variables for missing value problems. The intent of the analysis is to
provide a theoretical foundation to guide systematic manipulation of
this class of variables.

One structural variable included in the analysis, known from prior

research to affect problem performance, is that of the divisibility

relationsip among the problem components. Other variables included in

the analysis, about which less is known from prior research, are the

location of the missing value, and the majg al measure, which expresses
the amount of a given quantity. The paper also alludes to, but does not

pursue, the type. of quantity to which the unit of measure refers.

The paper presents an information processing problem solving model
for the class of missing value proportion problems. The model considers

the fact that solvers take the problem structure of the problem

presentation and transform that structure, due to the salience of certain

structural variables, into mental problem representations. The problem

representations are hypothesized to form three classes: for problem

understanding, for exploring the relationship among problem components

(intermediate representations). and for application of problem operators

(procedural representations).

The analysis identifies a mathematical group of 8 transformations.

These transformation, are knowledge structures used by the solver to

change the structure of the problem. Exactly 2 problem operators are

identified, one is instantiated on the per statement which has two known

quantities and the other on the per statement with the missing value.

These problem operators are instantiated with either an addition

subtraction, multiplication, or division equation. An instantiated

operator is refered to as a solution strategy; these can be valid or
invalid. Combinations of division and multiplication equations which

instantiate the two operators lead to the identification of 14 valid

multiplication solution strategies. A hierarchy for solver's preference
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for these strategies is hypothesized.
Finally the met of 512 missing

value problems (determined by the problem structure variables) are

partitioned into 8 distinct levels by the transformations.

Each level consists of the 18 distinct problem structures; those

structures of a given level are the le preimagea which get mapped by the

same problem structure transformation one -to -one onto the 18 procedural

representations. An hypothesized diffialty hierarchy for the 18

procedural representations is used to hypoCoesize a difficulty hierarchy

on the 18 problem structures within each level. the separate levels do

not seem amenable, via this analysis, to an hypothesized difficulty

hierarchy. These extensive analyses theref:ie lead to a partial

difficulty hierarchy for the 512 missing value proportion problems.

In the domain of proportion problems, emphasis has been on the

identification of solution strategies that solvers use to solve or

attempt to solve proportion problems. flo attention has been given in

this research area to the problem representations which solvers form

before they apply a solution strategy.
Consequently no research has

addressed the question of the relationship between the problem

representation that a solver forms and the strategy which is applied. It

appears that this would be a fruitful line of inquiry because of findings

in other areas of problem solving research in which distinct differences

are shown to exist between the problem representation and the procedures

used by expert and novice solvers
(Chi, Glaser, & Ross, 1981; Larkin,

1983).

Qualitative reasoning has been found to be an important component of

successful problem solver's thinking. Successful problem solvers are

known to reason qualitatively about
the relationships among components of

a problem before or instead of using quantitative procedures.

The paper by Harel, Behr, PJat, and Lesh addresses the problem

representation issue for a proportion problem task which emphasizes

qualitative reasoning.
This task, called the blocks task, requires the

cootdination of several weight and size relationships on a given pair of

blocks to determine the weight
relationahp between a criterion pair of

blocks. The study identifies a hierarchy of 3 distinct problem

representations used by grade-7 subjects and a hierarchy of 5 distinct

solution strategies. A very close correlation was found between the

levels of sophistication of the
representation formed and the strategy

used. The top representation was
found "to cull on" the top 3 levels of

solution strategies, the middle level of representation "called ole' the

lower 3 levels of solution strategies
(an overlap of the midle level
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strategy), and the lowest representation was found to "call on" only the

lowest level of solution strategy.

Some questions which arise from these two papers are: What is the

role of qualitative thinking in the development of proportional

reasoning? Can children be taught to use qualitative reasoning? Will

the development of qualitative proportional reasoning in children

facilitate the development of quantitative reasoning about proportional

situations? Can children be taught to form certain problem

representations for proportion problems? If children are taught certain

higher level problem representations will this improve performance?

The paper by Alan Bell and Barry Onslow concerns the concept of rate,

that is, the concept of intensive quantity which they define as "the

quotient of two extensive quantities." The paper reports children's

responses on several carefully designed division problems. Two questions

have to do with the phenomenon of "small-number divided by large-number."

One of the problems was in the context of a whole of 27 units of measure

being divided into 150 pieces (i.e. whole is divided into parts) and

the question is of the number of units of measure in each (or one) part,

or how much of the whole is in each part. This partitive division

problem has a partitioning behavioral model in a very natural sense, a

whole is mode into a number of equal sized parts, how big is each (or

one) part? Moreover, the context of the problem involved the length of a

ribbon, a quantity which is "obviously" partitionable, and partitionable

as successively as necessary. The second problem on the other hand,

involved two quantities: 44 pence was to be divided by a 250 gram pack

of butter. This division, while also a partitive division (extensive

quantity divided by extensive quantity), has much less of a natural

behavioral partitioning of a whole, 44 pence, into parts. In this case,

the whole of 44 pence was to be partitioned according to some exterior

quantity, having no relationship to the 44 pence, such as a part-whole

relationship, other than the relationship of correspondence. Moreover,

the unit of pence, the smallest unit of British currency, is not

partitionable in a behavioral sense, and is certainly not infinitely

partitionable in this sense. Some important research questions arise

from their finding that the first problem resulted in nearly twice as

many correct responses for choice of operation as the second. To what

extent are divisions which has a whole-divided-into-parts behavioral

model easier than divisions without this model? The problem used in this

study had the part-whole relationship of "part of the whale" relationship

of "Part of the whole" in an inclusion sense; other types of part-whole
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relationships exist (Chaffin, Herrman, 6 Winston paper in preparation), a

bedroom is part of a whole apartment in a different sense, a handle is

part of a cup in still a different sense, are there partitive divisions

which involve these different types of part whole relationships, and if

so how do these differences affect children's performance? How does the

partitionability of either, or both, of the dividend or divisor quantity

affect children's performance on the second type of partitive division

problem?

One finding of the study was that children performed much better on a

rate problem when the problem question was put in the form of how much of

quantity-1 in one unit of quantity-2?, rather than in the form how much

of quantity-1 per unit of quantity-2? Another related finding is that

children understood 20 francs per gram as meaning the same thing as 1

gram per 20 francs, for example. The first finding raises a linguistics

question for investigation. What words best communicate the meaning of

rate to children? Is there a developmental sequence in the words that

communicate this meaning? From the second finding the question arises,

Do children have a concept of intensive quantity? If so, at about what

age is it acquired, or what set of experiences can bring it about? If

not, what is children's understanding of rate? Behr, Hsrel, Post and

Lesh (in preparation) suggest that children's perception of rate is

simply that of correspondence. The rate 5 miles per 3 minutes is

hypothesized to simply be the correspondence of 5 miles to 3 minutes.

Since, a correspondence is likely to be considered symmetric by children,

this would explain why 5 miles to 3 minutes is thought to be the same as

3 minutes to 5 miles. Some research questions in this context: How do we

define intensivity so that it is learnable by children? Can we define

appropriate experiences so children begin to learn the concept of

intensivity? Do children who demonstrate knowledge of intensive quantity

perform better than those who don't on the types of problems given by

Bell and Onalow? Do children who demonstrate knowledge of intensive

quantity perform better than those who don't on proportion problems?

In the paper by Reiss, Behr, Lesh, and Post the point in made that a

technique to make direct evaluation of children's conceptual knowledge

for proportional situations is needed. Moreover, this analysts technique

should go beyond attempts that have been made to infer learner's

conceptual knowledge from the strategies they are observed to use to

solve proportion problems. The potential of the semantic net analysis

used in cognitive science is discussed but rejected on the basis that the

strictly defined links are to limiting to capture the richness and

u
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diversity of a student's knowledge structure. A recommendation to employ

the concept map analysis developed by Joseph Novak (1984) is given and an

example of one student's concept map for ratio and proportion is

presented and discussed. It appears that this method of analysis holds

promise for comparing the conceptual knowledge of successful to

unsuccessful solver's of proportion problems, and for charting the

change, in the conceptual knowledge within students for proportions over

time and instruction.
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CONFRONTATION D'AFPROCHES CONSTRUCTIVISTE ET
TRADITIONNELLE DE LA NUMERATION

Nadine BEDNARZ
MADE, UNIVERSITE DU QUEBEC A MONTREAL

ABSTRACT

This presentation is a follow-up of a research study on
numeration conducted in primary school during five years. This
research has permitted to point out on one hand the main
difficulties and misconceptions developed by children in current
teaching of numeration, and on the other hand to develop a
constructivist approach leading children to build a meaningful and
efficient symbolism of number. This approach was experimented
in a classroom from 1980 to 1983 with the same group of children
from the time they were in first grade (6-7 years old) to the third
grade (8.9 years old). To point out the real impact of this
longitudinal study on the pupils, an evaluation of the
understanding of numeration was conducted at the end of 1981.
1982. 1983 and after three years in 1986. The results are presented
here. Confrontation of traditional and constructivLst learning of
numeration will be discussed.

INTRODUCTION

Plusieurs recherches recentes en didactique desmathematiques se situent dans

un courant constructiviste de l'apprentissage. Uelaboration des connaissances y est

concue, en accord avec Its perspectives plagetienne du developpement (Plaget, 1975)

et tpistemologlque du developpement de Ia pence scientitique (Bache lard, 1938).

comme use suite de reconstructions successives passant par des periodes de

desequilibres. de destabilisation. C'est en termes d'erreurs rectifides. d'obstacles

depasses gulls caracterisent le developpement de la pensee. Se sttuant dans ce

courant constructiviste, plusieurs recherches en didactique des mathematiques ant

pennis de mettre cn evidence les conditions dans lesquelles les enfants

construlsent des concepts fondamentaux en mathemattques. Ces recherches

apportent un eclairage A l'analyse des erreurs produites par les eleves, aux

conceptions inapproprides sous-jacentes ayant des consequences sur la production

d'autres connaissances. Un des problemes qul se pose suite A ces etudes, et auquel

les recherches en didactique fournissent peu de reponses. est le suivant: comment

un apprentissage pourralt-II etre organise pour tenir compte de ce que Ion salt de Ia

01 7



338

penste andhematique des enfants, de leurs difficultes. conceptions. procedures...7
Peu de recherches out en effet effectivement elabore et experimente une approche
constructiviste des mathematiques. Les travaux realises dans cette perspective
demeurent Haines (Von Glasersfeld, 1983: Bergeron. Hercowitx, 1984: Steffe, 1977;
Cobb, 1983).

Notre recherche est une contribution lmportante en cc sens. Nous avons en effet
mene durant cinq ans un travail sur la numeration et son apprentissage A l'ecole
primaire. travail qui a permis: d'une part. de clarifier explicitement les conditions
dans lesquelles I'enfant s'approprie le concept; d'autre part d'organiser un
apprentissage rellZtant ce que Ion salt de la pensee des enfants, apprentissage
s'articulant autour dune prise en compte des conceptions, procedures,
representations symboliques dtvelopptes par les enfants. Cet apprentissage fait en
sorte que l'enfant construise progressivement un systeme de representation du
nornbre significant et elilcace.

APPROCHE TRADMONNELLE DE LA NUMERATION;
QUELQUES FAITS SIGNIFICATIFS REVELES PAR NOTRE PREMIERE ETUDE

Par numeration, on entend traditlonnellement un systtme coherent de
symboles regi par certalnes reolf.e pennettant d'etrire et de lire les nombres. La
numeration est la partle de tarithmetique qui enseigne A exprimer et A representer
les nombres. Ainsi, l'enstgriement.tradllionnel de la numeration se reduit souvent
A la capacite de lire des nombres, de les ecrire et A thabilete de pointer dans un
nombre donut lea valet= de position. Nous retrouvons alors un enseignement axe
essentlellement sur l'ecriture conventlonnelle et sur I'acquisltlon des regles
syntaxiques qui rtgissent cette 6criture, et ceci tres tot (des 6-7 ans)

Alin de mieux canprendre la conception que nous avons de la numeration et de
son apprentissage, nous reviendrons sur les resultats les plus significatifs reveles
par cette premiere etude 1101.

Quels sens les enfants accordent-ils A chacun des symbolcs intervenant dans
l'ecriture conventionnelle, voient-Ils que l'ecriture est un code relit A des
collections "reorganistes pour faire apparaltre des groupements?
Notre etude nous revele que pen d'enfants accordent une signification veritable

recriture en termer de groupeinents, La plupart des enfants concoivent
l'ecriture comme un alignment ou une sequence de chlffres (chiffres places
dans un certain ordre). Ainsi des mots comme centaines, dizaines, unites ne
sont pas du tout pris en consideration ou sont assocles A un certain decoupage de
tecriture.

8 I risi
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De plus, l'ecriture des nornbres est associde pour beaucoup d'enfax ts au codage

dune collection d'elements. Les enfants ont alors l'attitude A recourir au
comptage un a un de la collection. mCme quand cette strategic est inappropriee.

Peu d'entre eux voient la pertinence de regrouper et voient que l'ecriture est un

code qui dCcoule directernent de ces groupements.
Quels sens les enfants accordent-ils an traitement de cette denture dans les

procedures de calcul? Voient- its dans la retenue ou l'emprunt une action

effective sur des groupements?
Peu d'enfants peuvent operer sur les groupements lorsqu'ils ont a faire ou

defaire ceux-cl. Its ne peuvent illustrer ni explIquer avec un materiel les

operations effectutes sur l'ecriture. Les conceptions erronees de la retenue et de

l'emprunt que Ion retrouve alors illustrent que les regles utilisers dans les

procedures de calcul ne correspondent a aucune action effective sur les

groupements.
Nous pourrions poursuivre ]'analyse de ces difficultes, la comprehension que

les enfants retirent de la numeration dans l'enseignement actuel est cependant

suffisarnment caracterisee. A la lecture des faits precedents. it est facile de

noter que pour nous l'ecriture conventionnelle nest pas un but en sot mats est

plus etudiee en regard de sa signification en termes de groupements et en termes

de transformations effectuees sur ces groupements lorsqu'on 2 a operer.

UNE APPROCHE CONSTRUCTIVISTE DE LA NUMERATION.
BREVE CARACTERISATION DE NOTRE INTERVENTION.

Quand nous travaillons sur la numeration, nous travaillons sur he processus de

representation du nombre, processus s'articulant sur des collections reorganisees

pour faire apparaltre des groupements. Un apprentissage de la numeration dolt

provoquer ce processus de representation et le mener a terme.

De 1980 A 1983, nous mettlons en pratlque une conception constructiviste de

l'apprentissage de la numeration aupres d'un metric groupe d'enfants sulvi pendant

3 ans (6-7 ans A 8-9 ans),
Toute noire strategic a consiste a arnener les enfants a developper leurs propres

representations du nornbre et a les faire evoluer vers un symbolisme sIgniticatil et

effleace. Pour accomplir cecl, Verdant a etc amene a vivre des situations qui he

forcatent a operer sur des collections sur lesquelles tine relation entre les

groupements etalt definie 1111. Les operations soot essentlelles dans noire strategic.

putsque en plus de dormer tine motivation aux transformations opCrees sur les

groupements, elks leur donnent une signification en terries d'actIon veritable

(defatre les groupements, les faire, &hanger...). Ces situations necessitent que les

t)
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enfants developpent des moyens pour garder trace at communiquer de
rinformation sur les transformations opertes at sur les collections regroupees qui
cn resultent. Les representations gulls developpent sont alors significatives.
Enfin, la sollicitation A devents el-Reseal darts it traiement at In communication
d'informations sur des collections force Verdant A avoir recours A des
representations ecrttes gull raffine progressivement. Dans cat apprentissage
constructiviste. les situations at interventions reposent sur une analyse constante
des procedures. conceptions. representations symboliques dtveloppees par Its
enfants et stir une analyse de revolution de celles-ci 1121.

EVALUATION DE LIMPACT DE CETTE INTERVENTION

Les effete de cede Intervention sur la comprehension de In numeration par Its
enfants ont etc analyses A la fin de chacune des anntes: lire (6-7 ans) A 3e ante
(8-9 ants). Des Items ont tee elabores ri partir du cadre de reference developpe dans in
recherche precedente (81 at experimentes sous forme d'entrevue auprts des enfants
du groupe ayant sutvl rapproche constructivLste at des enfants d'un groupe contrOle
ayant sulvi une approchc traditionnelle de la numeration (Bednarz. Janvier,
paraltrel.

3e annie 1983
(23 enfants)

2. emit 1982
-- (22 enfants

dans une
class.)

, Ire armee 1981
(39 enfants dans deux

classes)
r.

Enfents avant pris part a l'expirimtntation stir une period. important*.
DEnfants pour qui l'Interventton est assez important. pour dormer des risultats signifioatifs

Figure 1- Groupe experimental
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Approeht
constructiviste

Group conirOle
enseignement traditionnet

Fin lire mini* (6-7 ens) 39 25

Fin 2e mini* (7-8 ens) 27 23

Fin 3. Annie (8-9 ins) 23 26

!tare 2

lEallaas apreamtrQmperimentation, nous cherchorts maintenant a =Me

en evidence cc qu'il reste de cette intervention aupres des enfants: les habiletes,

proced -cs, facons de s'organiser, attitudes developpees chcz les enfants

subsistent-elles?
Quelles sont les influermes chez l'enfant de la confrontation entre une approche

construettviste et un enseignement traditionnel des mathernatiques suivi trots ans

apres notre intervention: maintlen, regression ou disparition de certaines
habiletes ou attitudes. conflits provoques par l'interaction des deux approehes?

tine 6preuve a dt6 con.strutte a partir du cadre de reference sur la numeration

developpe clans la precedente recherche 181 et experiment& sous forme d'entrevues.

Des 23 tl6ves suivis au cours de l'intervention, it ne reste que 16 Cleves (groupe

experimental). Alin de pouvoir repondre aux questions que nous nous posions,

nous avons constitue tin groupe controle forme d'eleves de la meme ecole (mime

milieu, mime niveau) que Its Cleves du groupe experimental. Ces Neves ont suivi

pendant tout le primaire un enseignement haditionnel des mathematiques.

RESULTATS PRELIMINAMES

Les graphiques pr(sentes cidessous reprennent quelquesuns des resultats du

groupe ayant suivi l'approche constructiviste A In fin de chacune des armies dc

'Intervention, et trots ans apres (Intervention. Dcs rtsultats plus detailles et

exemples seront fount's lora de la presentation.
Les items auxquels ecs graphiques referent de la lire A la 3e armee. puts en 6e

armee, sont de plus en plus complexes en termes de cheminements, habilctes et

representations mises en jeu (cf. cadre de reference sur Is numeration).

;`,
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operer avec les groupements dans des tAches de plus en plus complexes. Itois ans
apres cette intervention, les habiletts. procedures developpees par les enfants
subsistent encore. Parisi. 69% des enfants (fig. 4) accordent une certaine
signIficaticn A ce gulls font en termes de groupements lorsqu'lls ont A operer avec
un materiel relativement complete dans no contexte de division. Ces memes
enfants (fig. 3) voient la pertinence d'utilLser les groupements pour coder une
collection.

Nos resultats mettent cependant en evidence des conllits provoques par la
confrontation des deux approches. Dans des tAches complexes. deux conceptions
difftrentes entrent alors en conflit chez ]'enfant.

Ces resultats illustrent combien une approche constructiviste des
mathematiques implique une intervention de longue durte dans la classe. Cette
approche constitue en effet beaucoup plus qu'une variation pedagogique: elle est une
remise en question complete de la conception traditionnelle que nous avons de la
numeration et de son apprentLssage.
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KINDERGARTNERS' KNOWLEDGE OF NUMBERS: A LONGITUDINAL CASE STUDY

PART I: INTUITIVE AND PROCEDURAL UNDERSTANDING

Nicolas Herscovics, Concordia University
Jacques C. Bergeron, Universite de Montreal.

Anne Bergeron, Universite de Montreal

This paper reports the results of a longitudinal case study
aimed at following a child's construction of the number con-
cept during the kindergarten time-frame. The subject was met
three times during the school year, in October, January, and
May. Each assessment required four to five 20-minute inter-
views. The questionnaire used to this effect was developed
within the theoretical framework provided by a model of un-
derstanding which identifies four levels in the construction
of a mathematical concept: intuitive understanding, proce-
dural understanding, abstraction and formalization. Results
show that the child progresses simultaneously at many levels
and that the questionnaire offers a perspective broad enough
to study the evolution of his numerical profile. This study
is reported in two companion papers dealing respectively
with the first two levels of understanding (Part I), and
with the last two levels (Part II).

The children's acquisition of number starts very early. Gelman &

Gallistel (1978), as well as Fuson et al (1982), have shown that the

first number words are learned as early as the age of three. But is is

between the ages of five and six that one witnesses an outburst in their

knowledge of the number-word sequence for, by then, most of them can

recite it beyond 30 (Herscovics et al, 1986a). We have found that this

major quantitative development is accompanied by major qualitative de-

velopments in their perception of number (A. Bergeron et al, 1986;

Herscovics at al, 1986b; J.C. Bergeron at al, 1986). Our investigations

were cross-sectional studies of different groups of kindergartners. And

thus, they left open the question of how children evolve during this

period. Only a longitudinal type of study would provide information

on this subject.
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viewed as a measure of quantity or as a measure of the rank of an object.

Of course, the child does not build overnight the notion of number as a

measure of quantity or rank. In fact, four distinct levels can be

identified in the construction of this conceptual scheme: intuitive

understanding, procedural understanding, abstraction, and formalization.

We have been working for several years on the identification and refine-

ment of criteria which might describe these four levels of understanding

of number (Herscovics d Bergeron,J.C., 1983). These criteria have been

used to develop a questionnaire made up of various tasks and questioning

sequences aimed at probing the child's thinking processes. Running

through these tasks and questions with children between five and six

requires four to five interviews, each one lasting from 15 to 20 minutes,

about the attention span of this age group. Four kindergartners were

selected by their teacher on the basis of their willingness to work

with us. In order to study their evolution, the questionnaire was ad-

ministered individually at three different periods of the r.chool year,

October, January and May. Each set of interviews was video-taped. At

present, we have completed the analysis of one of the four case studies.

In this paper we report the criteria describing each level of under-

standing, the tasks and questions used to assess them, and the evolu-

tion of the subject.

INTUITIVE UNDERSTANDING

The level of cognition which we call
"intuitive" relates to the infor-

mal knowledge acquired through life experiences, outside any formal

instruction. For many mathematical concepts, one can find their em-

bryonic presence in this informal knowledge. These germinal ideas can

be considered as pre-concepts. For young children, these pre-concepts

are quasi-physical and initially relate to concrete objects and their

actions on these objects.
Intuitive understanding results from a type

of thinking heavily influenced by visual perception. For pre-concepts

of an arithmetical nature, this translates into visual estimation and

primitive actions which do not yet provide a numerical answer.

An intuitive understanding of number involves those notions which can be

viewed as pre-concepts of its cardinal interpretation and its ordinal

interpretation. Since in a cardinal perspective number can be viewed as

a measure of quantity (the number of elements in a discrete set), the
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notion of quantity can be considered a pre-concept of number. Indeed,

for discrete sets, one can deal with the notions of "more than, less

than, or the same as" without any counting process, by simple visual es-

timation. For more accurate results, a one-to-one correspondence can

be used. In an ordinal perspective, number can be viewed as a measure

of the rank of an object. This presupposes that the set has been

ordered and that the child perceives this order. Thus the notion of

order can be considered as another pre-concept of number. For instan-

ce, in a row of objects, the child does not have to resort to any count-

ing to determine if an object is placed "before" or "after" another one.

Given two rows, he can use a one-to-one correspondence to determine if

objects in each row have the same rank or not.

Our subject was a little boy, Philippe, aged 5:7 at the time of the

first interview, in October. At the level of intuitive understanding

no change was observed in the three sets of interviews (Oct., Jan., May).

Comparing a set of 25 cubes with another set of 7, he could use the

words "more" and "less" to identify the two sets. When asked to judge

"just by looking", if one set of randomly disposed cubes (8) had more,

less, or the same as a second set (8), he answered that they were the

same. When further asked how he could make sure, on he three occasions

he arranged each set into the same rectangular array.

The classical Piagetian "conservation of number" task has been retained

to further probe the child's intuitive understanding.In this task,sub-

jects are asked to compare two rows of objects,before and after one row

is elongated.Since no counting is invulved,the comparison is purely in
terms of quantity, not number. Our subject, Philippe, could use a

one-to-one correspondence to lay out a row of seven cubes similar to a

given one. However, at no time during the year did he succeed in this

conservation task. Interestingly, he was focusing on the density of

the rows rather than their length, for he always felt that the shorter

row had more cubes. In January and May, he still had to resort to a

one-to-one correspondence in order to determine if the two rows had the

same quantity or not. At the time of this experimentation, no tasks

had been set to investigate the ordinal aspect of number at the intui-

tive level. Ordinal tasks were included at the level of procedural

understanding.
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KNOWLEDGE OF THE NUMBER-WORD SEQUENCE

In order to investigate the subjec -'s knowledge of the number-word

sequence, the tasks we have used are those set by Fuson et al. (1982).

The following table provides a description of the corresponding skills

in each set of interviews:
October January May

1.Can recite from 1 up to 13 14 19

2.Can recite from 1 and atop at
a given number yes(8) yes(9) yes(17)

3.Can recite starting at a given number yes(4) yes(4) yes(9)

4.Can recite from a given number
up to another one no(4 to 7) yea(3 to 7) yes(11 to 18)

S.Can recite backwards from a
given number yes(6) yea(5) yes(6)

6.Can recite backwards from a given
number down to another one yea(5 to 3) yeb.(5 to 2) yes(6 to 3)

What the table does not convey is the remarkable change which occurred

between the interviews. In October, Philippe was shy and retiring, and

repeatedly complained that he did not like counting for he found it very

difficult. At that time he was confusing two of the counting words

"six" and "dix", since the difference in pronunciation is quite subtle,

being limited to the initial consonants. By January, he found counting

much easier, and since he was still confusing the two number-words we

proceeded to distinguish them by producing a hissing sound for the first

letter in "six": "sssix comae dans ssserpent" ('sssix like in sssnake').

He found this quite amusing and seemed relieved to discover that the two

number-words were not the same. Curiously, the kindergarten teacher had

never noticed this problem. Again in May, we found another great change,

not only in his greater scope but also in the facility with which he

handled the various tasks.

PROCEDURAL UNDERSTANDING

The informal mathematical knowledge we have described as intuitive can

be considered as an initial level of understanding. It can be used to

initiate an ensuing stage. of mathematization, that of the acquisition

of relevant mathematical procedures. Relating these mathematical pro-

cedures to the learner's intuitive knowledge justifies their need and

helps prevent meaningless memorization. Conventional mathematical

procedures are seldom discovered spontaneously by children. They are

usually constructed by them following some socially transmitted infor-
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mation and convention, through schools, television, parents, peers,etc.

The gradual mastery of mathematical procedures as well as their appro-

priate use constitutes a second level of cognition which we call

procedural understanding..

We need to distinguish between the recitation of the number-word sequence

and the act of enumeration. The number-word sequence is acquired by

memorizing a set of conventional words in an appropriate order whereas

enumeration is a procedure establishing a one-to-one correspondence

between the number -words and a set of objects to be counted. Children

may often know how to recite the sequence without necessarily coordinat-

ing it correctly in their enumeration procedure. They often count tIle

same object twice or skip some others. At a young age, getting differ-

ent results from different counts of the same set does not seem to

bother them (Ginsburg, 1977). The learning of the number-word sequence

and of the enumeration procedure will usually be mastered by the age of

six. By that age, children have no problems in using the conventional

number-words and perceiving their role in enumeration. In this paper

the words "count" and "counting" will be used as synonyms for "enumera-

tion".

Simple counting tasks. In the first task the child was presented with

a set of blocks, within the range of his known number words, and asked

"how many" there were, in order to verify if these words were meaning-

ful to him. To assess his ability to generate a required set, he was

also asked to put a given number of cubes in a dish. In the second

task, the subject was provided with a sample plate of seven cubes, and

another four plates containing respectively 6, 7, 8 and 9 cubes were

placed in front of him. He was then asked to identify the plate which

had "one more", then "one less", then "the same". The third task con-

sisted in finding the seventh cube in a given row of 15 cubes, and then

in identifying the rank of an indicated cube. Finally, in order to

compare the enumeration skills with his knowledge of the number-words,

the child was asked to count up a set of cubes greater than the known

sequence and told to count as far as he could. He was then asked to

count and stop at a given number of cubes.

The following table describes the student's success in each set of in-

terviews.

`28



- 3149 -

October January May

1.Reaponds to "how many" by
counting sets of

9 (T) 13 (P) 15 (P)

-generates sets of 7 9 10

2.Can identify set with "one more"

than seven

does not
understand

T yes

Can identify set with "one less"

than seven

does not
understand

? yes

Can identify set with "the same"
as seven

yes yes yes

3.Can identify 7th cube in a row yes yes yea

Can find the rank of indicated cube yes (6) yes (9) yes (9)

4.Can enumerate cubed up to 13 14 19

5.Can enumerate and atop at li 8 8

Our subject Philippe was able to handle most of these problems. The let-

ters next to the first task indicate the specific way he counted the

cubes. In October he counted them by touching (T) the cubes without

moving them, while in the other two interviews he partitioned (P) the

set into counted and uncounted cubes. On the second task, it was quite

surprising to find that in October Philippe did not understand the mean-

ing of "one more" and "one less". Although in January he succeeded in

answering these questions, he
seemed so hesitant as to make us wonder if

he knew what he was doing. By May, however, he handled these tasks with

great aplomb. It will be noted from the fourth task that for this child,

the enumeration range
corresponded exactly to his knowledge of the num-

ber-word sequence.

Counting partially hidden rows. The next set of tasks involved rows of

chips with ore end partially hidden by the interviewer. The reason for

these was to provide a set of problems calling for more sophisticated

counting strategies such as counting on or counting back from a given

number. In the first task the child was
shown a row of chips glued on

a cardboard and told: THIS IS THE FIRST CHIP. I'M HIDING SIX OF THEM

(covering the first six chips with another piece of cardboard). CAN YOU

TELL ME HOW MANY CHIPS ARE CLUED ON THE WHOLE CARDBOARD? (gesturing to

show that the whole cardboard was to be considered).

Within the above context, the
student wan also asked to identify the

ninth chip. Since these problems could be handled by counting on from

the hidden part, we verified if the subject had acquired this procedure.

This was assessed by asking him to count on from the sixth chip in a
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completely uncovered row. The reason for delaying this assessment was
to prevent us from suggesting any procedure to be used on this first
task.

Another task was designed to provide a situation in which counting back

would be a good strategy. The child was shown a row of 11 chips, three
of them being hidden. The rank of a visible chip was given and the

subject was asked to find the number of hidden chips. In a second

question, he was again given the rank of a chip and was asked to find

the rank of another one. Finally, his ability to count backwards was
determined using a completely visible row of chips. The following table

describes his performance during the year.

October ..n.ta

1. With 6 chips hidden,can find total no no yes

With 6 chips hidden,can find 9th no no yes

2. Can count on from 6 yes yes

Can count on from 6 and stop at 9 yes yes

3. Given rank of a visible chip (9th),
can find how many are hidden(3) no no

Given rank of a visible chip (9th),
can find rank of another chip yes (8 to 6) yes (9 to 6)

4. Cale count backward, from 3 5 6

Can count backwards amd stop
at gives mumber 5 to 3 5 to 2 6 to 3

In October Philippe was unable to handle the first task. He initially

counted only the visible chips. On a second attempt he counted them

figurally (cf Steffe at al.,1983) that is, he pointed his finger over

the hidden part and counted the imagined chips. Although he knew that

six chips were hidden, his count did not correspond to that number. In

the January interview, he did not fare any better although the assess-

ment shows that he could count on from six (in task 2). By May he was
still using figural counting but now, although the spacing between the

imagined chips was too small, his finger jumped to the end of the hid-

ing cardboard as he was pronouncing "six". Regarding the third task,

perhaps it proved to be too difficult because the starting number was

too high and/or the gap between the starting number and the hidden set

was too large. For, as was found in task 4, the subject could only count
backwards extensively when the numbers were below seven.

Double-counting. Well before children are formally introduced to sub-

traction, many of them can handle classes of problems in which they

occur,by using a process of double-counting.
For example, when asked

f_3 3
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how many numbers are between three and seven on a snakes and ladder

gameboard, these children will count the number-words needed to go from

three to seven. Double-counting procedures are fairly advanced since

the things counted are no longer concrete, in the physical sense, but

number-words one pronounces. Fuson et al. (1982) have identified four

such procedures. The following table describes how our subject has

handled them:
October January

1.Counts five number-words
starting from 3 4 7

Counts the number-words between 5 and 7 3 and 5 6 and 9

2.Counts n number-words no yea yes
before a given number (3 nos before 5) (2 nos before 5)(4 nos before 8)

Counts (backwards) the no no yes
number-words between (5 and 3) (6 and 3) (6 and 2)

Philippe's counting skills are well below the average kindergartner's

who can handle enumerations up to about 39 (Heracovics et al., 1986a).

However, as the results in this table indicate, our subject can use

very sophisticated counting procedures as long as one stays within his

numerical range. The double-counting in the second task proves to be

very difficult since the two counts move in opposite direction as when

asking the child IF YOU START AT SIX AND COUNT BACKWARDS TO TWO, HOW

MANY WORDS WILL YOU SAY 2 Philippe was able to handle this question in

May despite the confusing crossing of the sequences as in " 6 is one,

5 is two, 4 is three, 3 is four, 2 is five ".

An analysis of the remaining two levels of understanding, as well as

a discussion of the results, and the references, appear in a companion

paper, "Part Abstraction and Formalisation ", by Anne Bergeron,

Nicolas Herscovics, and Jacques C. Bergeron.
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KINDERGARTNERS' KNOWLEDGE OF NUMBERS: A LONGITUDINAL CASE STUDY

PART II: ABSTRACTION AND FORMALIZATION

Anne Bergeron, University de Montreal
Nicolas Herscovics, Concordia University
Jacques C. Bergeron, Universite de Montreal

This paper reports the results of a longitudinal case study
aimed at following a child's construction of the number con-
cept during the kindergarten time-frame. The subject was net
three times during the school year, in October, January, and
May. Each assessment required four to five 20-minute inter-
views. The questionnaire used to this effect was developed
within the theoretical framework provided by a model of un-
derstanding which identifies four levels in the construction
of a mathematical concept: intuitive

understanding, proce-
dural understanding, abstraction and formalization. Results
show that the child progresses simultaneously at many levels
and that the questionnaire offers' a perspective broad enough
to study the evolution of his numerical profile. This study
is reported in two companion papers dealing respectively
with the first two levels of understanding (Part I), and
with the last two levels (Part II).

In a companion paper, Part I: Intuitive and Procedural Understanding

(N. Herscovics, J.C. Bergeron, A. Bergeron), we have described the

theoretical framework and the methodological concerns which have led us

to undertake a longitudinal case study. While that article deals with

the first two levels of understanding, Part II presents an analysis of

the remaining two levels of understanding, abstraction and formaliza-

tion, as well as a discussion of the results, and the references.

ABSTRACTION

As mentioned in Part I, intuitive understanding results from the kind

of knowledge acquired outside any formal instruction. On the other

hand, the gradual mastery of mathematical procedures and the ability to

apply them in appropriate situations characterize a second level of

comprehension, that of procedural understanding. A third level involves

mathematical abstraction. This must be distinguished from abstraction

in the usual psychological sense which refers to a progressive detach-

ment from concrete objects and also to a gradual interiorization of the

procedures enabling one to anticipate the result. At the beginning,

an emerging concept is often blurred and confused with the procedure

leading to its construction (for instance, the notion of number is

often confused with the counting procedure). It is only very gradually

Research funded by the Quebec Ministry of Education (F.C.A.R. EQ-2923)
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that the "outline" of a concept gains precision, thtt it separates from

the procedure, and that it starts having an existence of its own in our

mind. But even then, this existence is somewhat unstable and does not

withstand various transformations. For example, a child may very well

have detached himself from concr.tt, ,jects,'as evidenced by his success

in double-counting when enumerating number-words, and yet may not have

discovered that changing the configuration of a set does not change its

cardinality. When the learner becomes aware of the invariance of the

mathematical object (in this case number) under transformations as

above, he achieves a third level of understanding, that of mathematical

abstraction.

Piaget's work on the child's conservation of number (Piaget 8 Szeminaka,

1941/1967) can be viewed in terms of mathematical abstraction. As men-

tioned in Part I, Piaget's classical conservation task deals with the

invariance of quantity since no enumeration is required in the compar-

ison of the two rows of objects. This was in fact recognized by Greco

Morf (1962) since they modified the conservation task by having chil-

dren count the unstretehed row and then asking them to predict the num-

ber of objects in the elongated row. Those who succeeded were said to

conserve quotity, which is an indication of the invariance of the mea-

sure of quantity. Greco and Morf found that about 75% of the twenty

5-year-olds they had interviewed did not believe that the two rows had

the same quantity even after having counted both the short and the elon-

gated rows. Thus, for these children, the result of enumeration was not

yet perceived as a measure of quantity. Perhaps the words "to conserve

number" should be used to describe those who conserve both quantity and

quotity.

The dictinction between conservation of quantity and conservation of

quotity can also be found in the much simpler context of a single set.

In his case studies Ginsburg (1977) had found that Borne young children

could enumerate the same set several times'and obtain different results

without experiencing any cognitive conflict. Our own results

(Herscovics et al., 1986b) show that by the time they are in kindergart-

en, few children (3 out of 22) would accept the possibility of differ-

ent counts for the same set. However, these same children may or may

not conserve quantity even in the simplified context of a single set,

in which there no longer is the conflict induced by the presence of two

visually different configurations. The failure to conserve quantity for
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a single net was observed by Piaget (1973) and Gelman A Gallistel (1970

who noted that after counting a given set, many young children could not

predict that a change in its configuration or a change in the order of

enumeration would result in the same cardinality.

In our study, we used two tasks to investigate different aspects of the

invariance of number using only one set. In the first one, we asked

the subject how many cubes were in a given row (12) and then asked him

how many he wculd find by counting them in the other direction. In the

three sets of interviews (October, January and Hay), our subject,

Philippe, could predict without hesitation that he would get the same
number. This invariance of the result of enumeration with respect to

the direction of the count can be viewed as conservation of quotity in

the context of a single roe.

The second teak also dealt with the conservation of quotity, but with

respect to changes in the configuration of a same set. The subject was

asked how many cubes were in a randomly disposed set (9). After the

blocks were counted the interviewer spread them out and asked:

IF WE PUT THEM LIKE THIS, HOW MANY ARE THERE? Care was taken not to

hide any cubes while spreading them out in order to prevent the child

from thinking that some cubes might have been taken away or added sur-

reptitiously. In the three sets of interviews, Philippe could not tell

how many cubes were in the changed configuration and ended up counting

them again. When queried about it, he was quite explicit in stating

that he needed to count them. This was confirmed by another change in

the configuration which induced a third enumeration of the set.

A3 mentioned in Part I, this child did not conserve quantity in the

Piagetian test using two rows of cubes since he could not deduce that

elongating one row would not change its cardinality. However, the ef-

fect of enumerating the rows proved to be interesting:

- In October, when counting the two rows he jumped from 6 to 9 on
the elongated row as if attempting to reach a higher number in
the count. The task was repeated with two rows of 6 cubes.
Again, counting the elongated row, Philippe jumped from 5 to 9,
but maintained that the shorter row had more "because they (the
cubes) are closer together". Claiming that she had not seen how
he counted, the interviewer asked him to do it again. On thin
second trial, Philippe found 6 for both rows but still claimed
that the shorter raw had more. Queried about what he would do
to "have the same" (in French "pour ea avoir pareil"), he simply
aligned the cubes next to each other to get two identical rows.
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-In January Philippe could not decide visually if the two rows had
the same number of cubes and needed to count them. But he counted
them in corresponding pairs pointing with his finger ("one-one,
..., seven-seven") and concluded that "they have the game" ("Il y
en a pareil"). The ta-k was repeated with the elongated row now
reduced to a length st7rter than the other row. Exactly the same
responses were obtained On a third trial, with the previously
longer row shortened, Philippe did no longer count them stating

"There are 7 and 7 the game, (because) I counted them
several times".

-In May, when asked if the two rows had the same number of cubes,
he stated that he could not know and that he had to count them.
He started to count the cubes in pairs as he had done in January,
then proceeded to count each row seperately, concluding that
"they have the same (number)" and adding "It doesn't look like it".
When the elongated row was reduced to one shorter than the other,
he refused again to express an opinion based on visual perception
for otherwise "I would be saying just anything", indicating that
it would be purely a guess on his part. After counting the two

rows he concluded that they had the same number.

A detailed description of Philippe's responses is important for it in-

dicates some major changes at the level of abstraction. In October, his

thinking based on visual perception dominated, and counting the two

rows does not create any cognitive conflict. He still maintains that

the shorter row has more. And it cannot be claimed that he does not un-

derstand the word "more" vince this was tented In a previous task at the

level of intuition. Furthermore, the child explains that he thinks the

shorter row has more on the basis of its density ("they are closer

together"). By January, two major changes have occurred. He no longer

feels he can express an opinion based cn visual perception. Moreover,

the role of enumeration has evolved for it now becomes the criterion by

which he will judge if the two rows have the same number of cubeu or not.

No other change could be observed in May, except for the subject's

greater facility in verbalizing his reasoning.

While the changes observed between October and May are significant, one

should not conclude that Philippe conserves number. We might be inclined

to think that he does since after enumerating both rows he affirms that

"they have the same (number)". But what does it mean? It means that

when he enumerated the two rows he arrived at the same count. However,

one cannot argue that for him enumeration is a measurement of quantity

since he does not yet conserve quantity. He does not yet seem to real-

ize that quantity can only be changed by adding or taking away some

cubes. When the two rows are the same length he agrees that they have

0 e)
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the same number but as :eon as the spacing of one Ji the rows La changed,

he refutes to atate an opinion. Thus Philippe ha: rot yet abatracted

the notion of quantity , 'lertca the question of .ember as measure of

quantity is simply irrelevant in hiu cane.

FORMALIZATION

The fourth level of understanding, that of formu.,;!gLion, takes into

account the particular importance of symbolizat rn ii, eathematics. Sav-

eral studies have shown that the symbolic repreaaetaticn of mathemat:,.s

creates apecific cognitive problems (Ginsburg, 1977; Carpenter d Moser.,

1979). Since mathematical notation bring@ about an incxt.ase in cognitive

problems, it would be tempting to identify symbolization is a fourth

level of understanding. However, the work of Er;wanger (1973) has abeam

that children can learn to produce and manipulate synbola giving them

purely idiosyncratic interpretations. This has led us to consider sym-

bolization as relevant to a fourth level of understanding only if prior

abstraction of the concept has occurred to some egres.

Thus, we consider the children's use of numerical notatioa as the

formalization level of their understanding of number, only if they have

achieved some degree of abstraction of this concept. In studying chil-

dren's spontaneous written representation of small numbers (up to 9),

researchere have identified four distinct stages. When asked to send a

message describing the number of objects on a table, children will at

first draw pictures of the objects in front of them and draw as many

pictures as there are objects; at a more advanced stage, they will use

tally marks; still inter, they will write out the number sequence an

far as the number of objects present; finally, when they no longer feel

the need to rely on any written trace of their one-to-one correspondence,

they will count up the objects in the net and write down the number

indicating its cardinality (Sastre A Moreno, 1976; Allardice, 1977);

Sinclair,A. et al., 1983; Bergeron,J.C. et al., 1986). Of course, there

are many variations borrowing from each of the above representations.

Regarding the writing of numbers exceeding nine, their symbolization is

complex since it necessitates the use of more than one digit. Ginsburg

(1977) and M. Kamii (1980) have shown that children can write such lar-

ger numbers well before they understand the place value interpretation
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of the notation, that is the value associated with the numeral's posi-

tion (e.g. the first digit in 12 represents ten). In writing and recog-

nizing numbers greater than nine, the appropriate concatenation of two

digits must be viewed globally (e.g. for "12" to mean twelve, it must

not mean "one and two"). This is what is meant by positional notation

J.C. Bergeron et al. (1986) have identified three stages in the chil-

dren's acquisition of positional notation. Initially, at the juxtaposi-

tion stage, they are aware that two digits are written side by side,

but their relative position is not yet viewed as important. When they do

become aware of the importance of their relative position, they may not

as yet perceive it from a reader's viewpoint but instead focus on the

order in which they write. This shows up when they are asked to write

frau right to left and write twelve as "21", first writing 1 and then 2.

This stage, respecting the order of the writing, can be called the

chronological stage. The third stage, the conventional one, is achieved

when, regardless of the direction of the writing, the notation produced

will convey the intended meaning.

The tasks we have designed for the assessment of this level of under-

standing involve either the generation of numerals or their recognition.

At first, we asked our subject to write out the numbers he knew. In

October, Philippe wrote all the numbers up to 14, which is interesting,

since this exceeded his knowledge of the number-word sequence, which

went up to 13. For small numbers under 10, he was inverting the numerals

3, 4, 7 and 9. For numbers greater than 9, the fact that he could write

them up to 14 indicates that he was aware of positional notation. It

was also evident that he was at the juxtaposition stage in his acquisi-

tion of this convention. This is shown by the fact that when he wrote

double-digit numbers such as 10, he wrote from left to right but started

with zero and got "01". Had he written this from right to left, start-

ing with 1, he would have been at the chronological stage. In January he

could enumerate sets of up to 14 objects, but he could write numbers up

to 19 without knowing the number words past fourteen. He still inverted

3, 4, 6, 7 and 9, but he no longer interchanged the order of the double-

digit numbers. By May, his enumeration skills went up to 19. The

single digits 2, 3, 4, 7 and 9 were inverted while he still maintained

the right order in writing the double-digit numbers. We have some

evidence that he had reached beyond the chronological phase since in

writing "16" and "17" he had forgotten to write the "1". He corrected

himself spontaneou-ly and wrote "1" on the left. Thus the order of the
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writivg did not seem to have any effect on him. We might be tempted to

consider that he had reached the conventional stage. However, when

tested for the recognition of written numbers shown on flash cards, in

the three sets of interviews he identified both 12] and 21 as "twelve".

Although he could not conceive of numbers greater than 19, had he

wasachieved the conventional phase,he would have known that

"twelve written backwards".
D

The second task on formalization consisted in laying out some cubes (9)

in front of the child and asking him: I WOULD LIKE YOU TO WRITE A

MESSAGE TO A FRIEND TO TELL HIM HOW MANY CUBES THERE ARE HERE. In

October, Philippe wrote out the first nine numbers, a behavior which

reflects his need to maintain a one-to-one correspondence between the

set of cubes and the numerals he wrote. When asked to write how many

Chips were in two paper plates (3 and 7 respectively), he again wrote

out the corresponding sequences of numerals. In Janata, his message

consisted of a castle with six little man -like figures corresponding to

the six cubes in front of him. Using these little figures as tally

marks reflected his more fanciful mood. However, for the five chips in

the dish question, he wrote " 1, 1, C, A, 5". In May, he vent back to

writing a message with the first nine digits to represent the nine

cubes in front of him, and wrote the first seven digits to represent

the seven Chips in the dish. Regarding the recognition of numerals, his

ability to generate sets of cubes corresponding to numbers written on

flash cards was tested in the turee seta of interviews. At all times,

Philippe succeeded in producing the required sets (5, 8 and

tively).

DISCUSSION

As mentioned in our companion paper, by the end of kindergarten, the

average child can handle enumerations up to 39. Thee, our subject

Philippe was well below this average. In fact, his counting scope did

not increase by much since he could enumerate up to 13 in October and

up to 19 in May. But the quality of his numerical thinking had greatly

evolved. By May,

- he could solve all but one problem involving a hidden part;

- he could handle problems requiring double counting with counts going
in opposite direction;

- he refused to express an opinion based on the visual comparison of
two rows of cubes;
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- he perceived enumeration as the criterion by which he could compare

the two rows;

- he had progressed in his perceprion of positional notation from

an initial juxtaposition stage to a level somewhere between the

chronological and conventional stages.

This case study very clearly shows that within a fairly restricted range

of numbers, the child's numerical thinking can become quite sophisticated.

Furthermore, it also shows that between the ages of 5 and 6, we witness

an important development in his construction of the number schema.

The model of understanding we have used as our theoretical framework

suggests four levels of comprehension. However, it would be a mistake

to perceive it as a linear model in the sense that a given level can

only be achieved after all the steps of the preceding level have been

covered. As our case study has shown, the child evolves simultaneously

at many levels. In fact, Philippe expanded his procedural understanding

of number at the same time as he was progressing at the levels of

abstraction and formalization. The four levels of understanding and the

various criteria used for each level can be viewed as a cognitive matrix.

Each element in this matrix is reflected by a sequence of questions and

a task in our questionnaire. The child's responses to the questionnaire

provide us with an overview of his thinking which can be considered as

his "numerical profile ". Our case study involved three sets of four

to five 20-minute interviews with the same subject end yielded an in-depth

assessment at three different times, October, January, and May. Thus,

we were able to follow the evolution of his numerical profile over a

key developmental period in his construction of the number concept.

Many specific aspects of the child's number knowledge have been investi-

gated in prior work by many researchers. However, our questionnaire is

a tool providing us with a more global perspective. And it is only from

a global perspective that one can really follow the child's construction

of this conceptual schema.
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KINDERGARTNER'S CONCEPTION OF NUMBERS

Hartwig Meissner

Westfalische Wilhelms-Universitat MUnster

Federal Republic of Germany

We report upon a case study with 8 German pre-
school children (age 5:1-5;8). The investigation
covers a broad variety of number activities and
they are carefully listed (part 2). But we also
discuss the purpose of this research (part 1) and
the value of it for both prospective teachers and
researchers (part 4). Therefore the evaluation
(part 3) summarizes not along the investigations
but along typical number concept skills.

1. Purpose of Oar Research

As a preservice teacher training institute for mathematics education we

combine our research responsibilities with our teaching responsibilities

and conduct three types of investigations:

o Informal observations of children together with our prospective tea-

chers.

o Systematic observations of children together with our prospective tea-

chers (including protocols and videotapes).

o Systematic research by the help of prospective teachers. (They have to

write a final examination report, some of them work on a thesis, etc.)

Thus the prospective teachers get experiences in analysing learning si-

tuations and in designing research investigations. The protocols and

tapes are also used for other teacher training courses. The repetition

of similar investigations with different children (and often different__

prospective teachers) lifts step by step the quality of the research.

There is a basic difference according to "pure" research. We mainly do

not concentrate co learning more and more about more and more specia-

lized details. We rather try to learn as much as possible about the ge-

neral process of learning in the broad field of mathematics education to

develop suggestions for a better mathematics teaching. Our research is

goal-directed and therefore comparable with the research of engineering

sciences. We are not "pure" but "applied" mathematics education re-

searchers. It is not necessary that our results always reach the smile
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scientific level. The level is more determined by the purpose: Getting

informations to a specific question in the field of teaching mathema-
tics.

In this study we will report upon an investigation of the 'research"

type (Bremerich 1986). The investigation should collect data for teacher

training courses about the knowledge of pre-school children to base the

arithmetic teaching curriculum in grade 1 upon more realistic assump-

tions.

2. The Design

The investigation lasted 4 days in a kindergarten of a German city. The

first day only was used to become acquainted with each other (the two

interviewers played with the children, told stories, discussed with them

and studied children books together). Starting on the second day three

girls and five boys (age 5;1-5:8) were interviewed and video taped indi-

vidually for about 20 minutes each according to the following outline.

A. Conservation of number

A.1. The interviewer (I.) puts 6 blocks in a row and places a plate

with additional blocks in front of the child (subject, S.): "I'm sure

you've a friend. What's her/his name? (F.) We now play, that these

blocks (pointing to the row) belong to F. Take the same amount for you

(from the plate). ... Do you both have the same now? ... Put your blocks

in front of the blocks from F."

A.2. I. widens F.'s row, etc.

A.3. I. shortens F.'s row, etc.

B. Associations to a nuMber

I.: "I'm sure you know already some numbers. at do you remeMber

with 'four'?" (Paper and pencil and playing-cards with dots or with
digits are available).

C. Counting

C.1. I.: "I'm sure you already can count." ... Stop at 42. If ear-

lier: "Can you count an?" - If stopped at 42: "What do you think how far

you can count?"

C.2. I.: "And which is the biggest number at all?"

C.3. I.: "Now start counting with 3." Help if necessary: "Which num-

ber comes after 3?" - Stop at 11. If successful: "And now start with

18." - Stop at 26. "Can you start with every number?"

V 4 2
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D. Comparing Quantities

S. gets a box divided into two parts, each part filled with blocks

placed in different configurations:

D.1/2 0.3/4 (a) D.5/6 (a)

(b) (a) (b) (b)

0.1. I.: "Are there

Why?")

D.2. I. pointing to (a): "Please count, how many are there?"

D.3. I. replaces the blocks:
"How many blocks are there now (in the

row)? ... Are there as many as before (in the box)? ... Why?"

D.4. I.: "Count how many blocks there are (in box (b))."

D.5. I. replaces the blocks and continues like in D.3.

D.6. I. removes the empty box and points to the rows: "Are there

both the same? ... Why?" (Or: "Which is more? ... Why?")

D.7. I. widens row (a), questions like in 0.6.

D.4 I. shortens row (b), questions like in D.6.

both the same? ... Why?" (Or: "Which is more?

E. Aiditian

E.1. S. gets a plate with 20
small green plastic frogs: "Do you know

these animals? ... If you have 3 frogs and you get 2 more, how many

frogs do you have then? ... How did you find out?"

E.2.a.: "And if younave 4 frogs and you get 5 more &SO"

E.2.b. If S. does not use animals
in E.2.a.: "Take 4 frogs. ... Take

5 more. ..."

E.3.a. I. removes the plate with frogs and replaces it by a plate

with 15 larger red plastic bears. ... "Take 5 bears. ... Take another

one. ... How many do you have now?"

E.3.b. I.: "Take another one. ... How many do you have now?"

E.4. I.: "You are pretty good, we'll try it now without animals (re-

moves them). ... How such are two and one?"

E.5. I.: "And how such are three and two?"

E.6. I.: "And how such are four and three?"

F. Symbolization

F.1. I. "I'm sure you've already seen (written) numbers. ... Which

number is this?" (I. shows a playing-card with the digit 3). ... "And

this?" (playing-card with 7)

0(-)



. 364

F.2. I.: *I've some more cards. (Order in the pile: 2, 4, 5, 1, 8, 6.

9). Could you put them in the right order?" ... After having all cards

in a row ... "Please read the :isobars and point to than."

F.3. Only if all numbers are in the correct order, I.: *We'll now

play a game. I'll remove one card and you'll tell me which. Please close

your eyes." ... I. removes the 4 and hides the blank by pushing the re-

maining cards together: "Which is missing?" ... The missing card then

will be replaced. Another game with 6.

F.4. I. places with one grasp 3 frogs and 2 bears in front of S. and

points on the row of playing-cards: "Where are they to place?"

F.S. I. presents a playing-card with the digit 0: "I forgot one card.

... What is on the card? ... Where shall we place it? ..."

F.6.a. I.: "I also have sane other cards (with dots on it). ... Where

is that card to place (3 dots) ?"

F.6.61. I.: "And this (6 dots) ?"

F.6.c. I. points to the 2 in the row: "And which (dot) card belongs

to here?" S. gets the pile of dot-cards, order in the pile: 1, 5, 2, 4.

8, 0, 9, 7.

F.6.d. I.: "Try to place to each maser the correct (dot) card."

F.7.a. All playing-cards are removed, I. shows a xylophone: "I'm sure

you know that. ... I'll hit some sounds and you'll count how many there

were." I. hits 6 times the same bar ... "How many were there?"

F.7.b. I. hits 6 different bars following to the gamut: "Smomany
were there?"

F.B. I.: "Now its your term. Hit as many bars as I show you on these

cards." I. shows the digit-card 3, then 7.

F.9. I. shows a card with 4 dots, then with 6 dots.

3. Evaluation

The sequence of the questions was chabeen to reduce interferences between

the items. For an evaluation it is more useful to concentrate on the

different number aspects. Here we can only report tendencies of our case

study. Most of them can be generalized according to other investigations

we did.41

3.1. Associations with "Four" (part B)

Most children associate 5 or 3 or counting or counting on. Some

write (more or less correct) numerals or point to digits they see.

+) But also with unlimited space we would not end up with statistical
data. (What does it mean for example, "the mean W53 86 and the standard
deviation 37" when 12 children had to count, but not farer than 121?)

8 /1 4
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3.2. (Rote) counting (C.1, C.2)

All count till 10, most of them stop between 18 and 29. The big-

gest number sometimes is the last number of the last count, sometimes

100 or 1000. Some do not understand, but Henry (5;3): "There is no big-

gest number, because you always can take one more".

3.3. Counting on (C.3)

Most children can start with 3, but only a few with 18.

3.4. How many?, via counting (D, F.7)

In D about 80% manage the one-one principle and the stable-order

principle (Gelman/Gallistel 1978), all succeed with the cardinal prin-

ciple. In F.7 the gamut sequence is easier, most fail counting monotonic

sounds.

3.5. Conservation of number (13.3, 0.5)

About 50% conserve, about 50% count again.

3.6. Quantities to a given nuMber (E.2.b, E.3)

About 35% take one after one while counting, about 40% grasp sub-

sets of two or three and put them together or grasp two and then conti-

nue by ones.

3.7. Counting or subitizing? (F.6, see also 3.4)

All subitize till 3, 50% till 4.

3.8. Addition (E.1-E.6)

Most children have no real concept except "getting more".

3.9. Conservation of quantity (A.1-A.3), D.6 -D.8)

25% use counting and 75% one-to-one-correspondence to produce

their row in A.1, more than 50% do not conserve though sane children

count (correctly) several times (A.2, A.3). However in D.6 -D.8 more than

50% conserve without any doubt arguing with the cardinal numbers being

the same.

3.10. Comparing cardinality (D.1, see also 3.5 and 3.9)

About 30% count, about 30% compare "Gestalt°.

3.11. Identifying numerals (F.1)

Most children recognize 3, only a few know 7.

3.12. Ordering numerals (F.2, F.3)

About 50% find the correct order and also the missing numbers.

3.13. Zero (F.5)

About 50% know "zero", but most of them put 0 behind 9.

3.14. Pattern recognition (F.4, F.6, F.8, F.9)

No child regards the animals as a quantity of 5 (F.4). Almost all

children first count the dots and then place the dot card. Only a few

start at a number and then look for an appropriate dot card. These stra-

! 1°-
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tegies do not depend on the direction of the given task (F.6.a/b versus

F.6.c1d). About 35% of the children finish the one-to-one-correspondence

without mistakes. F.8 and F. seem to be of the same difficulty, about

50% hit the bars correctly.

4. Interpretation

The summary gives a small ingression about the immense amount of infor-

mations we got. But what real knowledge did we get by that study? To
order and to understand the details of our obeervations, the relations,

the similarities and the contradictions, we need a more general view of

the children's conception of numbers. We first discover that there are

some 'elementary" abilities like rote counting, unitizing, recognition

of certain patterns, rote subitizing, simple magnitude discrimination,

rhythmic motor activities, etc. They seem to develop more or loss inde-

pendent to each other. Other abilities are more complex like counting

on, enumeration, counting objects, conservation of quantity, conserva-

tion of number, comparing quantities by counting, etc.

Studying the relations between all these abilities we can =mare the
development of the number concept with a growing network. The growth is

characterised by the development of many independent or isolated small

network pieces, which we called elementary abilities, and the growing

together of these network pieces by developing relations and connection"

between thee. lbe network gets expanded and structured by age step by

step. Elementary abilities grow together to more complex networks, i. e.

to complex abilities. Studying this network is like ping a landscape,
sometimes we concentrate on details and sometimes upon more global as-
pects.

We can "apply" this knowledge to improve both teaching and research. The

teacher student learns observing, analysing and classifying the pupils'

abilities. This enables his to adapt his future teaching more closely to

the needs of the pupils. From this study the prospective teacher learnt,

that school beginners know much more about numbers than the grade 1

school books assume according to the curriculum. He learnt that he prob-

ably should hurry through some parts of the books. His teaching of num-

bers might became less boring and he might get more time for other to-
pics.

But we also learn to read and interpret other research reports. In our

seminars we can discuss or =pare different investigations and we can

try to explain divergencies. For example Klahr/Wellace (1976) regard

'S8 ti o
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subitizing as an (in our terms) "elementary" ability, while Gelman/ Gal-

listel (1978) redefine subitizing as a "complex" ability. We feel both

are right, but they speak about different parts at different developmen-

tal periods in our network.

Regarding the developing number concept as a network also explains a

more general phenomenon which by Strauss (1979) is called U-shaped be-

havioral growth: Same global and limited but very effective abilities

("elementary" ones) get into conflict with other growing up abilities

and finally get replaced by more powerful "complex" abilities (e. g.

subitizing, conservation of quantity, pattern recognition, simple magni-

tude discrimination, ...).

At the conference we will discuss these aspects in more detail.
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CONCEPTUAL AND PROCEDURAL KNOWLEDGE AS RELATED TO
INSTRUCTION ON SYMBOLIC REPRESENTATION

Harriett C. Bebout
University of Cincinnati

Children's pre- and postinstructional
concrete and symbolic representations of addi-
tion and subtraction word problems are examined
according to growth of conceptual and proce-
dural knowledge, and Instruction on symbolic
representation was designed to promote this
growth.Results of instruction on the repre-
sentations of 45 first-graders era presented
and related to conceptual and procedural
learning.

A recent focus of the literature on children's
mathematical thinking Is directed at distinz.ishIng
between children's conceptual and procedure! knowledge
<Htebert, 1986). In terms of learning, Hiebert and
Lefevre <1986) stated that, In essence, conceptual
learning Involves constructing relationships or
connections between two pieces of information. They
suggested that these connections can be constructed at
either a primary or a reflexive level. At the primary
level, the plane of abstraction is important to the
construction of a connection, as the new Information
must be of equal or less abstractedness than the prior
information to which the new Is intended to connect. At
the reflexive level, conceptual learning occurs when
similar cores of different pieces of information are
recognized and the connection is made between these
similar cores.

A major difference between procedural and
conceptual learning in mathematics, according to
Hlebert and Lefevre, concerns the type or context of
the Information processed during procedural learning,
specifically that of mathematical symbols and syntax
and mathematical rules and strategies. They suggested
that the appropriate aim of mathematics instruction is
the promotion of both conceptual and procedural
knowledge, but added that much of the content of
current programs In school mathematics involves
instruction to promote only procedural learning. They
surmised that the linking of procedural to conceptual
knowledge may have two potential benefits, a better
understanding of procedures and a resultant ease in
remembering appropriate procedures.

When young children come to school, they appear to
have both conceptual and procedural knowledge In
mathematics. The presence of both types of knowledge Is

V i
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apparent in their preinstructional performances on

addition and subtraction word problems. With concrete

Items available, young
children's strategies reflect a

substantial amount of conceptual and procedural

knowledge (Carpenter,
1986). Their conceptual knowledge

Is evident In their informal Insights Into the

structure of various types of word problems as

indicated ray tneir predictable concrete

representations. This
knowledge is termed conceptual

because children appear to recognize similar cores in

the semantic structure of certain problem types; their

informal strategies of solution appear linked to

problem semantics and not to problem syntax. Their

procedural knowledge is evident in their Informal

fluencies in translating the problem statement into

mathematical symbols and performing accurate solution

strategies on these symbols.

The detailed
descriptions of children's thinking

Into conceptual and
procedural categories are not

intended as ends in themselves. These distinctions

between conceptual and procedural knowledge are

valuable for providing direction to prescriptive or

instructional treatments and for better understanding

students' failures and successes In the learning

process (Hiebert & Lefevre, 1986).
This paper describes a recent instructional

treatment that was planned to coincide with and

capitalize on children's preInstructional conceptual

insights Into the structure of addition and subtraction

word problems and their procedural knowledge about

symbols and solution strategies. Instruction was

designed to promote conceptual learning by establishing

a connection between children's entering concrete

representations based on problem structure and the

number sentences that symbolically represented problem

structure. Instruction was
designed to promote

procedural learning by making a translation between the

entering concrete
representation and the appropriate

mathematical symbols and syntax.

METHOD

The sample consisted of 4S first-graders In two

classrooms during the spring months. Instruction was

provided to each classroom In fourteen sessions over a

five-week period and was
organized according to the

effective mathematics
teaching model of review,

development, and practice.
The children were

evaluated before and after

instruction with word
problem tasks in two settings,

individual interviews and classroom group tests. Their

preinstructIonal concrete
representations during the

Individual Interviews
were used to categorize the

sample Into three entering levels, Basic,.Direct
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Modeling, and
Rerepresentation. (See Bebou. 1986. fordetails.) The symbolic

representations, numbersentences, that children wrote before and afterInstruction were evaluated as to form and accuracy.The eight word problems of Instruction were Changeand Combine types,
(See Carpenter a. Moser, 1983; Riley,Green°. a. Heller. 1983, for classification of wordproblems.) The araec at instruction for each additionand subtraction problem pair along with the symbolicrepresentation that coincides with the structure ofeach problem type are displayed in Table 1. Theseproblem pairs and number sentences vere introduced Inthe following

instructional order: Change 1 and 2(A t 8 ?), Combine 1 and 2 (A 4- 8 ea ?), Change 3 and4 (A f ?ea C),
and Chang* 5 and 6 (? t C).

Table I
Order of instructional reeerstetles

of lawn! PrAtIne Wawa

Word Problem 'Mom. Sentence

Pens Type

Changes 1 t 2 A * .0 Revolt Unknown

CoWniae 1 A 2 At la w D Result Unknown

Change 3 A 4
t c . Cut>de unknown

Change e
t D C Start Unknown

Table 2
9annarY of Instructional Steps for Each Word Prob4en Type

Instructional
Step

type Of Typo of
Weduanwotaticr Solution

ft) Verbal Problem Concrete
Model Manipulative

(2) Verbal Probtra Concrete
Model

Manipulative
/lusher Sentence

Syntolle

Manipulative(1) Verbal Problem fawner Sentence

Systolic

Verbal Problem (4) Maim. Sentence
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A summary of instructional steps for each problem
pair is displayed In Table 2. Briefly, the steps

indicate that Instruction for each pair proceeded In

the following way: 1) concrete representation of the

word problem; 2> concrete representation of the word
problem replaced by symbolic representation; 3)

symbolic representation of the word problem without the

concrete representation; and 4) composition of a word

problem to match a given symbolic representation.
Direct instruction was provided on representation;
indirect Instruction was provided on solving the

representation, thus allowing individual .solutions of

the number sentence with concrete, counting, or number

fact strategies.
Each of these instructional steps focused en the

development of conceptual and procedural knowledge.

Step One was designed to emphasize and reinforce the

conceptual and procedural knowledge that most children

brought to instruction. Conceptual learning involved
representing problem structure with concrete items.

Procedural learning involved manipulating these items

to determine a solution.
Step Two was designed to stress procedural

learning by introducing a number sentence to match and

thus replace the concrete representation, the
previously established conceptual knowledge of Step

One. Conceptual learning involved establishine a
connection at the reflexive level between the similar

elements in the concrete representation and the

matching symbolic representation. Procedural learning

focused on the formal mathematical symbols and syntax

to replace the concrete representation.
Step Three was designed to promote conceptual

learning at the reflexive level by emphasizing the

similar cores between the word problem structure and

the symbolic representation that matched this
structure, without the Intervening concrete
representation. Conceptual knowledge at this point was

planned to build on the procedural knowledge of number

sentence elements and syntax that had been Introduced

in Step Two.
Step Four of instruction was designed to promote

conceptual learning at both the primary and reflexive

levels by teaching children to compose a word problem

to match a number sentence. At the primary level,

conceptual learning involved constructing a connection

between an abstract symbolic representation and a

realistic word problem. At the reflexive level,

conceptual learning involved recognizing the core of a

given number sentence and composing a word problem with

a similar core. Procedural learning was promoted In

reverse to most procedural learning in mathematics by
providing first of all the mathematical symbols and

:^1111M1
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translating they Into text. Step Four was used daily as
a closing to e Indtructlonal session.

In summary, instruction was designed to promote
both conceptual and procedural knowledge. An interplay
between the two was planned for each instructional
step. Conceptual learning was designed to build on
jjprevlously learned procedural knowledge. and
procedural learning was planned to outain meaning
through its connection with previously learned
conceptual knowledge.

RESULTS AND DISCUSSION

Data on children's pre- and postlnstructlonal
representations for the Change 3 problem are presented
In Table 3. (Data for other problem types will be
presented in a detailed version of this paper.) The
symbolic representations that children wrote before and
after instruction are displayed according to their
entering levels and types of concrete representations.

Table 3
The Relation between Frelostructloaal Conceptual KnouledRe and

Symbolic Reereeentellos on many, 3 Type Word Problems

Prelnstructional
Concrete
Representation

Prelnetructlamal (PottlnetructIonal)
Symbolic

Representation

Number
Reamonolno 4,11.0 dc-M7 A4.C.7 A-C.? NA Other

.Add .)ii

sell

DM
0

21
-

019)
- - ..

9 (2)
_

3 3RR 7 3 (*, 1 1 2 - I

.0/aerate From
A 0
DM 0
RR 3 2 k3)

1

Count All
- (5) 3 1OM 0

RR 0

Repeat Given
11 3 - (3) 2 -
OM 1 - (1)
RR 1. - (11 1

Guess
D 3 1 (2) 2 (I)
DM 0
RR 0

Ha Attempt

1 (I)
DM 0
RR 0

ApPropclate Representation

52

Basle Level 14.12
Direct Modeling Level N-22
RereprenentetIon Level M.11
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For all 12 children at the Basic level, their
preinstructional concrete representations weie
Inappropriate and displayed no conceptual insight into

the structure of the Change 3 problem. Before
Instruction, one child wrote a number sentence that

directly represented the problem structure and the

remainder wrote inappropriate number sentences or made

no attempt. The predominant number of inappropriate
sentences were ones in which the two given numbers were

added. After Instruction, 10 of the 12 Basic level

children wrote sentences that matched the structure of

the problem.
For the 22 children at the Direct Modeling level,

21 of them displayed entering conceptual knowledge of

the structure of the Change 3 problem through their use

of the Adding On strategy. Before Instruction, 5 of

them wrote appropriate number sentences: 4 that

represented the problem structure and one that

represented the matching basic subtraction fact.

Thirteen wrote inappropriate number sentences: 9 that

added the given numbers and 4 that were of other forms.
After instruction, 19 of the 22 children at this level

wrote number sentences that represented the problem

structure. Only 3 wrote inappropriate sentences that

added the given numbers.
For the 11 children classified at the

RerepresentatIon level, 10 of them displayed entering

conceptual knowledge for solving the Change 3 problem.

Seven concretely represented the problem structure and

3 concretely represented the matching basic subtraction

fact. Before instruction. 6 of these 10 wrote

appropriate number sentences: 5 that represented the
problem structure and 1 the matching basic fact. Three

children wrote Inappropriate sentences that added the

given numbers and one made no attempt. After

Instruction, all 11 children wrote sentences that

represented the problem structure.
In summary, 31 children from the total sample of

45 displayed conceptual knowledge about the Change 3

problem as evidenced by their appropriate

preinstructional concrete representations. Eleven of

these 31 were successful in writing appropriate number

sentences before instruction, 9 that represented the
problem structure and 2 that represented the matching

basic subtraction fact. After instruction, 29 of these

31 wrote number sentences that represented the problem

structure. The remainder of the total sample, 14

children, did not display conceptual knowledge with

their concrete representations. Only 2 were able to

write appropriate preinstructional number sentences.
After instruction, 11 of these 14 wrote number

sentences that represented the problem structure.

The postlnstructional results indicate that

children at all three entering levels of concrete

8 '



374

representation were more successful in writing
mathematically accurate number sentences for the Change
3 problem. Conceptual learning may have been enhanced
by recognition of the structural core of the word
problem and by connection of this core to procedural
learning that focused on symbols and syntax of
structurally-based number sentences.
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THE EFFECTS OF SEMANTIC AND NON-SEMANTIC FACTORS

ON YOUNG CHILDREN'S SOLUTIONS OF ELEMENTARY

ADDITION AND SUBTRACTION WORD PROBLEMS

ERIK DE CORTE and LIEVEN VERSCHAFFEL

CENTER FOR INSTRUCTIONAL PSYCHOLOGY

UNIVERSITY OF LEUVEN, BELGIUM

Over the past few years a substantial body of research has

yielded evidence that the semantic structure of elementary

arithmetic word problem; influences children's strategies to

solve them. In the present paper a study is reported in

which three other, non-semantic task characteristics were

involved, namely (1) the order of presentation of the two

given numbers, (2) the order of presentation of the two gi-

ven sets and (3) the size of the difference between the two

given numbers. While data collected from collective as well

as individual tests yield evidence in favour of the impact

on children's strategy choice of the first and the second

variable, they do not support the importance of the third

factor.

INTRODUCTION

Recent researea on simple addition and subtraction word problems

(Carpenter & Moser, 1984; Riley, Greeno & Heller, 1983) has been mainly

focused at the influence of one particular kind of task characteristics

on children's problem solving, namely the semantic relations among the

quantities described in the problem (Change, Combine and Compare)

together with the identity of the unknown quantity. The results of re-

search in our Center over the past few years are generally cons4stent

with the findings of these
investigations (De Corte & Verschaffel, 1987,

in press). However, our work suggests at the same time that - in

addition to the semantic structure - some
other task characteristics may

also have an important effect on children's problem-solving processes.

In the present study three such
characteristics were involved, namely :

(1) The order of presentation of the two given numbers (larger or smal-

ler first), e.g. "Pete had 3 apples; Ann gave him 9 more apples; how

many apples does Pete have now 7" versus "Pete had 9 apples; Ann gave

him 3 more apples; how many apples
does Pete have now ?"

(2) The size of the difference between the two given numbers (large or

small), e.g. "Pete had 3 apples; Ann gave him 9 more apples; how many

L) -.)
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apples does Pete have now ?" versus *Pete had 5 apples; Ann gave his 6

more apples; how many apples does Pete have now ?"

(3) The order of presentation of the two given sets in Change problems

(regular versus inversed order), e.g. "Pete had 3 apples; Ann gave him 9

more apples; how many apples does Pete have now ?" versus 'Ann gave Pete

9 more apples; he started with 3 apples; how many apples does Pete have

now ?a

Some of these task variables have rlready been examined in previous

research, but only with respect to their effects on problem difficulty.

Surprisingly little research exists on their influence on children's

solution strategies for word problems. Moreover, little or no effort has

been made to relate the effects of these task characteristics to the

problem's semantic structure.

DESIGN, TECHNIQUES AND DATA SOURCES

The present study consists of two parts : a paper-and-pencil test was

administered collectively to eighty five children; afterwards a smaller

group of twenty pupils was individually interviewed.

The collective test contained twenty elementary addition and

subtraction word problems representing four different types from the

well-known classification scheme of Riley et al. (1983) : Change 1 and

Combine 1 (both involving addition) and Change 3 and Combine 2 (both

involving subtraction). For each problem type, several variants were

constructed by combining the three task characteristics mentioned above.

However, one should note that the third characteristic - normal or

inversed order of presentation of the two given sets - applies only for

Change problems. Moreover, for Change 3 problems, this task

characteristic coincides with the first one - the order of presentation

of the two given numbers - as the start set necessarily contains the

smallest given number. The following three number pairs were used for

addition problems with a small and a large difference between the two

given numbers respectively : (5,7), (7,8), (5,6) and (4,8), (5,9),

(3,9). For the subtraction problems we used (13,9), (11,8), (12,9) and

(11,3), (12,3), (13,4) respectively. The test was administered

collectively in the beginning of the school year to four second-grade

classes, with a total of eighty five children. They were not only asked

to solve the problems, but also to write down for each problem a number

sentence showing which arithmetic operation had been performed to find

the solution.

8 r) 1 'I
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In the middle of the next school year, a group of twenty first

graders was individually interviewed using exactly the some set of word

problems. Each problem was read aloud by the interviewer and the

children were asked to solve it and to explain their solution strategy.

Both the collective and the individual test provided systematic data

on the relative difficulty of the distinct types of word problems, on

the strategies children used to solve them and on the nature of their

errors. In the present paper we focus on the influence of the task

characteristics on the solution strategies of the good problem solvers.

In this respect we mention that the percentages of children who answered

a problem correctly were much higher for the addition (Change 1 and

Combine 1) than for the subtraction problems (Change .3 and Combine 2)

during both the collective and the individual test. Consequently, the

data on children's solution strategies for subtraction problems are

based on a considerably smaller number of cases than those for addition.

Place restrictions preclude us to give an overview of the hypotheses

and results concerning all three task characteristics involved in the

study. Therefore, we leave out the third characteristic, only mentioning

that no considerable differences in solution strategies were found

depending on the size of the difference between the two given numbers.

We finally point to the fact that our data on children's strategy

choice for the distinct problem types were not submitted to a

statistical analysis. The main reason is that they are based on diffe-

rent numbers of children, moreover from problem to problem the children

involved in the analysis were not the same.

HYPOTHESES AND RESULTS

With regard to addition problems, we distinguished between strategies in

which the child begins with the first of the two given numbers

(F-strategies) and strategies starting with the second one

(S-strategies). For problems in which the first given number is the

smaller one, 5-strategies are more efficient. By disregarding the given

order of the addends and starting with the larger one, the number of

steps in the cognitively demanding
'double count" is reduced to a mini-

mum (Carpenter & Moser, 1984).

A first plausible hypothesis is that
addition problems in which the

smaller addend is given first will be solved more frequently by

S-strategies than problems in which the larger number is given first

(Hypothesis Al).

S57
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However, it is alao expected thet the ease with which children will

alter the order of the two given numbers in their solution strategy will

depend on the semantic structure of the problem. More specifically, it

is predicted that Combine 1 problems starting with the smaller given

number will elicit sore S-strategies than the corresponding normal
Change 1 problems (Hypothesis A2a). The argument underlying this

hypothesis is that the dynamic nature of the Change 1 addition problems

will invite children to model the described chronological sequence of

events in their solution strategy. Because Combine problems have no

implied action, altering the order of the two given sets and starting

with the larger one seems less problematic. For a similar reason -

namely the tendency to solve Change problems using a strategy that pa-
rallels the sequence of events described in the problem - it is

hypothesized that inversed Change 1 problems will elicit more strategies

starting with the second given number - i.e. the start set - than normal

Change 1 problems, in which the start set is given first (Hypothesis
Alb)

Table 1 gives the percentages of strategies starting with the first

and the second given number on Combine 1, normal Change 1, and inversed

Change 1 problems during the collective and the individual tests.

Table 1. Percentage of F- and S-strategies on addition problems during
the collective and the individual tests

Firut given
number.

Structure Collective test
Strategies

F S

Individual test
Strategies
F S

Smaller Combine 1 861 14 37 63
Change 1 normal 91 9 52 48
Change 1 inversed 77 23 39 61

Total 85 15 43 57

Larger Combine 1 99 1 83 17
Change 1 normal 97 3 86 14
Change 1 inversed 92 8 66 34

Total 96 4 78 22

The results are in line with hypothesis Al. Children reported much

more frequently that they had solved a problem,with a S-strategy when it

started with the smaller number than when the larger addend was given

first both during the collective and the individual tests. This finding

bid
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suggests that children's solution strategies are indeed strongly

influenced by the location of the smaller and the larger given number.

It was further predicted that Combine 1 problems will elicit more

5-strategies than normal Change 1 problems when the smaller number is

given first (Hypothesis A2a), and also that inversed Change 1 problems

will provoke more S- strategies than normal Change 1 problems both in the

larger-given-first and the smaller-given-first condition (Hypothesis

A2b). TLe results in Table I are in line with both hypotheses. With re-

vect to problems starting with the smaller given number, children

seemed to find it easier to use the more efficient S-strategies in the

context of Combine 1 and inversed Change 1 problems, than when the

problem had a normal Change 1 structure, especially on the individual

teat. The same trend occurs in the collective test results, although

less strong. With respect to the problems in which the larger number is

given first, inversed Change 1 problems obviously elicited the highest

percentage of S-strategies in the individual test situation; the

difference is again in the predicted direction on the collective test,

but very small.

With respect to subtraction problems, we are especially interested

in the influence of the distinct task characteristics on the choice of

either a direct subtractive or an indirect additive solution strategy.

In a direct subtractive (DS) strategy the answer is found by subtracting

the smaller given number from the larger one; in an indirect additive

(IA) strategy, the child determines what quantity the smaller given

number must be added with to obtain the larger one (De Corte & Verschaf-

fel, in press).

Based on arguments similar to those underlying our first prediction

for addition problems, we hypothesize that subtraction problems starting

with the larger given number will elicit more DS-strategies than those

in which the smaller number is given first.

Second, we hypothesize that the influence of the order of

presentation of the given numbers will interact with the semantic

structure underlying the subtraction problem. More specifically, we

expect that the implied joining action between the known start set and

the unknown change set in Change 3 problems will elicit a large amount

of IA-strategies, even when the order of presentation of the given

numbers favours a DS-strategy. For Combine 2 problems, on the other

hand, the choice of either a IA- or a DS-strategy will be influenced

more obviously by the position of the given numbers.

Li 5 !)
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The most remarkable finding for the subtraction problems was

children's apparently very strong terdancy to use IA-strategies,

especially during the individual tests : on a total of 78 appropriate

solution strategies, only four VS-strategies were observed.

Consequently, the discussion is restricted to the data from the

collective test (see Table 2).

Table 2. Percentages of DS- and IA-strategies on subtraction problems
during the collective test

First given number structure DS-strategies IA-strategies

Smaller Change 3 16% 84
Combine 2 18 82

Total 17 83

Larger Change 3 22 78
Combine 2 43 57

Total 33 67

The results shown in Table 2 are in line win both predictions.

First, we observed considerably more DS-strateTiss for problems starting

with the larger given number than for problems in which the smaller

number was given first. This finding supports the hypothesis that the

order of presentation of the two given numbers has an influence on the

kind of strategies children use to solve subtraction problems (see also

Ds Corte s Verschaffel, in press).

Second, it was expected that the effects of the order of

presentation would interact with the semantic structure of the problem.

More specifically, we assumed that the influence of this task

characteristic would be greater for Combine 2 problems than for Change 3

problems. The results show that Combine 2 problems starting with the

smaller and the larger given number elicited indeed considerably diffe-

rent percentages of DS- and IA-strategies : while Combine 2 problem be-

ginning with the smaller given number were solved much more frequently

with IA- than with DS-strategies, the percentages of IA- and

DS-strategies were much closer when the larger number was given first.

For Change 3 problems starting with the smaller and the larger given

number, the distribution of DS- and IA-strategies was almost alike :

most children continued to apply IA-strategies even when the larger

number was given first. These findings confirm the hypothesis that the
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influence of the order of presentation of the given numbers is no'. alike

for all semantic problem types.

DISCUSSION

Over the past few years a substantial body of research has yielded

evidence that the semantic structure of simple addition and subtraction

word problems seriously influences children's solution processes. The

results of this study are certainly not in conflict with this

well-documented finding but rather complementary. Indeed, our data show

that with respect to young problem solvers considerable differences in

solution strategies can occur within a given semantic problem type,

depending on other task characteristics, i.e. the position of the two

given numbers and the order of presentation of the seta in the problem

text. Moreover, the results reveal that the effects of these two

additional task characteristics on children's solution strategies are

not alike for all semantic problem types. These findings are not only

helpful in explaining apparently conflicting results from different

previous empirical studies involving the same types of word problems,

but they also provide guidelines for improving and elaborating the

available theoretical (computer) models of young children's skill in

solving elementary arithmetic word problems.
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ABSTRACT

The responses of 1195 children, aged from 5 to 12 years in
67 classes in 15 elementary schools to six arithmetic word
problems of the "Change" variety were analyzed. While
results agreed with recent research findings that Change 3,
5, and 6 questions are relatively more difficult than
Chmage 1, 2. and 4 questions, the data were completely at
variance with the information processing model, for Change
problems. proposed by Riley, Greeno, and Heller.

BACKGROUND

By the now familiar clasification system of verbal arithmetic

word problems developed by Heller and Greeno (1978), arithmetic word

problems which can be solved by the application of an addition or sub-

traction operation belong to one of three categories, Change, Combine,

and COMpare. Other writers have suggested other categories (e.g. an

Equalize category - see Carpenter & Moser, 1984), but the Heller and

Greeno system has greatly influenced recent research carried out by

both North American workers (see, for example, Carpenter, 1983; Riley,

Greeno, & Heller, 1983) and European workers (De Corte & Verschaffel,

1985).

In the present paper data are presented which cast doubt on the

usefulness of influential addition /subtraction word proplem-solving

models put forward by Riley et al. (1983). While the authors have

reported, elsewhere, data ,arising from a wider study involving Change,

Combine, and Compare questions (Clements & Del Campo, i986), we shall

confine our attention, here, to an analysis of our Change data.

In Mange questions there are three relevant sets (termed 'Start",

"Change" and "Result") and depending on the context, the action

involved in the question can cause an increase or decrease in the

"Start" set. Thus, there are six different sub-categories within the

862
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major Change category. According to the Heller and Greeno (1978)

classification the six Change type are as indicated in Table 1-:

The Six Change Types Distinguished by Heller and Greene (1978)

Problem Type

Change 3

Change 6

Direction Unknown

Increase

Increase

Change 1 Result set

Change 2 Decrease

Change set

Change 4 Decrease

Result set

Change set

Change S Increase Start set

Decrease Start set

-383 -

Riley's Analysis of Processes for Change Problems

According to Riley's analysis the patterns of performance on Change

problems are as shown in Table 2 (in which the Change questions are

those used by the present writers - see Clements & Del Campo, 1936).

In Table 2 a "+"indiCates that a correct answer is given, a "NA"

indicates no answer, and numbers represent characteristic errors for

the questions. Thus, reading vertically, a Level 1 respondent would

answer Questions 1, 2, and 4 correctly, but would give the result set

as the answer for the Change 3 question and would not attempt an answer

for the Change 6 question. A Level 1 response to the Change 3 question

is the result of the solution set not being available for inspection;

instead, the focus is, erroneously, on the display of the result set

(with 5 bananas). However, since for Change 4 questions, the change and

result sets are physically separate, the Level 1 respondent can

identify the change set (which is required).

It is reasoning such as this which is presented in the Riley et al.

(1983) paper. The investigations carried out to test the theory have,

typically, used small numbers of children aged from 4 to 8 years,

usually in no more than two or three educational institutions. Because

there has been a need to discover the children's patterns of thirking

the investigations have been clinical in nature.

b
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Patterns of Performance on use Problems (After Riley)

Eammples of gormtiona Levels of Perforators

1 2 3

Ressat Warm

1. Barbara had 2 eggs

Dan gave Barbara 1 more egg.

How many sus did Barbara have then?

2. Jack had 4 pens.

Dianne took 3 of Jack's pens.

How many peas did Jack have then?

Giro Umloomm

3. Jeff hcii J bananas.

Camel gave Jeff some more bananas.

Then Jeff had 5 bananas.

How many bananas did Carmel give Jeff?

4. Anna had 6 books.

Tom took some of Anna's books.

Theo Anna had only 2 books left.

How may of Anna'? books did Toe take?

Start Unarms

5. Paul had some pencils.

His father gave him 2 more pencils.

Then he had S pencils.

How many pencils did Paul have st

the start?

6. Sally had some pictures.

She lost 2 of her pictures.

Then she had 3 pictures.

How any pictures did she have at

the start?

"2" "2"

NA NA +

If, indeed, the proposed theories are close approximations to the

truth, then data sets based on a large number of children in a range of

educational institutions should be supportive. In the study which will

now be described, which was part of a larger study investigating Change,



- 385 -

Compare, Combine, and other arithmetic word P roblems (Clements & Del

Campo, 1986) the Riley theories for Change problems were snhiected to

such a test.

METHOD

Sample

During the period April-June 1986, 1195 children in 67 classes in

15 elementary schools in the Eastern suburbs of Melbourne were asked to

solve 24 arithmetic word problems. Children in each of Grades Prep, 1,

2, 3, 4, 5 and 6 were involved, the numbers of children at each level

being 29, 65, 89, 258, 280, 256 and 218 resTectively. The average age of

children in Prep Grade was about 54 years and the average age of

children is; the other trades increased steadily to
about 11i years

in Grade 6.

The Research Instrument, and its AdmiListration

The research instrument consisted of 24 questions, 6 of which were

of the Change variety (Oese are given in Table 2). These 6 questions

were randomly spread throughout the 24 questions. The other questions

were of the Combine, Compare, Direct Comparison and Rats types, and

analysis of data pertaining to them has been presentee elsewhere

(Clements & Del Campo, 1986).

The 24 questions were administered to students in Grades Prep, 1 &

2 on a one-to-one basis, the average time of administration being about

45 minutes. Students in these grades were provided with relevant

equipment (dolls, model cars, pencils, etc) and invited to use this in

formulating their solutions. They were instructed to listen to each

question carefully, and told that if they wanted to do so they could

use the equipment to help them to get answers; they each question was

read to them slowly, twice, and they were invited to give an answer;

then, having given an answer, they were asked to repeat the story and

the question, in their own words, and to show the meaning of the story

by using the equipment.

Students in Grade 3 attempted the 24 questions as a class group.

Each student had a copy of the 24 questions and was told to read each

question silently as it was read to them by the person administering
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the research instrument. The questions were administered in a lock-

step, one -by --one manner, with the students being allowed plenty of time

to complete each question.

Students in Grades 4 through 6 were givenwritten copies of the 24

questions and'told they had to reed and answer each question without

any assistance being provided. The questions were not read to them.

RESULTS

Table 3 shows the percentage of incorrect or "no answer given"

responses made by students in Grades Prep through 6 on the six Change
questions.

By and large, the entries in Table 3 confirm the findings of recent

research that Change 1 and Change 2 questions are relatively easy for

young schoolchildren, that Chasse 4 questions are the next easiest, and

that Chmage 3, Choate 5 and Change 6 questions are relatively difficult.
Table 4 shows the proportions of students in the present study who

would be in the Riley levels and sublevels. According to Riley et al.
(1963, p. 173)Level la children respond correctly to Change problems
1 and 2 only, Level lb children

respond correctly to Change problems 1, 2
and 4 (as for the Level 1 pattern in Table 2), Level 3a children givecorrect

responses to all questions except either a Change 5 or a
Change 5 question, and Level 3b children respond correctly to all
six Change questions.

Now, since a la pattern requires that students get the Change 1 and

Choose 2 questions correct and all other Change questions incorrect.

and the Change 3a pattern requires that all questions be answered

correctly except either a Change 5 or a Change 6 question, end the

Change 3b pattern requires that all As Chasse questions be answered

correctly, it is not clear from the entries in Table 4 whether the

proportions in the rows for sublevels la, 3a and 3b provide any support

for Riley's hypothesized model. Other models could easily explain such

results. In fact, qualitative data obtained from our interviews with

the children in our sample in grades Prep, 1 and 2, and from our

teaching of 22 classes each week over the period June-September 1986

(designed to elicit information concerning how children process
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Table 3

Difficulty Indices (% Wrong) of Change Questions

QUESTION

(Eli 11 daroera had 2 eggs. Pan gave
Barbara 1 wore eel. Now many

etas did Barbara have then?

(CH 2) Jack had 4 pens. Dianne took

3 of Jsck's pent. Now sift
pens did Jack have then?

(EN 31 Jeff had 3 bananas. Carmel

gave Jeff some more bananas.
Thee Jeff bid 5 banana.
Wow many banana* did Celli'

give Jeff?

(ER 4) Anna had 6 books. Tom took

soda of Anna's books. Then

Anna had only 2 books left.
How many of Anne's boots did

Tom take?

1CW 5) Pawl hod some pencils.
Nis father gave him 2 more

pencils. Then he had 5

pencils. Now many pencils
did Pawl have at the start?

ktli 6) Silly hod sows pictures.
She lost 2 of her pietism.
Then she had 3 pictures.
How many pictures did
sne have at the start?

Wrong in Grads ...

Prep I 2 3 4 5 6

10 11 10 5 3 3

In 14 11 5 3

$2 37 27 20 14 7 6

24 22 If 15 6 6 6

62 29 34 24 16 7 7

52 43 35 24 15 6

Teble 4

Proportion of Response Pattern Consistent with Ri!ey's Model

for Change problems

LCVEL P 1 2 3 4 5 6

la .03 .05 0 0 0 0 0

lb 0 0 0 0 0 0

2 0 0 0 0 0

31 .11 .22 .17 .16 .12 .01 .05

36 .14 .29 .36 .52 .67 .80 .83

Residual .52 .46 .47 .32 .21 .12 .12

1
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verbal arithmetic problems - see Clement* & Del Campo, 1986), indicate
that the strategies hypothesized in Riley et al. (1983) were rarely, if
ever, responsible for la, 3a and 3b response patterns. Furthermore,
the entries in Table 4 for the sublevel lb and Level I rows could not
be more overwhelming in their rejection of the Riley model.

DISCUSSION
We do not know why our ch:ta should be so much at variance with

those obtained by North American and European researchers. Perhaps,
parents and teachers of young,children in Victoria stress different
language and thinking patterns in their everyday interactions with
children. Perhaps, too, the Riley model has not been subjected to
sufficiently rigorous testing by North American anu European
researchers.

While, in our study, the six Change questions were administered in

different ways to children in Grades Prep through 2, 3, and 4 through 6,

entries in Table 3 indicate that, generally speaking, student per-
formance on the questions improved

with increase in grade level and

this suggests that the effect of different administration methods was
not great.

REFERENCES

Carpenter, T.P. (1983). Learning to add and subtract: An exercisein problem solving. In E. Silver (Ed.), Teaching and Learning
mathematical problem solving: Multiple research perspectives.
Hillsdale, N.J.: Erlbaum.

Carpenter, T.P., & Moser, J.M. (1984). The acquisition of addition
and subtraction concepts in grades one through three. Journalfor Research in Mathematics Education, 15, 179-202.

Clements, M.A. & Del Campo, G. (1986). Linguistic and pedagogical
factors influencing elementary

schoolchildren's processing of
arithmetic word problems. Paper presented at the annual meetingof the Mathematics Education Research Groupin Australasia,
Launceston (Tasmania).

De Corte, E., & Verschaffel, L. (1985) Beginning first graders'
initial representation of arithmetic word problems. Journal of
Mathematical Behaviour, 4, 3-21.

Heller, J.I., & Greeno, J.G. (1978). Semantic processing of arithmetic
word problem solving. Paper presented at the annual meeting of the
Midwestern Psychological Association, Chicago.

Riley, M.S., Greeno, J.G., & Heller, J.I. (1983). Development of
children's problem-solving ability in arithmetic. In H.P. Ginsburg
(Ed.), The deve/aramnt of mathematical thimbles. New York:
Academic Press, 153-196.

8 6'



389

THE EVOLUTION AND EXPLORATION OF A PARADIGM FOR STUDYING

MATHEMATICAL KNOWLEDGE

Michael A. Orey DI and Robert G. Underhill

Virginia Polytechnic Institute and State University

An analysis of the literature in the area of children's learning of
subtraction led to an embryonic model of the types of knowledge that might be
brought to bear on a given subtraction problem, a model with its roots in
cognitive psychology, mathematics education and educational anthropology.
Each of these fields contributes a dimension to such a model. To explore the
usefulness of the resulting paradigm, a protocol procedurt was developed to
assess the extent to which these types of knowledge interact. A preliminary
analysis of a case study using this procedure is reported. Some proposed
extensions and improvements are also briefly presented.

The first part of this paper describes some of the foci of the model of long term

memory when it is used to study children's knowledge of two-digit subtraction (see

Figure 1). The model is depicted as a 2 (Place Value/Algorithmic) X2
(Semantic/Syntactic) X2 (Informal/Formal) matrix. The first dimension of this matrix,

place value/algorithmic, was suggested by the Kent State Checklist of Mathematical

Concepts (Underhill, Uprichard & Heddens. 1980) among others, to include both place

value concepts and subtraction algorithm levels of complexity in diagnostic contexts. The

second dimension, semantic/syntactic, has also been suggested in numerous sources and

was articulated in this domain by Resnick (1982). In such work, the interrelationship

between algorithmic performance on semantic (e.g., Dienes' blocks) and syntactic (e.g.,

symbol manipulation) subtraction tasks is explored. The final dimension,

informal/formal, is used widely among cultural anthropologists (e.g., Carraher, Carraher

Schliemann, 1983; Lave, Murtaugh and de la Rocha, 1984) when conducting

ethnographic research. People often have rich informal repertoires of arithmetical

knowledge which they use in informal settings (e.g., market place or bowling alley).

This knowledge is contrasted with formal knowledge which results from instruction in

classrooms.
This application of the model was used to develop eight question types for

exploring children's knowledge of two-digit subtraction. Relations among the eight cells

will be presented. A more detailed discussion of the model will then follow.

c69
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Figure 1. A throe-dimensional model for exploring understanding of whole
number subtraction

7

Place Value Algorithmic

1281Sallildigniilbll*MEGMRCU
Algoritinnic knowledge is essentially a step-by-step procedure for completing a

mathematical task (otter depicted as a flowchart). In this ease. the Procedure for
determining the solution to tiro-digit subtraction problems is the child's subtraction
algorithm. The priZaszy conceptual UM included in the model is generally place value.
Place value latcnaledge is a collection of concepts and sub-skills that are prerequisite to
undennsinling the algorithm In the domain ofsubtraction, the ms,ior place valise concepts
include representation of a number, tens and ones, and regrouping. These two types of
knowledge were media develop protocol questions for all eight cells in the manic. The
other two dimensions of the matrix define the context and task environment on which
these concepts are whined.

Syntactic knowledge (Resnick, 1982), as it is being used here, is the, knowledge
of the language of niallemoics. This is usually demonstrated in a written format, but
may also be vabaL The language of mathematics is a highly specialized problem solving
language and is sometimes taught for the sole purpose of using the language. The
semantics of mathematical knowledge refers to the underlying meaning of this language
(syntax). Learners who are proficient mathematically are not only competent in the
language of mathematics; they also understand from where the language is derived.
Operationally, Remick (1982) defines the syntax in terms of paper and pencil tasks
involving symbol manipulations. Performance of such tasks using manipulative: is a
way of observing and assessing semantic knowledge.

7
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infonnal/Formal Dimension
Informal and formal knowledge have been studied by ethnographers and other

qualitative and quantitative researchers. Carraher et al. (1983) and Lave et al. (1984)

describe people who have extensive informal knowledge in arithmetic, but who are unable

to apply their knowledge in formal settings. Formal knowledge, on the other hand, is

what teachers intend to teach.

The "format" plane of the matrix has been extensively studied bydiagnosticians,

while the "informal" plane has been studied only minimally by mathematics educators. In

addition, the rich set of interrelationships among the cells in the matrix have been studied

hardly at all. The three dimensional framework facilitates the systematic, intensive study

of children's understanding of not only subtraction algorithms, but many other areas of

mathematical knowledge. By exploring the interrelationships among the eight cells, this

model holds promise for facilitating the development of diagnostic procedures, delineation

of prescriptions, and refinement of curricular decisions and teaching strategies.

MEITIOD

A structured clinical interview was conducted with a third grader in an elementary

school in southwest Virginia. The subject was selected oa the basis of her erroneous

performance on a subtraction test designed to elicit error patterns (Van Lehn, 1982). The

interview consisted of three questions from each of the eight cells in the 2 X 2 X 2 matrix

(see Figure 1). Following are examples for each of the eight cells:

1. Formal/place value/syntactic: What number has 5 tens and sixteen ones?
2. Formal/algorithmic/syntactic: Find the difference 87 - 59.
3. Informal/place value/syntactic: How much money is 2 dimes and 4 pennies?
4. Infontuil/algorithmic/syntactic: A gum ball costs 104 and you give the clerk

250, how much change do you get back?
5. Informal/place value/semantic: Represent 790 with dimes and pennies.
6. Infotinal/algorithmic/semantic: Represent 500. Take away 130. In a store type

role playing setting.
7. lace value/semantic: Represent 86 using toothpicks.
8. F algoritlunic/semantic: Represent 50. Take away 13. Where the subject

teaches the researcher how to do subtraction.

CASE STUDY RESULTS

Kate completed the Van Lehn (1982) test, and her responses indicated some

inconsistent error patterns: 4 -N =N (3 errors) and some problems requiring regrouping (5

6 71
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errors). In total, she got 10 of the 20 problems wrong; 2 were fact errors.

Table 1. Results of the diagnostic interview for Kate.

X indicates an incorrect response and '11' indicates a correct response. In addition, the
numbers indicate the cell and the progression of letters arc in increasing complexity (i.e.,
'a' is easier than V). A double response indicates a two part question.

fleet vex Educittimia

Email 116.144" in" 4a %a X
S'Illaatk

J b 4 J b b Xc X c X c X c X
Wand la 4

b X X
5a 4
b 4 x 2ba ,1

Cut J
b Xc X c X c X c X

The place value knowledge that was selected for analysis in this study was: 1)
ability to represent a number, 2) concept of 10 and 1, and 3) regrouping in the context of
two-digit numbers. Algorithmic knowledge was defined in terms of the subtraction
algorithm applied to two-digit subtraction. Three levels were selected: 1) subtraction
without regrouping. 2) subtraction with regrouping, and 3) subtraction with rem in the
units place of the subtrahend. Kate's performance is summarized in Table 1. Her
performance on these tasks, in general, indicate that her best performance is on those
tasks created to tap her formal/syntactic knowledge. Her perfeenance on items designed
to explore meaning (semantics) is not as strong. She has little meaning to tie to what she
is doing nor does she have strong connections from her formal knowledge to her informal
knowledge.

Kate's knowledge of representation is consistent across contexts. Whether the
performs syntactic or semantic tasks, Kate is able to represent numbers easily. Indicated
in these tasks is her knowledge of the convenience of grouping things in tens. When
asked to represent sonic value concretely, she consistently counts out the tens then the
ones. Also, the is able to represent a number abstractly given the numberof tens and
ones. However, her ability to extend this knowledge beyond representation is very
limited.

When asked how many tens and ones there are in the number 52, Kate quickly
responds, "5 tens and 2 ones." However, when she is told that the researcher has 79e in
his pocket, all it. dimes and pennies, she is unable to determine the number of dimes or
pennies. She eventually guesses that there might be 40 dimes. When asked how many
pennies would be in his pocket given that there are 40 dimes and a total of 790, she
responds, ''30 pennies." She obviously loses her ability to think in terms of tens and
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ones in this context. On the fonnaliserruunic tasks, Katz has no problem determining

which is greater between 1 ten and 1 one. However, she has problems knowing how

much greater 10 is than 1 when using money.
The last place value question type assessed her ability to regroup tens and ones.

Kate is unable to do this in any context or in any way the question is phrased. For the

semantic plane, Kate is asked to represent a number using manipulatives. She performs

the task as above (i.e., she would represent 32 toothpicks using 3 bundles and 2 singles).

She is then asked to represent the same number in a different way (i.e., 2 bundles and 12

singles). Kate is unable to perform this task. In the syntactic plane, Kate also has

difficulties. For example, when asked what number has 5 tens and 16 ones, she focusses

on the typical syntactic structure. That is, she writes 5 in the tens place and 16 in the units

place. She is then asked to read the number. She states "five-hundred sixteen," and does

not see this as a problem. The last question in this plane deals with the value of S dimes

versus 45 pennies. In the interviews, Kate becomes confused between the 2 facts - a

dime is greater than a penny and 45 is greater than 5. She is unable to combine these two

facts to compare value.

In the analysis of procedural knowledge, it becomes apparent that Kate is unable

to make use of manipulatives. In fact, the manipulatives only bring confusion to the

tasks. The first problem in the procedural plane is to subtract without regrouping. Kate

manages to solve the manipulative problems at this level using a cou. Ling strategy.

Basically, her procedure is to represent the subtrahend in tens and ones and remove the

minuend in tens and ones. The result is stated by counting the remaining pieces. This

procedure fails in the other problems because regrouping is necessary before you are able

to count out the minuend. Kate is completely unable to do the last 2 problems with the

toothpicks. In the last 2 problems where we role play a transaction in a store, Kate

apparently focusses on the differences of the tens places when making change. That is,

for one problem (430 for a 390 item) she gives a dime for change, the difference between

the tens. On the second problem, 800 for a 570 item, she gives 3 dimes change, again the

difference between the tens.

The other 2 cells in the procedural plane are solved in a similar manner. That is,

cell 2 (Figure 1) are money word problems. She solves these problems by translating the

problems into a column subtraction format, the task for cell 4. Therefore, the results of

these problems are the same. Again, Kate is able to solve the problems that do not require

regrouping. In addition, she was able to solve the problems at the second level,

subtraction with borrowing. The interesting result in these problems is at the third level,

subtract where there is a zero in the units place of the subtrahend. As described earlier,

Kate occasionally exhibits the error pattern 0-N=N. In the interview data, Kate exhibits
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the error pattern 0-N:41. Apparently, she is unsure of what to do with the zero in these

problems and makes repairs (Brown & Van Lehn, 1982) to her algorithm when she
encounters such problems. In fact, it would appear that she initially makes such a repair

on a given task and is able to retain this repair throughout the task. However, she needs

to reformulate the repair across tasks on different days. This would be termed an unstable

bug by Brown and Van Lehn.

CONCLUSIONS

This paper presented the first attempt in the specification of a conceptual model for

studying mathematical understanding. A set of interview questions were developed and a

case study was presented. Additional data are being examined and further attempts will

be made to delineate the relationships among the cells in the model. In addition, we will

report our attempts to extend and refine the model to make it more encompassing of other

domains of mathematical knowledge. Although the model depicts a wide variety of
knowledge structures, it is by no means intended to be comprehensive. We envision that

the place valtrialgarithmic dimension of Figure 1 can be modified to distinguish between

concepts, facts, and procedures. This modification may well add to the generalirability of

the model as well as helping mathematics educators study relationships among specific
types of knowledge.
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N/PLASHING DIPPBRENTIAL PERFORMANCIS

ON ADDITION STORY PROBLEMS ACROSS SAADI LEVEL

Robert G. Underhill

Virginia Tech

Abstract

Four variables (cues, transformation, test adminis-
tration ratios, and success criteria) were manipulated to
study grade level differences among 82 first article end
kindergarten children under carefully controlled experimental
conditions. Even though there was a strong grade level main
effect, none of these variables was found to be a main effect,
nor were there any interactions. The most interesting result
was the demonstration of further research support for the
Brainord/Eingma conclusion that short term memory and working
memory do not share a set of scarce resouurces. It appears
that the reduction of STM load does not induce higher success
levels, contrary to expectations arising from the work of
Pascual-Leone and Case.

Zoveral researchers (Carpenter & Moser, 1984; Riley, Greene, &

Heller, 1983; Underhill, 1986e, 1986b, among others) have reported dif-

ferential performances between kindergarten and first grade children on

addition story problems. The sources of these differences have been ex-

plored and one variable is known NOT to have a significant impact: tran-

sformations (Joining) (Carpenter & Moser, 1984; 8teffe & Johnson, 1970;

Underhill, 1986e, 1986b). While others have found significant differ-

ences related to manlpilatives, Underhill reported that when the condi-

tions of problem presentation are optimized, the use of manipulativea,

whether required, optional or not available are not significantly related

to problem solving success (Underhill, 198613). However, Steffe and

Johnson (1970), cirpenter and Moser (1984) and lbarra and Lindvall (1982)

reported that manipulatives DID make a difference. Underhill (1986a)

identified several sources of testing differences between the Steffe and

Johnson, Ibarra and Lindvsll, and Carpenter and Moser studios which had

potential for leading to these differences: parsimonious versus chunked

problem presentation; required versus optional use of manipulatives; in-

dividual versus group testing; exact answer versus ±1 criterion; and child

naming of problem context (e.g., child supplying names and objects for
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join and part part whole contexts). In his 1986b study, Underhill re-

ported that Rowe's (1986)
concept of wait time DID influence young

learners' successes and that learners performed better when problems were

presented in a chunked format,
one-sentence-at-a-time with pauses. He

reported further evidence to support no significant
difference on the use

of manipulatives (none,
optional and required), transformations (joining

versus part part whole) and success criteria (exact versus t1).

In the present study, five variables were manipulated: visual cues,

problem transformations, success
criteria, grade level and test adminis-

tration. Visual cues were 3x5 cards with numerals to help learners re-

member the numbers in the problems; transformations were present in

joining problems but not part part whole; answers were analyzed on the

basis of exact numerical
responses or within one (t1) of the correct re-

sponse; subjects were
kindergarteners or first graders, and children were

tested individually or in groups of 3 or 4.

RATIONALE FOR VARIARLES

Visual cues were included
because the work of Pascual-Leone (1970)

and Case (1978) leads one to conclude that
working memory and short term

memory (STH) share the same resources. If the STM burden can be light-

ened, then learners will
have more cognitive resources

for processing or

reasoning. The Pascual-Leone/Case
perspective was refuted by Brainerd

and Kingma (1985) when
they reported a series of nine studios, each one

involving over 900 protocols with kindergarten and second grade children.

They concluded that STM and reasoning are
independent when STM and rea-

soning capacities are
manipulated in the contexts of transitivity, con-

servation, probability and class inclusion.
By providing half the

subjects in this study with visual problem
number cues, these two posi-

tions could be examined
within the context of addition story problems.

The inclusion of transformations permitted
the investigator to ex-

plore whether any main effect or interaction
would occur with visual cues.

A number of studies have now rather clearly established
that the differ-

ences on performances on part part whole and join problems are not sta-

tistically significant within age/grade levels.

Criterion scores of "exact" and "tl" were useful in Underhill's

(1986a) study in explaining
differences between first graders' and

kindergarteners' performances.
Since both could easily be collected,

S77
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this, too, was used as an independent variable to attempt to explain ob-

served similarities and differences.

Two grade levels were included because several previous studies have

observed grade level differences, and these are the main differences this

study sought to clarify and explain.

The last variable was test administration. It was conjectured that

attention is probably better in a 1:1 setting, so a 1:3 or 1:4 setting

might permit collection of data sought on the other variables while pro-

viding an opportunity to examine this conjecture.

NKTNOD

Eighty-two kindergarten and first grade children were tested in Oc-

tober and November in the following breakdown:

41 kindergarteners, 41 first graders
82 transformation, 82 non-transformation
41 cues, 41 no cues
52 individual, 30 group
82 exact, 82 tl criterion

Learners were randomly placed in administration and cue treatment
groups. Each individual or group administration consisted of four

transformational (join) and four non-transformational (part part whole)

addition story problems with addenda of 2, 3, 4 or 5. All subjects were
in full-face view of the researnher, but partitions were placed between

subjects in the group administration settings so that they could not see
one another. Each child had a basket of chips which she wan told she could
use if she wished. Each child had a sheet with the numerals 2 through
13 written in approximate 2x2 squares. Children were instructed to point

to (place a forefinger on) the numeral which was the answer to each
problem. All questions incorporated wait time (pauses of 3 seconds after

each sentence).

Data were coded as follows for analyses:

Variable odingg

A. Grade level 0,1

BI,C1 Number of join correct, exact 0,1,2,3,4

B1,C2 Number of join correct, 0,1,2,3,4
±1 criterion -

B2,C1 Number of PPW correct, exact

82,02 Nurser of PPW correct,

0,1,2,3,4

0,1,2,3,4

1
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E.

#1 criterion

Cues

Administration

399

ANALYSES S RESULTS

0,1

0,1

A three-way ANOVA using "exact" scores was used to examine the ef-

fects of grade level, cues, and administration on addition problem solving

success. The results are reported in Table 1.

Table 1. Three-way ANOVA using EXACT scores

Source Sum of
Squares

D.F. Mean Square

Mean 1341.47 1 1341.47 649.47 0.00

Grade (G) 41.94 1 41.94 20.30 0.00

Cue (C) 0.49 1 0.49 0.24 0.63

Admin. (A) 0.84 1 0.84 0.41 0.53

GC 0.01 1 0.01 0.00 0.95

GA 1.11 1 1.11 0.54 0.47

CA 0.00 1 0.00 0.00 0.98

GCA 0.06 1 0.06 0.03 0.86

Error 152.85 74 2.07

A three-way ANOVA using the ±1 criterion produced the same set of results.

Since Grade was the only significant main effect and there were no

significant interactions, a series of cell comparisons were made using

Scheffe's test with both exact and ±1 criterion to examins the combina-

tions of these three variables (grade, cue, administration) on transfor-

mational and non-transformational problems and on the two criterion

levels. None were significat at the .05 level.

DISCUSSION

On the variable ADhINISTRATION there were no significant main effect

or interactions either within or across grade level. It appears that this

variable holds little promise of explaining K, 1 differences.

On the variable TRANSFORMATION, there were no significant main ef-

fect or interactions within or across grade level. It appears that this

variable also holds little promise of explaining K, 1 differences.

On the variable CUE, the results of this study agree with the con-

clusions reached by Brainerd and Kingma (1985) that STM and working ma....zy
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use separate resources and that easing the STM load for information

storage doss NOT appear to enhance the information processing or reasoning

capability of young learners. ibis finding runs counter to the assumption

made by Pascual-Leone and, later, by Case that STN and information proc-

essing share a sot of scarce resources which can be parceled.

On the variable SUCCESS CRITEP.ION, there were no discernible dif-

ference which help explain K, 1 differences. Since this was a helpful

distinction in Underhill's 1986a study, and since it can be readily em-

ployed within existing designs, it is probably useful to collect these

data when comparing performances across age levels.

On the variable GRADE, one can only conclude from this study that

differences do exist but that they cannot be explained by transformations,

cues, success criteria or administrations in groups of 3 or 4 compared

with 1:1.
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DIDACTICAL OBSTACLES IN THE DEVELOPMENT OF THE CONCEPTS

OF MULTIPLICATION AND DIVISION

Brian Greer

Queen's University, Belfast

Research shows that children at secondary school have many
weaknesses in their understanding of multiplication and
division as applied to (positive) rational numbers. In this
paper some of the factors implicated in these weaknesses
are discussed and alternative pedagogical strategies for
tackling the problem are outlined. These include the
possibility of developing "secondary intuitions" (as defined
by Fischbein), the fostering of metacognitive awareness of
the limitations of intuition and how formal methods may
allow one to go beyond them, the exposure and discussion of
cognitive conflict, and the use of appropriate situations
within which Lo introduce the extension of multiplication
and division from the domain of positive integers.

Research has shown that many children and adults do not develop adequate

conceptualizations of multiplication and d.:.vision in the domain of

positive rational numbers. Among the evidence may be cited the

following:

1. Results obtained by Mangan (Greer and Mangan, 1986; Mangan, 1986)

showing that (i) even intelligent adults often fail to choose the

correct operation for word problems involving multiplication and

division when the combinations of numbers involved are of certain types,

and (ii) there is remarkable consistency, for groups ranging from

12-year-olds to elementary teachers in training, in the differential

effects for different number types.

2. Demonstrations among secondary school pupils of non-conservation of

multiplication and division (Greer, 1987; Greer and Mohan, 1986). For

example, Greer and Mohan found that a substantial proportion of

12-year-olds, shown a word problem with the numbers concealed by flaps,

could correctly describe which operation should be used to solve the

problem, but changed their choice of op,,ration when the numbers were

revealed (the numbers were chosen so that they were likely to provoke

misconceptions).
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A replication of that study currently being analysed showed that even

when the initial choice of operation after the numbers were revealed did

not change, most 12-year-olds and many of the 15- year -olds were

susceptible to countersuggestion. Specifically, with a decimal less than

1 as operator, discussion about the size of the result relative to the

operand led these children to choose the inverse of the operation which

they had (correctly) nominated when the numbers were unknown. Initial

impressions suggest that a higher proportion of 15-year-olds than

12-year-olds who exibited this behaviour were aware of the

contradiction between their judgments.

In another ongoing study, similar manifestations of non-conservation

have been found with rationals less than 1 written as fractions rather

than decimals.

In this paper I consider some of the didactical obstaces which make it

difficult for children to extend their conceptions of multiplication and

division from the domain of positive integers to the domain of positive

rationale.

OVERGENERALIZATION OF RULES

Extension of an operation defined in one domain to a more general domain

is a characteristic development in mathematics. When such an extension

takes place, some properties which hold in the more restricted domain

will not hold in the more general domain, and this is a natural source

of errors, particularly when rules applicable to the restricted domain

but not to the more general domain are strongly entrenched. Examples of

this, in the case of multiplication and division, are the misconceptions

that multiplication makes bigger and division makes smaller, and that

division is always of the larger by the smaller. No great theoretical

sophistication is required to account for these; to quote Thorndike

(1922): "If you are a youngster inexperienced in numerical abstractions

and if you have had divide connected with 'make smaller' three thousand

times and never once connected with 'make bigger' you are sure to be

somehwat impelled to make the number smaller the three thousand and

first time you are asked to divide".

6 S I
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LINGUISTIC ASPECTS

There are some specific linguistic aspects implicated in the errors

children make. In English. "twelve divided into three" is notoriously

ambiguous. In problems involving intensive quantities, there is often

confusion between, say, "miles per hour" and "hours per mile" or between.

"miles per hour" and "miles". Here, however, I want to consider a more

pervasive influence of language. To my mind, there is a fundamental

difference between descriptions of situations in nature language and

descriptions in mathematical language. Natural language descriptions are

designed to refer to particular situations which obtain, wherras

mathematical descriptions are designed to be uniformly applicable to all

situations (within some structured class) which might obtain. (Is it too

far-fetched an analogy to compare this to the difference between

concrete and formal operational thinking?). Think of the situation where

a photocopier can reproduce a page and either enlarge or reduce it. Note

that last phrase - "either enlarge or reduce it". I can think of no

single word which covers both possibilities. In mathematics, by

contrast, we have the concept of multiplication by a constant positive

rational, irrespective of its size. On the photocopier I use, there is a

single control which allows you to set an enlargement factor at any

value between 0.82 and 1.55 (by steps of 0.01). Similarly, it is not

necessary in a computer program for working out cost given unit price

and quantity to check if the quantity is greater than or less than 1

unit. It is clear, however, that many children (and adults) do not have

this unified conception of a change in size. Rather, they think in terms

of either making bigger, which is connected with multiplication (and

addition) or making smaller, which is connected with division (and

subtraction). Multiplying or dividing by a number less than 1 is a

"different" case - children often say as much.

FAILURE TO DISSOCIATE CONCEPTS FROM ALGORITHMS

The problems children have are exacerbated by teaching which

concentrates on extension of the algorithms for computation while paying

no attention to extension of the conceptualization. The algorithms are

often presented in a way which emphasizes their similarity to those for

integer multiplication and division, either by converting the problems to

() (
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an equivalent one involving only integers, or by having some rule for

the final positioning of the decimal point. Results from studies where

children have been presented with calculations, and asked to write

stories which those calculations model, show that very often children

are taught calculations with no idea of any situation in which they

would want to do those calculations. Conceptualizations of the

operations are often confounded with computational considerations. For

example, a teacher said to one of my students recently that you cannot

multiply by three-quarters - what you do is multiply by 3 and then

divide by 4.

Even the notation used for division has been found to have an effect. In

a choice-of-operation experiment a comparison was made between one group

of subjects who had to choose the calculation from, say:

8.2 + 3 8.2 + 3 8.2 - 3

and another group who had to choose from:

3 )7377 8.2 8.2

8.2 X 3 3 -.C. 8.2

8.2 8.2)7

+ 3 - 3 X 3

It was found that for partitive division problems, relatively higher

percentages of correct choices were made for the first of these, while

for quotitive division problems, relatively higher percentages of

correct choices were made for the second type.

THE PEDAGOGICAL DILEMMA

Fischbein, Deri, Nello and Marino (1985) identify a general dilemma

facing mathematics teachers. For any mathematical concept, it seems

inevitable that the early conceptualizations of that concept (either

historically or ontogenetically) will be based on intuitions derived

from practical experience. Such intuitive conceptualization is essential

for initial understanding. however, when it becomes necessary to extend

the concept to make it more general, more abstract, or more formal, the

intuitive models continue to tacitly affect one's thinking. With respect

specifically to multiplication and division, Fischbein et al contend

LiS5
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that performance on choice-of-operation tasks is tacitly mediated by

primitive models - repeated addition for multiplication, partition and

quotition for division.

WHAT CAN BE DONE?

It may be possible to extend intuitions. Fischbein, in this regard,

refers to "secondary intuitions". (There are cases, for example, of

individuals who have been able to think spatially in four dimensions).

Thus, it might be possible to develop the intuitive conceptualization of

multiplication and division so that the choice of operation for the

problem: "0.932 kilograms of cheese cost $2.50. How much is the cheese

per kilogram?" would be as intuitively obvious as if the quantity had

been 2 kilograms. However, evidence from an experiment with university

students majoring in mathematics (Mangan, 1986) suggests that this

rarely, if ever, happens spontaneously, When such students were shown

word problems on a computer screen, and required to choose the

appropriate operation, from 5 alternatives displayed, within 8 seconds,

the usual patterne of results were found, namely that problems in which

the operator was a decimal less than i led to more errors, or when

answered correctly, required more time.

An alternative approach advocated by Fischbein is broadly metacognitive.

The idea is "to attempt to provide learners with efficient mental

strategies that would enable them to control the impact of these

primitive models" (Fischbein, Deri, Hello and Marino, 1985, p.16). One

general strategy along these lines would be to teach pupils to be aware

of the limitations of intuition, to be able to recognize the "danger

signals" and switch to more powerful formal methods which (to borrow a

metaphor Bruner applied to language) are likely prosthetic devices. Thus,

the university students referred to above would (presumably) have made

very few mistakes given enough time because they could have resorted to

algebraic formulae (say for speed/distance/time problems) or the

"easy-number strategy".

Fischbein advocates also the exposure and discussion of conflict between

judgments based on intuitions and results obtained through formal

methods. This approach has been used in teaching experiments by Alan

BEST COPY AVAILABLE
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Bell and others at the Shell Centre in Nottingham (e.g. Swan, 1984). The

task used in the non-conservation tasks described at the beginning,

where the numbers in the problem are initially hidden, has proved an

effective way of exposing conflict and further work with this situation

might extend it from a research methodology to a pedagogical method.

A different approach (which might help to produce the "secondary

intuitions" referred to above) is to introduce the extension of

multiplication and division from the integer domain to tho domain of

positive rationale within suitable contexts, in the spirit of Semadeni's

(1984) "principle of concretization permanence".
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PRACTICAL WORK AND FORMALISATION, TOO GREAT A GAP

K.M. Hart, Nuffield Secondary Mathematics

'Children's Mathematical Frameworks' (CMF) was designed to
monitor the transition from learning through using concrete
materials to employing a symbolic, formal mathematical
system. It followed the research projects CSMS and SESM at
Chelsea College, which had shown that many secondary
school pupils do not adopt the generalisable methods of
solving examples, taught in the secondary school but
instead cling to more naive methods. Volunteer teachers
prepared teaching schemes which used practical work to
lead-up to a formalisation. The lessons in which the
formalisation was verbalised were recorded. This paper
describes what took place in seven classes when a) the
subtraction algorithm and b) equivalent fractions were
introduced symbolically.
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Children's Mathematical frameworks (CMF) was a research pro)ect based

at Chelsea College, University of London from 1983 to 1985. IL was

designed to monitor the transition between learning mathematics from

practical or concrete work to using formalised (mainly symbolic)

mathematics. The theories of Piaget which distinguish between

concrete operations and formal level thinking have led to the

acceptance by many British teachers of a method of teaching which is

based on the provision of concrete experiences. The particular use

of 'concrete' materials investigated in CMF was when the experiences

were structured to lead to a generalisation which could be verbalised

and made symbolic. Previous research at Chelsea (CSMS, SESM) had

shown that many secondary school children ignore the generalisable

methods of solving mathematical questions they are taught in the

secondary school and instead revert to the morn naive strategies they

were taught in the primary school. Often these same children invent

'child methods' which are limited in application And depend on

counting, addition and whole numbers. The CMF research was designed

to provide information on the reaction of children aged 8-13 years, to

the introduction of generallsable methods, rules ur formulae.

The research was Influenced by the theory of Planet and more

particularly by teachers' interpretation of this theory. However, the

results of CSMS and SESM had led us to consider the 'framework of

knowledge' suggested by Ausubel and to expect a novice learner who

might initially be functioning in a manner which could be described

as concrete thinking to progress to morn powerful frameworks of

knowledge after long term instruction.

The methodology of CMF involved observation of classes and l-)

interviews with children before and after they were supposed to have

made the transition between practical work and formalisation. A

"formalisattun" in this context means a rule, formula or general

method which can be applied to a variety of mathematical examples

(albeit in a limited topic area). Each teacher who took part in the

research was interested in (he teaching of mathematics and was in

the process of obtaii,ing further qualifications in mathematics

education (a diploma or master;' degree). the '.cheme of work and

methods of teaching tc ue employed were given ,onsiderable thought

by the teacher ani were not changed by the research team. They

reflected the teacners' pest effort, at teaching for understanding,

SS9
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moving from practical work to formalisation.

Six children in each class taking part in the research were

interviewed before the teaching started, at the end of the proctical

work, just after the lesson in which the formalisation was stated and

three months later. The interview questions were designed to find out

whether the children had i) adopted the methods they were taught,

ti) gained understanding because of the introductory 'concrete' phase

and ill) appreciated a connection between the two phases and had a

positive attitude to this style of teaching, the results showed

overwhelmingly that the recipients of a series of practical

experiences, leading up to a formalisation did not appreciate that

the latter was a synthesis of the former. The most they could offer

in explanation of a Connection was that using a rule was 'quicker'.

Two reasons for this discontinuity might be that the two types of

experience were so fundamentally different that a third 'bridgino'

procedure was needed or that the teacher did not emphasise tic

connection between the practtcal and formal. The dat included

transcripts of the teacher's statements in the 'formalisation'

lesson(s) in which the practical experiences were brought together

and a verbal ur symbolic generalisation provided so that subsequently

the child was expected to work with this format. A researcher was

present at all such lessons and besides tape- record trig the teacher

she made notes of diagrams or other visual aids provided for the

children. This paper gives a description of the teachers' approach to

the formalisation and the reasons given to the children ft)i its

adoption. The CMr research monitored the teaching of area of d

rectangle, volume of a cuboid, enlargement, algebraic equations,

circumference of a circle, equivalent fractions and the subtraction

algorithm (involving decomposition and place value). Reported here

are the 'formalisation' lessons in the last two topics.

SUBTRACTION AND PLACE VALUE

Sample: Teacher. A with 25 children aged 8-9 years.

Teacher B with two groups of eight children aged 9 years

(thought to be 'ready').

Teacher C with nine 12 year olds considered to be in need of

remedial work.

The period devoted to practical work varied according to the teacher's

wishes. Teacher B spent two hours a week for nine weeks leading up to
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the symbolic form of the subtraction algorithm for three digits

whereas Teacher C only spent forty minutes a day for eight days on

the task (his pupils had, however, been taught the topic previously).

The three teachers emphasised the exchange of tens for units etc. and

in each case the meaning given to 'subtraction' was removal or 'take

away'.

Teacher A used Unifix material with his class and his intention was

that the pupils learn the algorithm for subtraction of two digit

numbers with decomposition. In the 'formalisation' lesson the

children were provided with unifix and a large sheet of paper on

which the letters T (tens) and U (units) were written. The children

were asked to set out, using bricks, the top line of a subtraction

question written on the blackboard (42-19). The teacher manipulated

figures on tne blackboard explaining that a 'ten' was to be chan(jed,

whilst the children moved a column of ten bricks to the part of their

paper labelled U. The teacher additionally drew a picture to

represent the bricks. After three such examples the bricks were

collected and the children and teacher worked symbolically.

The teacher's comments and questions
guided the order of events and

the children were encouraged to go through certain mental procedures

described as 'questions we should ask ourselves'. These questions

were couched in formal language and repeated in the same form by the

children, e.g. Richard said "you ask yourself, can you take nine units

from five units". After dealing with three examples in this way the

children were given further examples to do on their own.

The transition method employed by the teacher was essentially that

of using the materials to enact the algorithm. At no time did

teacher A say why the class was engaged in this activity.

Teacher B taught two groups of children who were withdrawn from their

classes and who were considered to be at the same level of attainment

and equally ready to learn the subtraction algorithm for three digit

numbers. He spent two lessons of nearly an hour, to formalise the

algorithm, with each group of children. in each case his review of

previous work was wide-ranging, led from the blackboard and mainly

verbal. The children were asked (1) to think about the significance

of the place in which a digit was
written, (ii) to do addition

examples together and (iii) when
manipulating figures in the 'ten'

column they were asked to say 'twenty' instead of 'two'. Again the

children were encouraged to use special vocabulary such as 'the
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carrying figure'; this was at variance with the general linguistic
style of the teacher, which was very casual. The groups had used a
variety of materials in the previous nine weeks, including Dienes
Multibase base ten. This material was mentioned by the teacher and
the children were asked to remember how a 'ten' had been broken down
into 'ones' etc. but no material was handled during the two
formalisation lessons. The link between the two forms of experience
was not specifically stated by teacher B nor was a reason given for
learning the rule.

Teacher C's pupils had been taught the algorithm before but the
teacher felt that they should be given Dienes' multibase material lnd
build up to the algorithm for

three digit numbers again. He often
told the class that their

understanding would be improved by using
the bricks. At the start of the formalisation

lesson teacher C asked
the children to lay out Dienes' bricks to represent the two lines of
figures in the subtraction 62-19. However, the bottom array of
material was not used and on one occasion it provided exchange for
the ten units needed at 'the top'. The children were then talked
through the solution to the question using bricks, including the
removal of a ten brick first (which does not match the algorithm).
Next the teacher talked through the algorithmic method, writing on
the board whilst the pupils

manipulated the bricks in their display
to match the verbal description

and provided answers to factual

questions concerning number bonds. Finally written examples were
given to the children and they were told to put away the bricks and
write in their books. Teacher C walked round the class offering
advice and if a child was finding the subtraction example difficult
he was encouraged to attempt a solution using bricks. Both child and
teacher, however, when manipulating the materials, sometimes
removed from the left rather than the right (which is fundamental in
the algorithm). Teacher C often appealer' to the superiority of
demonstration using the material, He explained the algorithm was
needed because the bricks were too cumbersome to carry around.
The three teachers adopted

different methods of introducing the
transition from materials to symbolism but none of them described
what was happening as a summing-up of the previous experiences nor
did they mention the

generalisability of the algorithm.

V 3 'r!
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EQUIVALENT FRACTIONS

Sample: Teacher D with 33 children aged 10-11 years.

Teacher E with more than 20 pupils aged 11-12 years

(assigned to the top attainment set).

Teacher F with more than 20 pupils aged 11-12 years

(assigned to the bottom attainment set).

The two secondary school classes were the top and bottom sets in the

first year of a comprehensive school which took children from the

primary school of teacher D. This fact was important in that the

primary school teacher stated that although some members of the class

did not grasp the rule during this teaching sequence, they would

"get it again" in the secondary school. The secondary school teachers

devoted five lessons to the topic; during this time teacher E also

introduced addition of fractions. The attainment profiles of the

groups interviewed were very similar and very few of these 18 children

used a multiplicative method to generate equivalent fractions after

the formalisation lessons although this was taught by all three

teachers.

Teacher D was determined to provide more than one embodiment, so the

children had cut-out and shaded regions of circles and rectangles,

worked with a fraction wall and for homework found fractions of a set

of drawn 'apples'. During the formalisation lesson they used

cuesenaire rods or colour-factor rods to form a fraction wall and a

set of counters. The teacher had provided, however, a definition of

a fraction (which the children were supposed to know), which did not

immediately match the material e.g.

[Teacher: T; Pupil: P]

T. Say I wrote up one sixth, that's writing it in numbers. On

your sheet I wrote it in words, Now what does that actually

mean?

P. One of six equal pieces that make a whole one.

T. Now if you look at our whole one this time, it's this group

of apples...

During the two formalisation lessons the teacher built up 'fraction

families' by asking the children to show the material form of a

fraction and then to display another fraction which she knew was

equivalent (all the examples were based on factors of 12). On the

blackboard, the teacher wrote, in symbols, the fractions which

appeared to be represented by the same amount of material. The

3
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transition appeared to be the formulation of a rule obtained from

looking at the array of fractions "What sorts of things do you

notice between those, those answers? Surely everybody noticed

something, didn't they?". This general request lkoduced non-

multiplicative relationships (e.g. "Each answer goes up 1, 2, 3")

besides the one being sought. A child suggested the top and bottom

number could be multiplied by another number to provide another

fraction in 'the family'. The teacher hinted that this way was

'oulicker' and showed by multiplying, with the help of the class, that

the fractions written on the blackboard could be obtained from each

other by multiplication. The fact that multiplication did not in

this case enlarge the amount was not mentioned and since the teaching

of multiplication of fractions comes much later in British textbooks,

multiplication by unity was not mentioned either. Other examples,

not modelled with bricks, were solved by recourse to multiplication.

The rule became much stronger as 'what you do to the top, you must do

to the bottom' and in this form was used to correct David's view of

the relationship between equivalents being subtraction.

In the second lesson rods were used to show equivalent amounts and

again the fraction forms were written on the board. A child suggested

one might obtain one fraction from another by division and the rest

of the lesson was concerned with the mechanics of division. In

summary teacher 0 obtained a set of equivalent amounts of material,

wrote the symbolic names for these and then from a list required the

children to state a relationship. From this was stated a rule. The

gap between the two types of experience can be seen if one asks

whether it is feasible to ask the child to set up the bricks or

counters which will show an equivalent to 3/7 if the child does not

already know one.

The secondary school teacher of the highest attaining set, let it be

known that there were certain types of fraction or reply that he

'liked' and others that he considered crude or "harder to understand".

Thus, he usually required fractions to be given in their lowest terms.

The formalisation lesson recorded was concerned with the provision of

a method of addition for two fractions with different denominators.

The equivalence of fractions was assumed knowledge but if a child

had difficulty in naming a fraction the teacher mentioned 'a cake'.

The cake was not necessarily drawn on the board but when it was, the

diagram was inaccurate and to show something already known rather

b94



- 415

than to demonstrate and 'prove'. The addition routine being taught

was a more general method than the two previously in use and could

have replaced them, but this fact was not mentioned by teacher E.

When equivalent fractions were to be used the fractions were set out
3 5

as follows and the process was concerned with division:
4 6 . 12

Teacher F's class was recorded when he taught the formal method

for finding equivalent fractions by multiplication. The first part

of the lesson was devoted to chiPren stating the number that was

written in the denominator to label the drawing of a part of a 'cake'.

Other ways of partitioning were shown on other 'cakes' and the

amount to be eaten was mentioned "In all those four examples I've

taken the same size cake every time". I've split it up differently,

but in each case you're getting the same amount of cake. You're

having to eat as much cake in that one - it's one large piece, as you

are in this one, two smaller pieces ...". The link to the rule is

stated by the teacher as "How many times as many parts did I split

this one up into?" followed by ... "So we're having to multiply the

top number by 2 as well". The teacher wrote I x 4 which was in itself
4 x 4

1

a new form of notation as previously 4- was the name for a slice of

cake.

CONCLUSIONS

The reason for the rule or algorithm being taught was not mentioned by

any teacher except as being a quicker or convenient method. The

bridge between the two types of experience received little attention,

which is not necessarily the fault of the teacher since this stage

is not mentioned in most school textbooks. The novice learner was

assumed to possess quite a sophisticated knowledge of modelling and

in particular what might be relevant when one moved from a model to

symbols and vice versa.
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DESCRIBING LEVEL OF UNDERSTANDING: RATIO

Fou-Lai Lin

National Taiwan Normal
University, Taipei, Taiwan

ABSTRACT: Based on Taiwan students' performance onwritten test and the interviews, the meaning of somehigher levels of understanding of ratio was studied.The difficulties of level 3 student in solving level 4item were investigated in this paper.

INTRODUCTION: CURTURAL DIFFERENCES

As part of national
project investigating levels of understanding in

mathematics at junior
secondary level in Taiwan, this study made of

students' understanding of ratio. An miaptmticn of the CSMS methodo-
logy and ratio test (missing value problems; Hart,1981), togetherwith an adaptation of Noelting's orange juice test (comparison
problems; Noelting,1980) were used. Sampling was completed by two
procedures: (il stratified

geographically Taiwan region into 11 strata,
(ii) simple random

sampling some number of schools and students from
each statum according to the proportion of population. A final total
of 2880 students,aged 13 to 15 years took part in this study. Samplesof 13 and 14 years old were retested

one year after to test the model
of level of understanding

which was built in the initial investigation.
While the intention of the Taiwan study was not to investigate cultural
differences between Taiwan and the U.K.,

nevertheless comparison of
Taiwan results with those of the CSMS study showed both some
interesting similarities and discrepancies which seemed to warrant
further investigation.

To begin with, the Taiwan
results showed a general consistency with

89f;
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the CSMS data in terms of the hierarchical grouping and sequencing of

items in 4 levels of understanding (bineet.a1,1986). This indicates

that Taiwan children progress through
essentially the same levels in

terms of items successfully answered as do their British counterparts.

However, the Taiwan findings differed from those of CSMS in the

following aspects (see Fig.1):

facility

CSMS Taiwan

IV

IIl
x.--

Ill

LI

IV

o, ta
X

X
Fig. 1

item at the same level

in both atudy
item at a different level
item only included in
Taiwan study

1. Differences in item facilitity.

The item exemplifying this most

noticeably was the recipe ques-

tion, given the amounts for eight

people, to ask for the amounts

for six people, (ref.& in Fig.1),

where only 60% of the Taiwan

sample solved this correctly,

compared with 85% of the British

sample. The CSMS analysis

indicated that this item was

"easy" for the British children

because they were able to solve

it by the use of informal "child

-methods" (llart,1981). The

relatively difficulty of the item

in the Taiwan sample therefore

suggested that perhaps Taiwan children did not use the same kind of

strategies. This suggestion receives support from the fact that

the Level I
items were generally more difficult for the Taiwan

sample than for the U.K..

2. Inclusion of all test items in the Taiwan levels of understanding

defined, whereas some items were excluded from the CSMS levels.

From the point of view of the mathematical nature of the items

excluded by CSMS, there appeared to he no obvious reason why these

should be omitted. lhis observation may also suggest that Taiwan

students performance !Its more closely to "mathematical expe,tation"

than does that of the British students.

I. Narrower facility spread, distribution difference: There is marked

difference in the iacility hands
defining the 4 levels of underst-

anding, with the Taiwan levels spanning a narrower total range

'637



than did the CSMS levels. This shows that the items corresponding

level I were relatively more difficult for the Taiwan students and

that a higher percentage (9-13% more) were failing to attain this

level, but that each of the other levels 2 to 4 was relatively

easier, with a substantially higher number of Taiwan students

(10-20% more) performing at level 4 than reported for the British

sample.

4. Also of interest was the lack of gap between levels
I and 2 in the

Taiwan data, showing that once Taiwan students have attained level

1, it is substantially easier for them to progress through the

remaining levels than it is for the British children. The reasons

as to why this may be so seemed to require further investigation.

QUESTIONS

It was therefore thought useful to examine three questions:

I. Why is it harder for Taiwan students to succeed on the level 1

items?

2. Why is it easier for Taiwan students to succeed on the level 4

items?

3. What are the difficulties of lower level student in solving higher

level items?

The first question is being reported upon elsewhere (Lin & Booth, in

preparation); this paper takes as its focus the second question. From

developmental point of view, it is also necessary to consider level 3

students' performence to approach the second question.

APPROACH and METHODOLOGY

In discussing the different levels of understanding, the CSMS project

8 98
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placed considerable emphasis on the nature of the methods which

students used in solving the different level items. This issue of

method used is of particular importance in the case of the ratio test

items, since examination of the test chows that most items can be

successfully handled by knowledge and application of the formal rule

E . In the case of CSMS research, Hart (1981) reported that

b d

"there was little evidence that the taught rule was remembered and

used by the children"; and "no child quoted the unitary method" in the

interviews. "In fact most children on interview changed the method

they used continuously, adapting to what they saw as the demand of the

question. Generally they avoided multiplying by a fraction and tended

to build up and answer in small segments, adding them together at the

end". The methods the Taiwan students used are quite different from

the above description. It was therefore thought useful to examine the

nature of the methods used by Taiwan students in handling the ratio

test items. The examination was carried out by two steps.

Data Analysis

(i) analysing the frequency of different methods used to solve each

item by level 3 and 4 students from retested data, which has

better coding than the initial data.

(ii) analysing the association between Noelting's cognitive stages

and the understanding levels in ratio with retested data.

2. Interviewing

(i) identified samples of level 3 and 4 by CSMS test.

(ii) interviewing with Noelting's orange juice test.

(iii) interviewing with a non-ratio missing value problem (Markovits,

et.a1.1986), the "Truck Problem": given the total weight of a

truck with 3 tons of goods, to find the total weight of this

truck with 6 tons of goods.

Taiwan data showed that there are 11%, 29%, 46%, and 42% of level 3

students used a wrong "addition strategy" to solve Mr. short problem

and non-integer multiplier enlargement items in CSMS test, one L-shape

and twoK.shapes respectively. The reasons as to why those students

fall back to "addition strategy" became our major concern while we

investigated the difficulties of level 3 students in solving level 4

items. Six samples of this type of level 3 students were then

interviewed.
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RESULTS

A. Level 4 students' performance

They have learned and known how to apply formal procedures, formula/

multiplier/unitary method, to different number structures and con-

texts. 801 -901 of them solved 4/5-5/6 of items in each level by

those multiplicative strategies.

More than half of them have tendency of switching one method to

another in terms of different situations. There are 401471107. of

15 years old group used formula/multiplier/unitary method consis-

tently to solve more than 2/3 of all items. For 14 years old

group, the corresponding percentages are 10/32/2. 15 years old

group have received formal rule teaching, 14 years old group haven't.

They have strong tendency of using one single method to solveitawrof

different number structures in a context. Each student in the

interviews applied only a single strategy to solve all Noelting's

orange juice problem. The more advanced ability of choosing the

"easier" ratio between scalar and functional ratio (Karplue et al,

1983) was not observed in this context.

They have good ability of writing readable procedures. Only 4-107.

of their correct answers in each item can't be identified by our

coding system.

The ability of differentiating ratio relation from non-ratio rela-

tion is relatively good. Most students on interview explained the

truck problem correctly.

Most of them are at late formal stage. 787. of 1599 retested samples

are in Noelting's stage 3B.

B. Level 3 students' performance and learning difficulties

Most of them can apply multiplier/unitary method to solve problems

with rate as hard as 2:3 or 2:5 in different contexts. 50-701

(reap. 37-507.) of answers of 14 (reap. 15) years group were coded

with those two methods in 4/6-4/5 (reap. 3/6-4/5) items of level
1, 2 and 3. 461 (reap. 271.) of 14 (reap. 15) years group are con-

sistently used those two methods to solve more than 2/3 of items

in level 1, 2 and 3.

147. of 15 years group used formula method consistently to solve

more than 2/3 of items in level 1, 2 and 3. 12-257. of answers in

;) 6 0
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3/6-4/5 items in level 1, 2 and 3 were coded with formula method.

44% of level 3 students used "halving" and
"building up using

halving" strategies to solve the recipe question.

41 The ability of writing readable procedures is relatively weak.

20-357. of their correct answers in level 1, 2 and 3 items can't

be identified by our coding system.

II The ability of differentiating ratio
relation from non-ratio

relation is relatively weak. Only one out of six samples on

interview explained the Truck Problem correctly.

In term of Noeltingis stages,
their performances are not stable.

Why many level 3 students used 'kddition strategy" as their fall-back

method to solve enlargement problem with non-integer scales? Some

possible reasons were observed on interview.

do feel comfortable about
addition strategy because it is simple

and reasonable. The common difference 'elation is a strong

support of their reasoning.

do not understand the formal method of finding multiplier.

do not view non-integer multiple as a multiple.

can only recognize one kind of proportion, namely the proportion

between the corresponding segment
in two figures or the proportion

between two parte in a figure. Be confused with proportion of curves.

They are likely working on the relation among numbers but ignoring

the units which are accompanied with numbers in the context. e.g.

in Mr. Short problem.
This tendency is very prevalent among lower

level students.

DISCUSSION

How does Taiwan students, learning of formal ratio procedures came

abo6t7 Certainly the Taiwan education system is one which places

considerable value on academic achievement, and students are

relatively well-motivated to study hard. However this observation

by itself does not seem to explain students' better performance in

this regard. To say that it did would imply that the difficulties in

this regard widely reported elsewhere in the research literature

901
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were motivational rather than cognitive in basis. Nevertheless, it

would seen that some aspects of the teaching situation in Taiwan are

contributing to children's better learning in this area. Studied

elementary strategies used by Taiwan etudente, we had observed that

they are always looking for number pattern and relations among given

data (Lin & Booth), which are more formal and mathematical than by

British students, where child-methods (Booth, 1981) is more prevalent.

Therefore, the distance between elementary strategies and formal

procedure is less for Taiwan students than for those in U.K.. In

terms of Ausubel's "meaningful learning"-attaching new learning to

what already learn, Taiwan students are on their ways of learning

formal methods.

Acknowledgement: The author like to expreea Eta thank° to L.R. Booth
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DECIMAL MULTIPLICATION IN GRADE SEVEN

Douglas T. Owens
University of British Columbia

The purpose of this paper is to report explanations of children's mental

activity in multiplication as it applies to decimals. A small group

teaching experiment was followed by tests and interviews. To assess

student's thinking processes, individual interviews with six students are

reported. Rational explanations beyond the stating of rules were

forthcoming from only one of the six students.

Hiebert (1984) has distinguished two types of knowledge that children acquire about

mathematics: Cum and unslerstanding. Form includes symbols for numbers, operations

and relations. Understandings are intuitions and ideas about how mathematics works

that make sense to children. Some of these are learned in school and some arise from

informal situations. Hiebert and Wearne (1983) concluded that the students they

interviewed had a good grasp of decimal form but did not have a thorough

understanding of decimal concepts. This is consistent with my previous research

(Owens, 198o) in which students could very effectively compute in decimal

multiplication by "counting" decimal places. However, when asked to estimate the

product to place the decimal where the significant digits were given (but ending error:;

dropped), students persisted in counting to place the decimal.

The research reported in this paper is viewed as a teaching experiment with a small

group of students under close observation, It is based in the view that students

construct their own knowledge in an effort to order their experiences, whether

informally or in school, individually or in groups, using manipulatives or textbooks. In

this study students were presented with questions and problems in the prasence of

certain settings and stimuli intended to aid students to construct concer tual meanings

for particular forms and symbols used to represent multiplication of decimals.

METHOD

The entire grade seven cohort of 41 students was given a pretest on the following topics

containing decimal numbers: Writing a decimal between two given numbers with or

without the aid of a number line, ordering, computing products, estimating to place the

decimal in a product, and solving multiplication story problems. The investigator was

'10'1t.A
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then involved in instructing the cohort. Instruction was intended to help students
construct meaning of and intuition about the size of products of rational numbers. As
an experience base, students were asked to measure in metres or centimetres RA stilts of
things and parts of the classroom and building. We discussed partitioning such
measurements into 10 equal parts. Students were asked to divide by 10 to get 1/10 of
the measurements. Triads of patterns introduced multiplication of fractions in relation
to division by a whole number, (a) 8 4 (b) 1/4 of 8 (c) 1/4 x

The deft nition, 'of means multiplication," was given.

At that point in the project, six students were selected for small group instruction and
observation. Selection was made on the basis of performance on the pretest. Average
students with a range of performance in mathematics were selected. With the group of
six, more formal activities were undertaken in decimal notation, addition, subtraction,
and multiplication. As feasible, activities included the use of base blocks, linear metric
measure and diagrams. Students were asked to observe these phenomena and make
conclusions,

Against G'is backdrop multiplication of decimals was introduced. From fraction
multiplication 0.25 x S 2. Using measurement, what is 0.1 of 1.5 in? It was
reasoned that 0.i of I m 10 cm and 0.1 of 0.5 m 5 cm. So 0.1 of 1.5 m is 15 cm,
and 0,1 x 1.5 m .15 m. Similarly 0.3 x 1.5 m 0.45 in. This type of example
eventually led to recognizing that tenths times tenths gives hundredths. Using a grid of
1000 squares, 1/2 of 1/4 (of 1000) is 125 squares. That is, 0.5 x 0.25 (of 1000) is 125
(of 1000). Hence, 0.5 x 0.25 d 0,125. In another setting, 0.5 x 0.25 in is (1.25 cm)
0.175 in, Examples like this led to the rule that "tenths times hundredths gives
thousandths," Following instruction, the entire cohort wrote a posttest similar to the
pretest. Following the posttest, the six students of the small group were interviewed to
explore their thinking processes with regard to multiplication.

RESULTS AND CONCLUSIONS

Pretest and posttest subscale and to:al test scores of the six selected students are
presented in Table I. On the first subtest students scored lowest on the item "Multiply;
.4 x .2. An example of second type, EPDP, is "Estimate the answer then place the
decimal point in the given 'answer', 7.342 x 0.5 3 6 7 I." The multiplication
problems (Mul Prob) were story problems which included supplying the answer or
equation, or selecting (multiple choice) the operation. The division story problems (Div
Prob) asked for an equation or selection of an operation. The Order items asked that 3
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decimal numbers be listed from greatest to smallest. "Between" requested the writing

of a number between two given decimal m...nbers.

Table I

Summary of Written Test Data

u .

Multiply pre 8 4.0 4 0 7 4 4 8

post 7 4.9 2 2 5 6 6 7

EPDP pre 5 1.6 1 3 0 1 0 5

post 5 .54 0 0 2 0 0 0

Mul Prob pre 8 1.9 3 1 0 3 1 8

post 10 4.7 4 6 6 7 7 11

Div Prob pre 2 .18 0 0 1 0 0 0

post 4 1.3 0 1 I 1 1 2

Order pre 2 1.0 2 0 1 I 1 1

post 2 1.2 2 2 0 0 1 2

Between pre 3 1.0 0 I 1 1 0 0

post 3 1.7 2 2 2 1 3 3

Total pre 28 10.8 10 5 10 10 6 22

post 33 14.3 10 13 16 15 18 25

The interviews were composed essentially of items selected from the posttest. Students

were then asked about their use of "rules." Of particular interest are the issues of I)

estimation of products, 2) multiplication always makes bigger, division makes smaller,

3) "or means multiply, and 4) shading a diagram. Numbers 2 and 3 were set in

choosing the correct operation in a story problem. The diagram was a 10 by 10 grid

with "Shade the diagram below to show 0.3 of 0.1." Table 2 contains a brief summary

of the interview results.
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Interview Data Summary
,4 x .2 Estimate Choose Operation Diagcam

Adam First .8 Unable Good guesses First unable
Later .08 Unable to explain Later able.

Liz .8 Unable Multiplication With diagram
makes bigger. 0.3 of 0.1
Division is 0.03. But
makes smaller. .3x.1 - .3

Mick .8 Unable Multiplication With
corrected bigger. (Try it) prompting
at end Division smaller.

Then adjust

Mary .8 "Forgot Uncertain or With
What I how, unsure. prompting.
think but done Not related

correctly to .3x.1

Bill First .8 Unable Overgeneralized Unable.
Then of means Compute:
Noticed 2 multiply' .3x.1 -, .03
places

Lena Counted Satisfa- Guess and test. Satisfactory
places ctory Estimate result
correctly and adjust.

For Adam .4 x .2 .. 0.8. Adam usually counted places, but seemed to have other rules
for special cases. For example, on the posttest 13.0 x 0.6 - .18. When prompted, he
estimated and was confident that the estimate was correct. (It was.) However, he was
unable to estimate consistently. In choosing the correct operation, he appeared to make
good guesses. He would respond correctly but was unsure and unable to explain. At
first, Adam was unable to explain multiplication via regions but when we returned to it
at the end of the interview, he did so quickly and correctly to conclude that 0.3 of 0.1
= 0.03. He was also able to fix 0.4 x 0.2 -, 0.08 (formerly 0.8) without hesitation.
Adam guesses that he uses rules, but he does not understand them.

9 0 f ;
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For jjz .4 x .2 .8. When prompted to estimate she computed 3.00 x 7.00 21.0000

but persisted to count decimal places and was unsuccessful in estimating. In a story

problem about gasoline consumption, she estimated directly and correctly. However,

she chose the operation based upon "when you multiply the answer is higher" and "when

you divide the answer is less." With prompting she marked the grid to conclude 0.3 of

0.1 .03. However, she calculated .3 x .1 She didn't know which of her answers

to believe, and she was surprised ('Really ?') when the interviewer suggested she should

believe the diagram. Liz said that she does not use rules but she knows what to do by

remembering "things like shortcuts," and she believes she understands.

gjek computed .4 x .2 .8. When prompted to estimate, he wrote 3. x 7. - .21000 and

was unsuccessful. In choosing the correct operation his first hypothesis is that

multiplication makes bigger, division smaller. However when he multiplied 0.75 x

$900.00, and got an answer which was smaller than $900, he decided that he should

divide. He said "If you divide it by three-fourths, you find out how much each one-

fourth costs, and add it to 900." While not precise, this statement shows considerable

understandiog. With prompting, "first get one-tenth", he was able to complete the grid

for 0.3 of 0.1. After faltering he recovered to conclude .03. When asked, he realized "I

made a mistake on the first question,' and he corrected it. Mick uses rules and knows

what they mean. When prompted he noted "hundredths times hundredths is ten-

thousandths because 10,000 has four numbers after the decimal and 100 has 2, and

because two times two is four'

When Mary was asked to explain how she knew .4 x .2 0.8, she replied, "Because, urn,

it's just what I think." She indicated, "I'm not sure how to do it using estimation - I

forgot In fact, she got both estimation items correct in the interview. Mary is

uncertain in choosing the operation. In one division situation (divisor <I), she correctly

said the answer would be larger. However if it were smaller she thinks it would be

because it is cheaper if you buy more. For the question "If 16 friends got together and

bought 4 kilograms of cookies, how much would each one get," Mary said divide

because it's being divided into 16 groups. She wrote 45-1-W because "you can't divide 16

into 4." With prompting "What is one-tenth of the page?... Now what is three-tenths

of one-tenth?" She was able to shade the diagram. However, she found it necessary to

compute 0.1 x 0.3, including a full row of zeroes to get 0.03. When asked about

returning to .4 x .2 she corrected it (0.08) immediately. She also volunteered that she

will check answers with estimation now. When given an example of a shortcut,

"counting decimal places," she observed that she has been doing that since grade 5.
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For .4 x .2 first wrote .8. When he noticed there were 2 places in the factors, 'I
saw it was 2 over,' he changed to .08. When asked to estimate, Bill did not remember
how. He persisted in counting decimal places. In choosing the operation, Bill
overgeneralized 'of means multiply." For example, 'Tom spent $900.00 for 0.75 kg of
platinum. What would be the price of 1 kg .7' Bill said this is a multiply because it
has "of" in it. Strangely, he had not misused the rule this way in the posttest, but he
did so very consistently here. This may have been because the giver of the rule was
present at the interview. Bill could not shade a grid to show 0.3 of 0.1, but he could
multiply 0.3 x 0.1 0.03. At first Bill said he doesn't use rules. Upon probing, "But
you told me how to know where to place the decimal." He allowed, "Oh yes, that is a
rule." However, he doesn't know why it works.

Una is the one student who had reasons for her actions. She counted places to
multiply. She estimated correctly when asked to do so. On the pretest she had done
long multiplication to get the EPDP items correct. On the posttest, she appeared to
have counted decimal places. She used a variety of strategies to choose the correct
operation. In one case she chose the correct division equation by eliminating the other
choices. In other cases she made a guess and tested it. For example, she multiplied
(multiplier < I) and got an answer less than $900, but she believed the answer should be
greater than $900. She concluded that division might be correct but ended saying 'I
don't really know." She correctly shaded the diagram, solved the equation, and saw the
relation between the two.

In summary, the rule for counting decimal places when multiplying is strongly
entrenched. The item .4 x .2 was a particularly striking exception. Presumably, the
Gestalt of aligning decimals in vertical form is particularly attractive in an item like
this. Students who understood shading the grid in the interview, even with prompting,
were able to then correct their earlier mistake. Both the written tests and the
interviews confirm how extremely difficult estimation is for students. An important
hypothesis to test is whether introducing and perfecting estimation skills prior to
introducing the usual rule, would result in better understanding of estimation and
indeed all decimal concept ; This study included no instruction on choice of operation
or story problems per se. The results were consistent with previous studies (see Greer,
1987). Carefully designed instruction is needed to determine how the predisposition
toward "multiplication always makes bigger and division always makes smaller' can be
corrected.
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HOW SHOULD NON-POSITIVE INTEGERS BE INTRODUCED

IN ELVENTARY MATHEMATICS?

Philip N. Davidson

Michigan State University

This paper explores the possibility of introducing non-
positive integers at an early level of mathematics
instruction. It is proposed that negative and positive
integers can be represented in a natural and concrete way as
iterated actions oriented in opposite directions.
Theoretical and formal justifications for the proposal are
presented, and research is reviewed which suggests children
do represent numbers in this fashion in some contexts.
Further evidence from a recent study suggests that by about
age 7, many children are able to solve problems involving
negative quantities represented as action sequences in game-
like activities. Similar activities, it is concluded, could
be adapted for instructional purposes.

It is not unusual for children's introduction to the integers to take
place in three steps: In preschool through first grade, children gain
familiarity with the counting numbers and are encouraged to practice
addition and subtraction of counting numbers using manipulable objects.
Due to the absence of negative integers in these activities, children
acquire the quite reasonable rule that larger numbers cannot be
subtracted from smaller numbers.

Next, computation with written numerals is emphasized. These
activities involve the concept of place value, and rules for carrying
and borrowing. The latter rule partially contradicts the previous
prohibition against subtracting a larger from a smaller number:
subtraction of a larger from smaller digit within a multidigit
problem is now permitted, although subtraction of a larger multidigit

number from a smaller one is not possible. The rules for borrowing may
seem like arbitrary notational devices to children who acquire them
without having a firm notion of place value (which may often be the

case; cf. Kamii, 1985).

Negative integers are introduced last. Children learn that, in tact,

9 Li
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it is always possible to subtre-t a larger from a smaller number.

Indeed, it is possible to dispense with the idea of subtraction

altogether, replacing it with a notion of adding negative numbers. The

discontinuity of this aspect of children's formal mathematical

knowledge with their original mathematical intuitions is now complete.

It is known that many children and adolescents feel alienated from

mathematical activities, professing the heteronomous belief that math

consists of following arbitrary conventions established by authorities

(e.g., Erlwanger, 1973; Lee & Wheeler, 1986). Introducing the integers

in a manner which requires students periodically to overthrow their

previously well-founded intuitions could contribute to this

mystification of mathematics. Legitimizing non-positive numbers from

the earliest level of instruction might facilitate constructing a more

coherer.t and autonomous view of mathematics.

The pedagogical strategy of initially emphasizing mastery of the

counting numbers is based, at least in part, on the principle that

children construct knowledge through the manipulation of objects.

Since non-positive integers are not representable concretely as

manipulable objects, their introduction is deferred until basic

computations. concepts and skills have been acquired. This principle

is compatible with, but not the same as, the proposal by some scholars

that children invent number knowledge through counting. For example,

Gelman and Gallistel (1978) suggest that the zero concept may require

formal tutelage in a way that knowledge of counting numbers does not,

because zero is not represented concretely in the environment and is

therefore not available in children's counting activities.

An alternative interpretation of the significance of manipulables

derives from Piaget's (e.g., 1975/1985) proposal that logico-

mathematical knowledge arises through a process of reflective

abstraction. In this view, children construct knowledge of numerical

invariance and numerical operations by reflecting on the general

properties of their own actions, such as grouping objects into a

collection, separating a collection into parts, and so forth.

Accordingly, manipulables are significant primarily because they serve

as a medium for performing actions, for distinguishing mathematically

relevant from irrelevant actions, and for calling attention to the

general forma of the relevant actions (i.e., adding, subtracting,

BEST COPY AVAILABLE



- 432 -

multiplying, dividing). It is less significant for the growth of

mathematical knowledge, although clearly it is convenient, that objects
can be construed as empirical representations of positive integers
(just as numerals can be used as notational representations by older
students).

Unlike non-positive collections of material objects, non-positive
actions performed on material objects not only exist but are familiar
to children from infancy (e.g., Langer, 1980, 1986). Such actions
include negations such as decrementing a collection, or dividing a

collection into parts; and null actions such as leaving a set invariant
by performing quantitatively irrelevant maneuver, or restoring a
collection's previous state by performing the inverse of a prior
action. Both positive and negative integers are thus potentially
representable in a concrete way; for example, as incremental and
decremantal actions performed on a collection, or as forward and
reverse motions along a line.

(More formally, this is equivalent to representing numbers as unary
operations or functions; thus, the integer 3 is identified with a
function that increments 3 units [fx x + 3]; and the integer -3 is

identified with function that decrements 3 units [gx x - 3].

Cayley's theorem - -any group is isomorphic to its transformation group- -

is the formal counterpart to, and provides a formal justification for,

such an interpretation of the integers. The present interpretation can
also be linked to category theoretic foundations, just as the

interpretation which views objects as the primary representation of
quantities is aasociated with set theoretic foundations.)

However, is there any evidence that children can in fact use iterated
actions to represent quantities? Inl primary evidence for this

possibility comes from studies of children's addition strategies (e.g.,

Fuson, 1982; Secede, Fuson & Hall, 1983). This research indicates that
young children spontaneously perform addition by combining two counu

sequences, and progressively develop more efficient forms of this basic
strategy. In the initial "counting-all" strategy, each addend is
represented as a sequence of incremental actions (i.e., a function
fx x + n), and addition is represented as the composition of these.
In the subsequent "counting-on" strategy, one addend is represented as
a constant and is taken as the argument of the other addend, which is

9 L
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represented as a function. This developmental sequence suggests that

representation of numbers as iterated actions may precede, and even

provide the foundation for, the representation of numbers as constants

(at least in the context of computation).

A recent study (Davidson, in press) provides further circumstantial

evidence of a link between numerical knowledge and understanding of

functions in 5- to 7-year old children. Numerical tasks included

number conservation and arithmetic problems. Function tasks from

outside the numerical domain were used in order to disconfound

children's ability to reason about the basic properties of functions

(e.g., unique value and coaposability) from their general numerical

competence; for instance, some tasks presented functions in the form of

spatial transformations. The research design also permitted

controlling other variables relevant to numerical competence, such as

age and logical ability. The results confirmed a significant relation

between numerical competence and ability to reason about the general

properties of functions, even with these other relevant variables

controlled.

My current research is cocerned with whether children in the age range

of 4 to 7 years can represent non-positive numbers in action contexts.

In one task, children matched a set of toy bees to a set of coy

flowers. They were then asked to "take away zero flowers" and to "add

zero bees." The age trends for both problems were significant, with

few younger children but about half of older children succeeding:

performances on the two problems were highly correlated. On both,

children who failed generally responded by removing objects from the

display; those who succeeded usually performed a null operation by

using en empty hand.

In another task, children wore asked to count a set of objects starting

with zero (i.e., 0, 1, 2, ...) and then count as usual starting with

one; they were then asked to explain the discrepancy. All children

counted correctly from one. Surprisingly, 850 were also able to count

from zero, and without raising objections about using this method.

Although all children could say which count yielded the correct number

of objects, only 351 could explain the discrepancy by referring to the

mistake of beginning a count with zero. Explaining this discrepancy

was significantly associated with performance on both the adding zero
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and subtracting zero tasks.

Two tasks examined children's ability to combine positive and negative
quantities represented as iterated actions. In the "Heilman" game,

positive and negative quantities were represented as forward and

backward movements along a cardboard street of houses which represented

number line from -4 to +4; movements were specified by colored arrows

drawn from a deck of cards. Children combined positive end negative
movement's sequentially by moving a toy mail van. Their greatest

difficulty was tendency to skip over the zero house instead of

treating it as a valid position on the number line, which resulted in

incorrect answers. Nevertheless, about 4131 of the subjects, at all age

levels, used the line correctly and located addresses by combining

forward and backward movements.

In the "Hippo" game, positive and negative quantities were represented

as actions of incrementing and decrementing a set. Children played a

zookeeper who puts food pellets into the hippo's bowl--or takes some

out--according to instruction, provided by a slimmer. Colored marks on

the spinner signified decrements and increments in order from -4 to +4.

The first part of the tank involved learning the decremental or

incremental actions defined by these color codes; the purpose was to

determine whether children would invent a number line ranging from

negative to positive values in order to master the numerical meaning of

the codes. In the second part of the task, the idea of the hippo owing

food pellets was introduced, and children were given arithmetic
problems such as adding 3 pellets when the hippo owes one pellet.

Significant age trends were found for both the learning trials and the

arithmetic problems; younger children showed understanding on under a

third of the arithmetic problems, and older children on over half.

Because this research focuses on eliciting students' intuitions about

non-positive integers, with no attempt to train them on the relevant

concepts, these data are a conservative measure of children's potential

competence. The pattern of results indicates that a practical ability

to work with combinations of negative and positive quantities and

zero--represented as action sequences oriented in opposite directions,

and as performing a numerically irrelevant action, respectively- -

undergoes development between 4 to 7 years. The results do not imply

that children spontaneously acquire explicit or formal conceptions.
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For instance, few children could explain the difficulty in the counting

task; alt.:, when asked in the closing interview, only 4 students stated

that there might be numbers smaller than zero (2 mentioned the hippo

game and 2 mentioned the mailman game as giving them this idea).

Nevertheless, the results do suggest a possible foundation for

instructionai activities that could lead to explicit conceptions about

non-positive numbers.

CONCLUSIONS

The theory and research reviewed provide a framework for further

exploring the possibility of introducing students to negative numbers,

in a concrete way, earlier than is typical. The core of the present

proposal is that there is a natural equivalence between integers

conceived as constant quantities, and integers conceived as iterated

actions. To take advantage of this, instruction could make use of

game-like activities that require combinations of action sequences

oriented in opposite directions, and that encourage student.: to reflect

on the general properties of actions (e.g., that each action has an

inverse). Explicit notions of negative numbers could be introduced by

drawing attention to the link between, and by using the same word for,

action sequences and constants; for instance, "if you have 0 and you

take-away 4, then you have 4 take-sways left." (The idea of a negative

constant could be further linked to the notion of debt.) Finally,

conventional terminology for negative constants would be introduced.

The aim of this proposal is to provide a way for students to explore an

interesting mathematical structure from the start, beginning with

simple action-based intuitions that lead to the construction of

increasingly formal understandings, without the mystification that may

occur when early intuitions are in disharmony with later formal

instruction.

915



-436-

REFERENCES

Davidson, P. (in press). Early function concepts: their development
and relation to certain mathematical and logical abilities. Child
DeveloplInt.

Erlwanger, S. H. (1973). [Sonny's conception of rules and answers in
IPI mathematics. Journal of Children's Mathematical Behavior, 1,

7-26.

Fuson, K.C. (1982). An analysis of the counting-on solution procedure
in addition. In T.P. Carpenter, J.M. Moser, & T.A. Romberg
(Eds.). Addition and subtraction: A cognitive perspective (67-
81). Hillsdale, NJ: Lawrence Erlbaua.

Gelman, R. & Galliatel, C. (1978). The child's understanding of
number. Cambridge, HA: Harvard University Press,

Karaii, C. (1985). Young children reinvent arithmetic. New York:
Teachers College Press.

Langer, J. (1980). The origins. of logic: Six to twelve months. New
York: Academic Prase.

Langer, J. (1980). The origins of logic: One to two years. New
York: Academic Press.

Lee, L. & Wheeler, D. (1986). High school students' conception of
justification in algebra. In G. Lappan & R. Even (Eds.),
Proceedings of the Eighth Annual Meeting of PHE-NA, (pp. 94-101).
East Lensing, MI: ERE-NA.

Piaget, J. (1985). The equilibration of cognitive structures (T. Brown
& K. J. Thampy, Trans.). Chicago: University of Chicago Press.
(Original work published 1975).

Secede, W., Fuson, K. & Hall, J. (1983). The transition from counting-
all to counting-on in addition. Journal for Research in
Mathematics Education 14, 47-57.

3 i



- 437 -

NON-CONCRETE APPROACHES TO INTEGER ARITHMETIC

Piet Human and Hanli Murray, Research Unit for

Mathematics Education, University of Stellenbosch, South
Africa

Building on previous work by the authors, the

incidence and nature of the computational
strategies used by upper primary school

pupils, prior to formal instruction in

integer arithmetic, was investigated through
clinical interviews and a teaching
experiment. The results indicate that about
one third c children in the age group 10 to
14 may spontaneously resort to using

analogies with whole numbers when confronted
with certain cases of computation with

integers, acknowledging the excistence of

negative numbers as "negative quantities" in
the process. It also appears that a much

smaller proportion of pupils resort to

reasoning in terms of temperatures.

The research previously reported by Murray (Murray, 1984:

147-153) included the observation that, given appropriate

stimuli, some upper primary school children readily and

spontaneously resort to analog_cal methods of reasoning in

order to perform calculations with integers e.g.-5 --2 =-3

"because when from minus 5 you subtract minus 2, yeu get

minus 3", or, stating the analogy to whole numbers more

explicitly, "because 5-2=3 and these are minuses...it is

an ordinary subtraction sum". (The quotes are from

Murray's interviews with upper primary school children who

have not had any formal instruction in integer

arithmetic). Some pupils in Murray's interviews also

exhibited reasoning in terms of the "oppositeness" of

negative numbers and whole numbers, e.g. "5 + -3 was

subtraction, then 5 - -3 will be addition" and " -5 means

9 7
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you have to get 5 more before you have 0". We decided to

investigate this phenomenon further, with ft view to the

possibility that the exploitation of such non-concrete

intuitions could be a useful adjunct to reasoning in terms

of concrete and semi-concrete embodiments (e.g.

temperature, the number line) during introductory

teaching.

We now report on two further projects undertaken under

our guidance, building on Murray's initial work. The first

project, by Hugo, comprised a replication of Murray's

interviews with upper primary school pupils, and more

specifically with seventh graders. The second project

comprised a teaching experiment in the upper primary

grades, conducted by Malan.

Hugo (1987) conducted individual interviews with 97 7th

grade pupils (age range 12 to 14), being the total 7th

grade population of two fairly typical schools in a large

country town (Kimberley). The purposes of this project was

to check observation on the incidence of

spontaneous non-concrete reasoning strategies in a

different and more representative sample. The interviews

were preceded by a short introduction to temperatures

below zero, which included the setting of questions like

"It is now 3 degrees C, where will the mercury on

thermometer be if it gets 10 degrees colder?" The

interviews commenced two weeks after this introduction.

One of the first questions asked during the interviews was

"4 - 3 ? ". Pupils who did not respond with -5 were

again reminded of temperatures below zero and naked a

number of questions regarding temperature changes. No

hints were given by the interviewer on how to answer the

J18
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questions, nor whether the answers given by the pupils

were correct. This procedure was also followed for the

main part of the interview, which consisted of the

questions in table 1 below being put to the pupil on a

printed sheet, allowing the pupil to do them in any

sequence. After answering a question, the pupil was asked

to explain how he/she reasoned to obtain the answer. The

facility levels obtained for some of these questions are

given in table 1, along with Murray's results for 993

eighth graders, prior to formal instruction in integer

arithmetic (1984:147), as well as the facility levels

obtained by Malan'a experimental classes after four

half-hour periods of instruction in addition of integers.

The important question with reference to these facilities

is of course how pupils reasoned to obtain correct

answers, since correct answers may result from quite

meaningless manipulation of symbols, e.g.

(1) "-12 - -4 = -8 12 - 4 = 8, put the minus
before the answer too" (this strategy also produces
correct answers for -a + -b, -a X b, and a X -b, but
produces wrong answers for the other cases);

(2) '8 + -5 = 8 + 0 - 5 = 8 - 5 = 3", introducing an extra
number in order to interpret the -sign as an operation
sign

Our analysis of the strategies used by pupils have so far

been completed for the cases 8 + -5 and -12 - -4 only. The

results of this analysis is summarized in table 2. (The

distribution of strategies for the addition of two

negative numbers, e.g. -5 + -8, is very similar to that

for the latter case above). The analysis shows that 35% of

the 97 pupils managed to do -12 - -4 correctly in terms of

a meaningful concept of negative numbers, while the

.corresponding figure for 8 + -5 is only 13,4%. These
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TABLE 1: FACILITY LEVELS PRIOR TO FORMAL INSTRUCTION IN INTEGER
AAITIMETIC

FACILITY LEVELS (61

Project Hugo Murray Malan

Grade level 7 4 5 6 7

*of pupils 97 993 31 35 35 42

-7 - -7 72

-12 - -4 56 57 69 73 66 61

5 - 8 54 46 50 60 60 90

-5 -3 53 61 42 62 63 59
7 -7 41

-6 x 3 41 45 39 49 66 51

3 x -1 40 54 44 57 74 56

8 -5 35 51 37 31 54 73
3 5 34 42 46. 60 $3
-5 - -8 20 34 18 35 17 27

-8 - 3 18 21 25 22 23 39

5 - -8 3 17 3 3 0 2

(Facilities marked with asterisks indicate that formal instruction

was given prior to testing) (In the table, the cases are indicated

by examples, the actual numbers were sometime different for the

different groups of pupils. In most cases, the actual test con-

tained more than one example of a particular case, the given fa-

cilities being medians. Differences in facility levels for dif-

ferent examples of the same case were negligible.)

TAIL$ 2t SREARDOMN OF STRATEGIES USED SY MUGO'S 7TH GRADERS

STRATEGY 11 r -5 -12-7

Total number of pupil giving correct
answer (from total of 97 pupils)

34 54

Correct answer obtained by simply putting
-sign before answer, without any indi-
cations of meaningful concept of nega-
tive numbers

f 0 13

Correct answer obtained by interpreting
-sign as an operation sign (ignoring the

in 8+-5 and subtracting: S - 5 (14
pupils) or introducing Hero:
11-S. 8+0 -5- 3 (4 pupils)

514 ,
of 34

, 18

24%

of 54

, 0

Reasoning in terms of the temperature
scale leg go 8 degrees up from -5')

i 8

0

Computing by analogy to whole numbers,
interpreting negative numbers as tempera-
tures below zero. (eg '12- 4.8, but
them are temperatures below freezing
point)

0 20

Computing by analogy to whole numbers,
making no reference to temperature but
emphasising that these are 'mime numbers'
leg 'minus 12 subtract Moue 4 gives
minus 8' or '12-4. 11 but these are minus
numbers')

38%
of 34

13,4%

of 97

0

650

of 54
36%

of 97
11

Other methods exhibiting meaningful
concept of negative numbers leg debt (11,
inverses (31, points on number nine (M. 5 4

Unintsrpretable reasons 3 4

(61



- 441 -

figures at the same time indicate that a much higher

percentage of pupils spontaneously resort to analogical

reasoning (which was never suggested by the interviewer)'

than the percentage of pupils resorting to reasoning in

terms of temperature (which was strongly suggested by the

interviewer through the introductory questions on

temperature changes). Unfortunately no addition question

of the form -5 + 3 (negative number first) was included.

We expect that more pupils would resort to temperature

arguments in this case. We note though that the

subtraction question -8 - 3 yielded a rather low facility

level of 19% (see table 1), although it can be interpreted

very naturally as referring to a drop in temperature. Only

10 of the 97 pupils correctly answered this question by

referring to temperature, while 9 pupils gave the wrong

answer -5 with reference to temperature.

Although our analysis of the data is as yet incomplete,

we seem to find strong support for Murray's original

hypothesis, though it is clear that high facility levels

obtained prior to formal instruction in integer arithmetic

are partially due to purely instrumental strategies. In

particular, the data seems to indicate that while

temperature is a useful context for introducing the

concept of negative numbers, its employment as an

embodiment to support calculations with integers is not

readily accepted by pupils, and when used, often leads to

mistakes. On the contrary, a large proportion of pupils

seems to adopt analogical strategies spontaneously, and

use them quite correctly.

In the second project, Malan taught integer arithmetic to

full classes of 4th, 5th, 6th and 7th graders for one week
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(5 half-hour periods) during April 1984, and again for the

sane period during October 1984. The teaching was strictly

negotistive in nature, and at no stage were any

computational strategies demonstrated by the teacher,

except that pupils were periodically reminded that they

may use a vertical number line (provided on a printed

sheet) as an aid. During the first period pupils were

introduced to negative numbers with reference to

temperatures below zero, and a vertical number line as

representing a thermometer. Further class activity

consisted of the pupils doing exercises involving the

various cases of addition of integers during the April

session, extended to the various cases of subtraction

during the October session. The fifth period of the April

session, as well as the first and fifth periods of the

October session, were used to apply a written test on all

cases of addition, subtraction and multiplication of two

integers. Pupils were also asked to explain in writing how

they obtained their answers, except the 4th graders who

were questioned orally on their strategies. The results of

the April post-test are given in table 1 above. The

October pre-test reflected losses of up to 36% in facility

levels for addition, yet increases of up to 30% (grade 4)

in the levels for -a - -b, a > b. The October post-test

reflected gains of between 15% and 40% for all cases of

addition, as well as the abovementioned case of

subtraction, which now yielded facility levels of above

84% for all the grades. A rather interesting feature of

the data on the strategies employed by the pupils was a

marked decrease in number line and temperature arguments

from the April post-test to the October pre-test, followed

9 ti 2
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by an increase in embodimental reasoning from the

October pre-test to the October post-test. This tendency

was also very marked in a continuation of the experiment

with the 4th and 5th graders in March 1985. It appears

that when left to their own devices pupils tend to use

analogical strategies rather than embodimental reasoning.

This is further evidence for the conclusions reached in

the earlier studies reported above.
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INCESSITY 0? A /MIME APPROACH OP
ERRONEVUS CONCEPTIONS OF STUDENTS,

MOLE OF THE TEACHING OP
RELATIVE NUMBERS.(I) THE/OHIO/A. ANALYSIS

F.Ldonard and C.Sackur-Grisvard

Laborstoiro de Payobologie Expdrimentale
it Costparite (NICE)

P. propos des reprdsontations
oognitives imusetes quo in

Didctiquo dos Soionms a sis en evidence, on vondrait
sostror in nismsiti d'une triple approohe Iddsotique,
Mathdnatique at Peyoholegique

pour dtudier les problems
d'enseigmemeat. On oats sumeasivoment la nhoessit4 dims
oonasisamm uathimatique prioise de l'ioart antra is
"savoir savants it 110tavoir enseignd", cello d'une etude
des oonsitquencos du "oontrat didactique" it cellos de deux
aortas de stabilitis des

reprisentatione cognitivos, l'une
"structurelle at l'autse "fonotionselle". L'argumenttion
seappis aux des travaux

oomernant omentiellosent la
adriatios des ddoisaux, ell. est illustris, dans use second.
memaisation, par un travail cur l'onseigament dee relatife.

Many works in the Dideotios of Solemn, have shown student's
rrommus oonceptioss that link to some situation or some notion.
/bare are many example, of those it *vacs but we oan find the same
is other experimental salaam's and may problem studied by
Psychologists. %ma ocamptions are very stable t they can accept now
experimental data without fuedamental modifications, and so they are an
obstacle to Wicking.

Ye propose to study this
important teaching problem by a triple

approach, that meld be at the same time a peyohologioal, a didaotioal,
and a mathematical approach. In first paper, we present the theorioal
background, in a second paper, an application of this theorioal
approach to taunting additions and maltiplications OR directed ambers.

Mathematical approach

Ntrromous maceptions aro so stable because they are not always
inoorrect. A comesption that fails all the time cannot persist. It is
beaus there is a local oonsistonoy and local efficiency in a limited
arm, that those incorrect

conceptions have stability. For example, the
multiplication is really a repetition of additions in whole members,

(1 4 BEST COPY AVAILABLE
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but not in deoiaal numbers.

This local oonsistency explains why, sometimes, those incorrect

conceptions are near historical conceptions that have marked some step

of the construotion of a notion. So that an epistemological survey is

always useful before the teaching of a notion would be studied.

Historical conceptions can be of help for the identification of

atudentAt erroneous conceptions.

A mathematical work is also necessary to understand the limits

of the mathematical oorreotnes of students'conooptions. For what

problems are those am:optima mathematialkr.00rreot ? For what problems

are they erroneous ? It is only when we know the mathematical limits of

the student's conceptions, that we mill be able to know when their

ooneeptions will fail, to prevent them, and eventually to teach then

to students .

Student conceptions do not make sons in the mathematical field

alone but also in the teaching situation. Students use an erroneous

conception becalm it allows some answer to the teaching problems. So

this work cannot be done out of the teaching situation.

The mathematical and didactical approaches are also necessary

for the definition of what is taught. It is generally impossible to

teach perfectly oorreot notions, because perfect notions are too

complex for students. The teacher must transfers scientific knowledge

into teaching knowledge, that is, a knoveldge that could be taught. It

is a mathematical task to identify the difference between soisntifio

knoweldgo and teaching knoweledgo, and a didactical task to define what

know:ledge can be taught.

Didactical approach'

In the olaseroon, the student is enclosed in a situation wioh

entails many obligations. He wants to resolve problems as efficiently

as possible. He will be satisfied if he can use a conception that

allows him a good percentage of correct answers. This is an effeot of

what Didaoticians name "didactic contract".

There is an other effect of the same contract . The teacher must

adapt his questions to the student's reactions : therefor* he tends to

avoid unusual problem. or questions that decrease the class performance

whithout olear reasons. But it is possible that the performance

decrease because the problems proposed are problems that erroneous

conceptions cannot solve. If the teacher avoids those problems, he

prevents the students from seeing that their conceptions fail. Thus he

92,5
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gives bettor officienoy to erroneous oonceptions.

We have found cone triton of those effects of the "didaotio

contract" in school books, for ordering decimal numbers. Incorrect

oonceptions of the learner on ordering dsoiaal numb's' give the correct

answer to the main part of exeroisec that we have found in school books

Another trace of the same adaptation of teaching to studentis

learning processes is the nature of the examples that are given to

students. The teacher is generally happy when he finds a "good example"

for new knowledge, that is when be finds some non mathematical

presentation of the motion that permits students to give sunset

answers. at hs cagh to be disturbed when this hormonal If a new

knowledge is immodiatly "understood" as a former one, the novelty of

the knowledge is seoussarily lost. It can be a looming step, but the

teacher must pay attention to the foot that students must get out this

first analogy. %sobers must net forget that students have not loused

the nom knowledge, but that they have reoognised a former knowledge in

the new one.

Psychologioal approach

Studenteerroneouo conceptions exist because they have a

mathematical consistency, and because they take moaning in a didastic

prooess. Bit if they had no psychological signification for students,

it is obvious that they Gould not be able to exist. Erroneous

conceptions exist because they participate in the learning process. So

endsrstanding students' erroneous conceptions implies an understanding

of those looming processes.

A major problem ooncerns the stability of students'conceptions.

Working memory has a very email capacity, and it cannot be enough

for all informations that a mow task contains for the learner. Learners

who do not know the task do not know what is important and what is not.

They de net know where the information is, and so all can be information

and all is always too much. So the learner must use his former know-

ledge to organise and the mince the amount of information. Problems

arise when the learner oannot leave Isis first organisation 'because it

is too stable.

We have proposed elsewhore(Leonard 190) to distinguish two forms

of this stability s a "functional stability" that depends on the use

of the orgenisationond ita efficiency, and a "struotural stability"

that camerae its consistency and can be understood as Piaget's equili-

brium of a scheme.

92(;
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Former knowledge can have a strong stability through their use

or because they have a very simple structure (like gestaltist good form)

If the former knowledge seldom fails on the new set of problems, the

functional stability of its conception will increase. For example, 92%

of pairs of decimal numbers, with no more than three digits in the

decimal part, are correctly ordered by the first erroneous conception

of students (Sachur-Crievard & Ldonard 1985). So this conception is

very stable.

The stability of an erroneous conception can come from another

area. It is difficult to teach Newion'laws of forces because in the

everyday world where friction is present there are many examples that

support students'erroneoua conceptions of forces and motion (Driver and

al. 1985).

We have found a similar example with decimal numbers. An erroe

neous conception was very rare in French student's answers but frequent

in other countries (Israel, Croat Britain and the U.S.A.). That was

because the ouraus was different in those countries. Rational numbers

are taught before decimal numbers in the U.S.A. but after them in

France, and the erroneous oonoeptioa for decimal number is correct for

rational numbers. So in the U.S.A. erroneous concepfions mould have a

good stability for rational numbers (Resnick and al. 1987).

The teaoher must give problems where erroneous conceptions fail,

but that cannot be done at just any time. Correct conceptions are modi-

fications of erroneous conceptions. They are built upon them, moreover

erroneous conceptions must be sufficiently stable so that the construc-

tion could lean on them.

On those principle we have done a micro - computer program on the

ordering of decimal numbers that identifies the erroneous conception

of learner and gives him problems adapted to his level. In each set

of problems one part of the numbers can be correctly ordered by erro-

neous conceptions of the learner, but one part oannot be. The subset of

problems that cannot be correctly ordered bu the learner's erroneous

conceptions is divided in two parts : in one the numbers can be correc-

tly ordered by more elaborated, but erroneouo,00noeptiona, and in ano-

ther part they can only be ordered 4 the correct conception (Leonard

and al. 1987).

To teach, it is important to know the first students' conception

and, above all, the other intermediate conceptions before the correct

one. We must know what conceptions are called by the examples that are
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given in the didactic situation, and we must estimate their stability.

This work cannot be dons from a mathematical, a didactical, or a psycho.-

logical point of view elons. We hope that we have shown that this triple

approach is a necessity to study such a difficult teaching problem.
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NECESSITY OFILTRIPLE APPROACH OF4ERRONEOUS CONCEPTIONS:OF STUDENTS,

EXAMPLE OF THE TEACHING OF RELATIVE NUMBERS-(II) EXPERIMENTAL WORK

C.Saokur-Crievard and F.LOona.

Laboratoire de Peyohologie Etpdrimenta/e et Comparde (NICE)

Sur is base d'analyse psychologiques et mathematiques,

nolis PIM asalys4 l'enseignement des relatifs diepens4

dens les oleUses pour oomprendre en quoi it pouvait Atre

gin6rateur de reprdeentations inexaotes et trop stables,

de masibre ii proposer use progression minimisant ass in-

convint,nte. Un nouvel enseignesent propose aux Olitves des

activiL4e (reperage dans le plan, exeredoes sur des couples

d'entiers positifs, Equations cur des grande nombrss, exor-

aloes sur les train significations du signs "moans" et

opposi comae rdsultat de is multiplication par -1) dane

/esquelles lee relatifs sent des nombres nouveaux qul per -

settent de risoudre des iquations, sacs on ne propose pas

de regle de oaloul. Ure analyse olinique et une compae,.

raison entre group, expdrimental t groups controls per-

mettent d'estimer lee sisultats de oet enseignnent,

We shall apply the analysis developed in the theorioal part of

our paper to the teaching of directed numbers and the learning of the

rules of calculus of algebra. This teaching takes glacier during the

first two years of Junior High School with students aged from 11 to

13 years old.

We have first been conoerned with the evidence that stable,

incorrect oonoeptions show up in the work of the students concerning

directed numbers. These conceptions are of two main types :

When they start working with
directed numbers, students are given

simple concrete examples and build up representations that we can

call "elevator type
representations". These conceptions lead to simple

procedures with prove to be oorreot and efficient on additive
----- -----

We want to thanks M.Jean Louis Roux, teacher et the College Valed in

Nice who worked on :this curriculum with us and welcomed us in his

classroom as observers. Texas Instruments provided us calculators

T1 30 Galaxy, used in this experiment.
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(substractive) problems. After some work an addition, the students

learn multiplication. The rule for multiplying directed numbers, i.e.
x - x in isomorphio to the gestalt of logic equiva-

lence. Students "understand" quite easily this rule and produoe correct

answers on products of directed numbers.

These two conceptions are strong and efficient on numbers. Each

one covers a certain area of problem* for wish ut has been introduced.

Nevertheless students lack a synthetic conception vich could cover the

complete area of directed numbers. In the usual curriculum, directed

numbers ere merely natural numbers with a sign; there is a list of

rules to deal with the sign, but the different rules have no concep-

tual basis in thm mind of the children. Thus one can foresee difficul-

ties for children when they have to combine additions and multiplies.

time, and later when they start walking with letters and not only

numbers. The observations we made in the classroom noun= this
an/Alvah. A group of 175 students who followed the usual curriculum

on dirsoted *Shore was tested three times during the first three

years of Junior High School, on addition and substractton. The results
of the tests are the following s ( % of ourreot answers) 1rst year,

before multiplication is introduced, 100%, 2nd year, after multipli-

cation is introduced, 60%, 3d Year, 70$.

Per the psychological point of view, we can conclude that if old

and elementary cemoeption are toe stable, they impede students from

proceeding in the process of learning. The new knowledge oannot be

assimilated by their cognitive organisations and the students remain.

at an intermediate level, only capable of dealing with the class of

problems that links to their cognitive orgenisatiene. As the teaching

goes en, their, performances decrees' as they fail to solve mode advan-
ced problems.

In the mathematical theory the status of directed numbers results

from the necessity to solve equations viol, prove to have no solutions

with natural numbers. A mathematical analysis led us to give a pro,-

minent role to the conoept of opposite numbers. We can state that

algebra can be reduced to a correct understanding of this concept.

An obstacle to this underetending is the polyeemy of the sign "-",

wich is altogether the sign of nnbetreation, the sign of negative

numbers, and the sign of the opposite eke number.ate we saw above,

another obstacle is the existence of the two non-coordinated concep-

tions, one vioh works on addition, the other one on multiplication.
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A link between them can be made by considering the opposite of a

number as the result of the product of the number by( -1)

On the basis of both tho psychological and the mathematical

analysis, and on the observations made ..gout the result': of the actual

teaching, we built up a new curriculum (14i directed numbers. We tried

to avoid the main inconveniences or at least tried to minimize them.

The new curriculum has been introduced into one class in 85/86,

and into another one in 86/87, where it is still going on. Each group

has twenty four students.

The main activities of this curriculum are the following :

-couples of coordinates in the plane rather than on en axis to

avoid a too strong symetry between positive and negative numbers;

-oonorete examples introduced directed numbers and their opposite

as differences of natural numbers (3,7) . -4 - (10,14) e"

-equations on large numbers;

-imtroduotion of letters as soon as possible and work on

- ( + b -a -b, whore -a . (-1). a

These activities lead the 'students to consider that directed

numbers are really new numbers (not only natural numbers with a sign)

While solving the proposed problems they build the set of directed

numbers and the procedures to use them.We observed some unusual

behaviours mesh aa I

( 1 )
computing the sum (-31)+(-71)+(-156) thpy write

-31

-71

+ -136

-238

(2) comparing a large number of additions tbey sort them into

three groups s those with only positive numbers, those with only

negative numbers, those with both positive and negative numbers.

The additionsin the two first groups are isomorphic to additions

in F, the third one is different.

Of course the students have not been given the rules for compu-

tation with directed numbers nor any procedure to deal with them.

We make systematical use of a pocket calculator during the

lessons. The calculator we choose
(TI 30 Galaxy) display. as well as

the numbers, the sign of the calculations wish are being performed

( +,-,x, .4 ). Thus it displays two different
signs "-", one attached

to the number at the right hand side of tho display area (-5), the
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other one at the left hand side 1.111 display area. Thu 1,aut can

distinguish between those two signs. 1'0 use of the + / -key omp:lotoe

the work on the polysemy of the ale; "-".

Using calculator, students can perform some ac,,ivitiel Alich

turn out to be impossilla without. The calculator 'gcnowc" / ,; to calm.

oulate with negative numbers, human beings do not. Thcy ea un%y

compute with positive amber.. To calculate 371 - 8146, th I d,

8146 - 371 and then change the sign. This capacity of oalo 'ator) to

works with negative numbers give them a reality which helps, the

dents to oonstrunt the knowledgy. On the other hand, and tathou0 that

may seam oantradiotory, to handle large numbers (four or ;lino dgiie)

the students must create new prodedures. If the students solve 5 i. 1.-2

or -3 +x m 1, they can tarry on very local procedures, likl coutiagg

up or down which Will not work on the equations 0736 x 3549, ot
+ x i27. In fact we did observe that :

(3) the students use opposite number. in algebric gum before

they have been taught to do so;

(4) additive equations are selved without diffioultios.

The clinical analysis with is going on while the nes curriculum

is being taught allows us to think that our sin goals have been
achieve t

-the students have constructed a new set of numbers with apsoifio

rules for computing with them (observations 1,5 and 4)1

- the polygomy of the sign"-" is *watered (observations 1,2,3)

Beside the clinical analysis oollective test is carried am

comparing the experinental group and a control group.

932
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269

275



Measurement concepts

Young children's understanding of numberand unit 285
In a continuous domain

Patricia F. Campbell, Greta G. Fein, Shirley S. Schwartz

Mechanisms of transition in the calculation of volume during 292
the concrete symbolic mode

K F. Gas, K J. Campbell

Conceptions of area units by 8-9 year-old children 299
Bernard Hdraud

Philosophy, epistemology, modt.',0 of understanding

The constr uctivist 307
Jere Confrey .

As a child learns, so must one teach 318
Bruce Harrison, Thomas L Schroeder, Marshall P. Bye

Epistemological determinants of mathmatical construction, 325
Implications in its teaching

Angel Ruiz-Zuniga

Students' understanding of mathematics: A review and synthesis 332
of some recent research

Thomas L. Schroeder

Preferred learning strategies and educational/mathematical 339
philosophies: An holistic study

Rosalinde Scolt-Hodgetts

A social constructivist theory of instruction and the development 346
of mathematical cognition

Donna Weinberg, Jim Gavelek

Pr6-service teacher training

The mathematical learning history of pro- service teachers 355
Erika Kuendigar

Inlinity concepts among preservice elementary school teachers 362
W. Gary Martin, Margariete Montague Wheeler

Interventions to correct preservice teachers' misconceptions 369
about the operation of division

Chaim Tirosh, Dina Tirosh, Anna 0. Graeber, James W. Wilson

9

x v I

64



Tertiary level

Alteration of didactic contract In codidactic situation
Daniel Alibert, Marc Legrand, Francoise Richard

Dialectique et pensee mathematique
G. Ervynck

Interpretation d'enonces implicatifs et traitements logiques
Luis Radford

RESEARCH AGENDA PROJECT PAPERS

379

386

392

I:le Research Agenda Project 401

Judith Threadgill Sowder

Learning In middle school number concepts 405

Merlyn J. Behr, James Hiebert

Research Agenda conference on effective mathematics teaching 410

Thomas J. Cooney, Douglas A. Grouws

R.A.P. conference on the teaching and learning of algebra 425

Carolyn Kieran, Sigrid Wagner

LIST OF AUTHORS
437

xvi to
L)



UNCOMMENTED
PAPERS
(CONTINUED)

'`N

Cognitive
development

96f



- 3

EMPIRICAL INVESTIGATIONS OF THE CONSTRUCTION OF

COGNITIVE SCHEMATA FROM ACTIONS

W. DORFLER, University of. Klagenfurt, Austria

Abstract. The theoretical basis of the interviews

reported about here is a Piagetian-like approach to the
origin and genesis of cognitive schemata representing

mathematical concepts. Such schemata are postulated to
reflect the abstract and general structure of material,

imagined or mental actions and of relations induced by
these actions. The main cognitive tools for the mental

construction of such schemata are seen to be: Actions,
symbolic representations, prototypes of objects, reflec-

tion and abstraction, schematization, generalization.
The interviews were devised such that the subjects were

guided appropriately in their individual cognitive

constructions. The mathematical topics treated ate:

Place value system, divisibility, word problems,

geometric sequence, Riemann integral. In general the

results support the view that the individual construc-
tion of cognitive schemata is possible and effective in

the proposed way.

The research reported about here was carried out within

a project at the University of Klagenfurt which was

directed by the author. Members of the project team were

H. Kautschitsch, G. Malle and W. Peschek. The interviews

were partly made by three high-school teachers. The

whole project was funded by the "Fonds zur Farderung der

wissenschaftlichen Forschung (Wien)". Of course only a

small part of the total work and of the results can be

presented here, for a more complete overview see Dorfler

(1987) and my contributions to former PME conferences.

1. Theoretical background

The basic starting point for the research was the

constructivist position that individual knowledge is th.

result of a personal construction by the learner and is

organized, stored and represented in structures modeled

by cognitive schemata or frames. The general wa.,;

then to get insight into the process of the cmstruetion

67
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cepts: What can be
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corresponding to mathematical con

means for and conditions of these

constructions? Of course this would be to general a
question for sensible investigations. Therefore the

general problem was narrowed to the question: Which role

can play material actions in the cognitive building-up

by the learner of a mathematical concept or method? This

research program is clearly related to Piagetian concep-

tions as interpreted for instance by Aebli (1980/81) or
Papert (1980): Cognitive schemata (for mathematical
concepts) reflect abstract and general structures

(coordinations) of material (and mental) activity of the

human being and they result from consciously reflecting
on one's activity. The cognitive constructions are here

considered not as being automatic or spontaneous but as
intentional and controlled processes which are governed
by the individual and the material which he/she is
acting with. A main feature of these constructive

processes turn out to be certain types of generalization

and abstraction. Essentially the research question then
was: What does it mean to generalize actions or to

abstract from the action in cases of specific mathemati-

cal concepts? How can one initiate and guide such
processes in a learner? The importance of these issues

results also trom the empirical research carried out by
Krutetskij (1976). There is demonstrated quite clearly

that mathematically succ,ssful pupils mostly recur to
(imagined) actions and to far reaching generalizations
and abstractions when solving for instance difficult
word-problems.

On this basis we developed a theoretical approach and

arrived at the following consequences which then served
as hypotheses for the

the interviews:

- An epistemological analysis of many mathematical
concepts shows that the essential kernel-etructure of

these concepts consists of the formal and generalized
schema of material actions and induced relations
between the elements of the actions. The learning of

construction and organization of

968
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these concepts has therefore to be organized as a

cognitive process of abstraction, generalization and

formalization by which the individual constructs'a

cognitive structure comprising the general schema or

form of the actions and the induced relations.

- The individual construction of cognitive schemata

representing mathematical concepts will be initiated,

supported and guided by having the learner carry out

adequate actions and reflect on them.

- Reflection on material (or imagined) actions needs

guidance of the attention of the learner to let him

recognize the relevant relations. Here the teacher (or

the interviewer) has to come in, but also the kind of

elements on which the actions are carried out play an

important role.

- An indispensible tool for the cognitive construction

of the formal schemata of actions and relations are

representations of the elements of the actions by

iconic (geometric) or algebraic symbols (media). These

symbolic representatives play the role of prototypes

of the material objects (elements of the actions).

They exhibit in full clarity those characteristics

(properties and relations) which are relevant condi-

tions for the actions to be possible or are outcomes

of the actions.

- The iconic or purely symbolic prototypes of elements

of the actions yield abstraction and essential

schematization of the actions, of their elements and

of the induced relations. By that the prototypes and

symbols serve as the basis for processes of genera-

lization: The prototypes support the recognition ot,

the search for, and the construction of objects with

which actions of the developed schema can be carried

out resulting in formally identical relations and

outcomes. The field of applicability of the type of

action under consideration it thereby extended. In a

way, the prototpyes represent the potential generality

of the action-schema.

If a concept (i.e. a representing cognitive structure)

is built up in this way (i.e. via action-repiesen-
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tation-reflection-abstraction and schematization-

generalization) it will be possible to go back to its

operative origin (when for instance solving a problem

by use of the concept) and to think in terms of the

constitutive actions (as carried out on respective

prototypes).

To get empirical support for the theoretical conclusions

several interviews were developed. They were devised

such that by the sequence of questions, Hints and cues a

cognitive process along the theoretically described

lines could be induced in the mental activity of the

interviewed subjects. According to the theory, guidance

of the attention of the subject by the interviewer is

needed (how to act, what to symbolize and so on). The

thesis to be supported reads: If the actions are carried

out and if they are appropriately symbolized and

reflected then this results in an adequate cognitive

structure and individual concept. Since we hold our

theoretical approach applicable for all mathematical

topics and all ages both of these variables were chosen

from a broad range. The topics were: Place value system,

rules of divisibility, word problems (following

Krutelskij), geometric sequence, Riemann integral.

Children of various ages (whor possible) and adults

were interviewed as well. The interviews on place value

system and divisibility Art! amply documented in Peschuk

11985).

The interview which was intended to lead to the con-

struction of a cognitive structure representing the

essential features of jeometric_sequences was organized

in the following way. The subject was presented with a

strip of paper, scissors, a ruler, a pocket calculator

and asked to cut the strip such that 3/4 will remain.

This action then was to be iterated several times and

each time the relation between (the lengths of) the two

successive strips was to be df.scribed. Thia could be

done in a multiplicative (x.,,=(3/4)x.) or additive way

9 /0
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Both possibilities eceurred its

interviews. After some iterations and the vorte!,pon.iing

notations the attention was led to the leldtiohjhap

between (the lengths of) the first and the last obtained

strip. This relation was to be nyted which naturally led

to preferring the multiplicative over the additive

notation. This first part of the interview could be

called "action and representation". There have already

occurred some generalizations when the relation of an

arbitrary strip to its predecessor and to the starting

strip was described by a formula. Thin description in

the starting point for the next part "generalization"

where the abstracted formal structure should gain

referential meaning. This process is guided by questions

and requests like: Describe verbally the essential

features of what you have done before with the strips!

What other fractional parts could you choose? Are the

numbers bound to be less than 1? Can they be negative?

On which other materials can you carry out similar.

actions? What can be varied among the constituents of

the action? Give some examples! How else can yoi

describe the actions and their outcome? Can you find a

common notation for all the actions? At the end of this

part the now generalized common structure is termed

"geometric sequence". The third and forth part check to

which extent a cognitve structure representing "geome-

tric sequence" has been built up by the subject. Fot

that 11 different numerical sequences were presented for

which it was to be decided if and why they are geometric

sequences. Then three word problems were posed which

involved geometric sequences for their solution (inter-

ests, geometric increase, radioactivity). In the final

part the subjects had to recall the meaning of "geAme-

tric sequence" and to give examples on their own. The

last question was presented in written form: How do you

judge the value of the "tools", especially of the

strips? This interview was carried out with 10 subjects

(age 13-22 years) and each took more than one hour. The

subjects did not know the concept "geometric sequence".

9 :1
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Some, rerult::

The choice of the appropriate denotation and the
adequate variables had often to be supported by the
interviewer. But after overcoming these technical
problems in all interviews the essential relations

were abstracted from the actions on the strips.

The generalization mo.,L'zly is quite far-reaching; it is
recognized what kinds of objects are suited as

elements of such actions.

The generalization to factors greater than one or to
negative factors in some cases is impeded by too
closly remaining at the generating actions. In other

cases a factor greater than 1 is correctly interpreted
as the action of adding to the strip and/or the

generalization to negative factors is obtained at the
level of the formal notation of the detected rela-
tions. Also for the referential generalizations the
important role of the symbolic representations as a

thinking tool gets quite clear.

- The numerical sequences in general presented no
problems and the reasoning could often be carried out
by the use of imagined actions, i.e. if needed the
subjects can return to the starting point of their

conceptual development. This is also true for the word
problems though there were quite a few difficulties

with recognizing how to apply the acquired knowledge.

All subjects can summarize the essential structure and
are quite positive about the cutting of the strips.

Apparently the strips can serve if necessary as proto-

types for the elements of pertaining actions.

Just to give a vague idea of the othc.r interview series

I quote the word problems_ used there:

1. Static, nct action-oriented version: A man and a

woman drinking water in equal portions every day can get
by with a given supply 18 days. The man alone can do
with the same supply 24 days. What is the ratio of the

portions of the man and the woman? If the subject cannot
solve it (what was always the case!) an action-oriented

version was presented.

9i2



9

2. You lay squares with a red and a blue side in rows.

If each row contains m blue and n red squares you need 6

rows. If each row contains just n red ones you need.9

rows. What is m:n? A solution by switching and shifting

the blue squares was developed, described and then

applied to version 1 which then (mostly with some

troubles) could be solved. Here pictorial symbolizations

were used which proved not to be very successful and it

might be that the lacking of algebraic aezcriptions

(like a(m+n)=(a+c)n) was a great obstacle for effe'tive

abstraction and generalization. Nevertheless two other

versions (exchanging bank-notes of two different values,

bottles of two different volumes) mostly could be solved

along the abstracted pattern.

The interview series for the Riemannintegral follows a

similar organization of examples where situations (from

physics for instance) had to be interpreted by use of

the integral. The relevant actions are here from the

beginning (symbolic) actions with mathematical objects

(numbers, functions, areas, volume). The abstract

structure of these actions and the induced relations on

the objects is just the standard definition of Riemann-

sums.
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TESTING A MODEL OF COGNITIVE DEVELOPMENT WITH
RESULTS FROM A LONGITUDINAL MATHEMATICS STUDY

Nerida F. Ellertan, Deakin University

Results from a longitudinal mathematics study have been used totest a two-parameter model of cognitive development. Thelinearity of the data for students of widely differing abilityfrom schools set in different socio- economic regions of twocountries supports a model in which the aevelopment of
mathematical concepts is largely independent of environment.
Interviews with students indicate that those who show uneven
rates of development have inconsistent approaches to different
mathematics problems, in contrast with the consistent approaches
sham by students whose rate of development is more uniform.

Few longitudinal studies concerning the development of mathematical
concepts have been reported (see for example Carpenter,1980). Keats (1978)
observed that no longitudinal data of Reach ability measures was available
to test theoretical relationships for studying the development of ability.

Fran a recent large scale study of the development of abstract
mathematical reaauning (Ellerton, 1987), a sub-sample of 87 students from
two secondary schools was followed longitudinally. The same set of
mathematics questions was given to the students three times spread over a
period of three years (average age at first test in Year 9 was 13-14 years).
Twenty one students were fran School A, set in a low socio-economic area of
Wellington, New Zealand, and 86 students were from School 13, set in a high
soc o-econanic area of metropolitan Adelaide, South Australia.

A COGNITIVE DEVELOPMENT MODEL

Halford and Keats (1978) proposed a developmental curve which related
ability (AU) of person i at time tj to time as:

Aii. Mitj . . . . (1)
tj + ki

where Mi is the maximum ability for person i and ki is the growth rate.

Keats (1982) pointed out that a two-parameter model for cognitive
development can be written: 1/Ai j = ei + di / tj . . . . (2)
ci , di are individual differences and rate of growth parameters
respectively. Since equation (1) can be written as 1/Ai j tr 1 /Mi + ki /Mi t j ,

it is clear that equations (1) and (2) are equivalent representations if
ci=11Mi and di=ki/Mi. Time is taken fran birth, so tj corresponds to age.



Keats (1978, 1982) discussed the possibility of testing this model for

cognitive development with ability measures found by applying the Rasch

model to longitudinal studies. He pointed out, however, that no such

results were available at that time. The longitudinal data described above

provide the necessary data for testing the model.

TESTING THE MODEL

Rasch analysis was used to find the ability of the students at elch age

tested. The abilities of students over the study period fell into three

main categories, showing: (a) an increase over the test period; (b) an

increase at the second test, then no change or a small decrease and (c) a

decrease or unchanged at second test, then an increase. Category (b) is a

ceiling effect observed for same students with high scores in two of the

three tests, and category (c) suggests environmental influences (such as

illness) giving negative influences on development. Only the abilities of

those students who fall into category (a) can be used to test the model

described by equation (2) since a tacit assumption in its formulation was

that the development of ability showa continuous increase with time.

As Rasch abilities can be 40 for an individual, later becoming >0 for the

same individual on the same test, raw Rasch ability values cannot be used

to test the model. Asimple scaling procedure can convert raw Rasch ability

values (which centre around zero) to Aij values which would centre around

100, according to equation (3). Reach ability values of 0.2 and -0.5, for

exanple, give Aik = 104 and 90 respectively.

100 + (20 x Beech ability) = Aij . . . . (3)

By converting raw Rasch ability values to Aij values with equation (3),

the longitudinal data in this study can be used to test the model described

in equation (2). It can be shown that the scaling of Rasch ability values is

valid in the context of testing for this model, provided that the tj values

are large, as in the study here. Figure 1 shows typical results of plotting

1/Aij against 1 /tj for students whose abilities showed an increase with

time (category (a) above). A linear or close to linear relationship between

1 /Aij and 1 /tj was found for many students. Different slopes for plots for

different students is consistent with the two parameter model for

cognitive development which requires an individual rate of development

parameter di as well as an individual differences parameter, ci. The plots

show that ci and di are independent, with a wide range of ci values for

students with similar di values and vice versa.

lee
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Figure 1: Reciprocal of ability vs reciprocal of age for students fran Schools A and B.

The overall linearity of the 1/Ai j ve lit j data for students of widely

differing ability fran schools set in different socio-economic regions in

different countries is evidence to support a model of cognitive

development in which the acquisition of mathematical concepts is largely

independent of a particular environment. This is the first confirmation

of this model with Reach ability data.

INTERVIEWS WITH STUDENTS

Ability data alone, however, cannot be used to investigate the reasons

for any departures from the linearity of the 1/Aij vs 1 /tj plots such as

those exemplified in Figure 1. Interviews with forty five students fran

School B focused on several of the test questions in an attempt to reveal

any response patterns that may be associated with different attitudes and

approaches to mathematics which, in turn, may exemplify particular types

of 1/Alj vs l/tj plots. Excerpts fran interviews held with the students in

Year 12 are discussed below; original question numbers are retained.

O. Bill s number. What is B if 5+4 . 1,1 - 4?

18. Make up a short mathematical problem that you think would be quite difficult
for a friend oi yours to solve. Shoe hoot you would work out the answer.

37. A Car firm has leo types of car transporters available. Type A can take 9 care.

type B can take B cars. There are 77 cars. to be carried to another city. and 9
drivers are available. The transporters mot carry full load.

type A transporters and typo B transporters will be needed to take the cars.

Student 2, School B - boy (B2 in Figure la)
Question 11: Mentally, twenty seven minus four is twenty three;
subtract four again is 19. Than a quickmental check; nineteen and four
is twenty three.
Question 111:If I had a problem which I'd seen before and I could
remember and I didn't know the answer, I probably would give that
problem to a friend and see if he could solve it and find an answer. And
then go through his working and see whether I'd missed out on something.
Question 37: Now this is a nice one. I obviously see that I need
simultaneous equations here, so I say let the x transporters, x Type A
transporters. So in other words, nine times x. that's that amount plus
eight times another amount y, has to equal seventy seven. . . And also,
the number of transporters, assuming that one transporter has one
driver, then x plus y equals nine because there are nine drivers . . .

9 7 i;
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I'll need four Type B transporters and,
substituting that into the second equation

7,79Y
'because it would be easiest, they'll Ve-).4 8 4it

,77
require five Type A transporters. And I'll
just try a quick check; nine fives are gl'11.Ve-7?.. ieer
forty five plus four eights are thirty
two, that's seventy seven.
General Comments: . . . I enjoy maths, that is to say I occasionally
have a tendency to get bored ...(when I had) twenty six questions all
of exactly the same type and that sort of got boring, I would go through
half of them, thirteen, and nuke sure I got them right, then try and
program them onto my calculator. So I'd do the rest of them 1 ike that.

The high ci value (238) for Student 2 is consistent with his command of

spoken mathematical language, his thoroughness (he checked almost every

answer) and the maturity with which he approached the question on making up

a problem (he would effectively challenge a friend to solve a problem for

which he didn't know the answer so that he could 'go through his working').

His fluency with mathematical language appeared to be intertwined with a

rule oriented approach to the subject ('I obviously see that I need

simultaneous equations here', Question 37).

Student S. School B - girl (B5 in Figure la)
Question 9: TWenty seven take four is twenty three so that's twenty one
and four. No it's not. It's twenty three add four. Hang on. Twenty seven
take four is twenty three. So it's nineteen add four is twenty three, so
it leaves nineteen.
Question IS: At the moment (I'd Mike up) some sort of limit problem
because that's what l'etdoing at the inement. I don't understand it!
Problem 37: . . . Nine nines is eighty ore. No it's not that many. Nine
eights are seventy two; no. I: What are you doing? S: Just trying to
see, just trying different combinations, with the nine drivers. I've
tried taking them all in Type A, and that doesn't work, so 1 tried taking
Aland taking the extra on the eights. I: So what might you try next?

El: Try six, because eight was too far off. Nine sixes are fifty four, so
x is twenty three. Doesn't go either. Fives; no, that leaves thirty two
which can go into the eight, which goes four, so that works.
General Comments: (It's hard) when I see seething that I don't know

hoe to start, or that it's something that we don't usually do normally.
. .Textbooks - they usually go through and have a million of one sort of
problem and then a million of the next sort of problem, and when you just

get one in front of you, it's pretty difficult to try and figure it out.

Student 5's approach to mathematics problems forms a strong contrast

with that of Student 2's fluency with the subject; the ci value for Student

5 is 185, but the slope of the plots for Students 2 and 5 in Figure is are

very similar, implying that development is occuring at similar rates.

Although both Students 2 and 5 worked out that nineteen was the correct

answer to Question 9, Student 5 only arrived at this answer by beck tracking

from an incorrect answer of twenty four. whereas Student 2 solved the

problem in the minim:ma time, using a very organized strategy. Student 5

appeared to be consistent,though,in her an approach to different problems.

9 7 '7
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Both Students 2 and 5 were cynical about all of the textbook exercises

required of students, although the former used to get bored with the

exercises and would program his calculator for half of them, while the

latter found that she was unable to decide how to tackle a problem out of

the context of a set of text book exercises. Both agreed, too, though they

expressed this in different ways, that their made up problems would centre

on something they were familiar with at present, and that this could mean

that the solution would be difficult for themselves.

Student I. School B - girl (B8 in Figure la)
Question 3: So I have to find B, and if B is B add four which equals
twenty seven, take four. Well, twenty seven take four is twenty three
(writes 23). In that case, that number plus four has to equal twenty
seven so it must be - oh, no - (pause) That's right, then so from
twenty three to find out what it is which you add four to you take four
fran twenty three so you get nineteen. So nineteen plus four equals
twenty three. (Pause) Yes. Which equals twenty seven take four which is
twenty three so I'll put nineteen.
Problem 18: I'm not sure. [Inn, it has to be something I can work out
myself . . . Something to do with finding the value of x or if you had
80 many things . . . which equalled such and such a price, something
like how many chi ldren could be divided up between whatever.
Question 37: (Beads out question slowly. Writes down A=9cars.
B= Scars, also 77 care, 9 drivers.) I: Where would you start?
S:You'd have to find out how many oars go into ... how many loads of A
and B will fit into seventy seven. And divide it by the nine drivers.
Well, gears, (long pauses)... (she eventually gave up).
General Ommaiinta: I always tried, but I've never been a star at
maths. I excell in other subjects.

Student 8 was of lower mathematical ability than Students 2 and 5; the

plot for Student 8 in Figure 1 extrapolates to give ci = 125. The rate of

growth parameter, di, is, however, approximately the same as the that for

Students 2 and 5. The contrast between these students, though, in the

methods used and in the mathematical language spcken, is striking.

Student 8's approach to Question 9, for example, was full of stumbles

and uncertainties, and took much longer to reach the tentative answer of

nineteen. She kept trying to remember what she thought she was supposed to

do to solve particular problems. She seemed to lose track of where she was

or what the object of her calculations were. Perhaps many of her problems

in mathematics stam from an inability to retain the necessary schema over

both short and long terms. Whether this is associated mainly with

mathematics is open to speculation, and to what extent the lack of short and

long term memory for mathematics can be associated with her negative

attitude to the field io impossible to gauge.

The difficulties she experienced in the test consistently involved those

problems for which several facts had to be retained fran one step to the

9 pi
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next. Thus although the three students whose interview excerpts have been

discussed above differ markedly in mathematical ability, they have all been

consistent in their approach to the whole test. It can be hypothesized. that

this consistency is a major factor in determining a uniform rate of

development; inconsistencies in approach would be expected to lead to

rapid gains in some areas and slower ones in others, thus destroying any

uniformity in the rate of development during different periods. Interviews

with Students 13, 15 and 25 all revealed such inconsistencies.

Student 13, School B - girl (B13 in Figure le)
Question 12: Probably try an algebra one. I'd do one that I know if
the answer was right or wrong. I might choose one that I might find

easy and that I think my friend would find hard. 1: Hoorwrylld you try

to make it difficult? S: Use bigger nuMbers. I suppose. IA ,0 :77
Question 27: I think l'ercampletely off the track...
A.can take nine cars so you say it's nine Akand it would 5 J

be eight B. I knot I'm doing it wrong because they've got nine drivers.
Ge%ersl: I'm not very good at maths. Never have been, neverwill be.

Student 15. School B - boy (B15 in Figure le)
Question 12: x squared plus four equals eight. . .First of all you'd

take four over the other aide which means that x squared equals four,
and then you'd square root the four which gives you two sox equals two.
Question 37: That one would take a bit of thinkdng to do... What I've
done is to put out the factors of nine and eight, and because you have
to use nine drivers, you have to find a factored nine and a factor of
eight that will add up to seventy seven, which also has to be nine
altogether, to make up nine drivers. So . . Type A which has to have

nine on each trip, carries forty five cars which nine fives are forty
five so you've got five drivers and Type B carries thirty two which is
four drivers, total of nine . . . (1 used) more or less trial and error.

General Cannents: . . . I like to flake sure 1 know what I'm doing; I

like to do the trial and error way as well as working out the
mathematical way. It's a lot easier doing it the mathematical way, but
you've sort of got to know exactly what to do.

Student 13 did not realize that she had correctly fornrlated one of the

equations for Question 37. She had little confidence in her own ability.

Although Student 15 was able to solve Question 9, he atumbled, at first, on

another similar question of lower item difficulty. He missed the subtlety

of the answer of + 2 for his made-up problem. His desire 'to do the trial

and error as well as working out the mathematical way' may have been his way

of checking that he was on the right track before he used 'the mathematical

way'. His approaches were not consistent across the test; he seemed to be

considerably less secure with acme concepts than with others.

Student 25, School B - boy (B25 in Figure le)
Question 1$: It's an expansion of brackets, a cubic example...it was
difficult when I first started; it's not at the moment. A few people I

krwerevuldn't be able to do it.

Question 37: I do this by trial and error; it's probably wrong to do
it this way, but I just experiment with numbers. Well, you've got nine
and you've got eight cars available to be carried by each mode of
transport, therefore you find out the numbers that will carbine to give
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you seventy seven. Chances are that it would be intermediate, between
the two, because you've got nine. See with nine and eight, chances are
it wild be very close to carrying half each. Chances are the ambers
would be either five or fear, ao could be nine times four and eight
times five or nine times five and eight times four, which would give
you nine fives are forty five, eight fours are thirty two, (writes
these down). Yee, it's nine times five and eight times four gives you
seventy seven. Therefore it 's five Type A arta four Type B.

Although Student 25 was confident in solving some problems, he made
serious mistakes with others. He liked to experiment with numbers end use
'trial and error' .Student 15 used similar expressiona.Students 13, 15 and
25 showed developmental plots of similar shape with a lower initial rate of
development and a higher rate between the second and third tests consistent
with a rapid increase in mathematical skills with insufficient time for the
full acquisition of sane of the underlying concepts. All three students
solved Question 9 with ease, in contrast to their handling of other
questions. The problems made up by these students were ones they felt
confident to solve themselves, in contrast with Students 2 and 5. Ellerton
(1986) has shovel that students' made-up mathematics problems uniquely
reflect their mathematical experiences and level of concept attainment.

The interview excerpts from students whose 1/Aij vs 1/tj plots are
linear have provided evidence of consistencies in the students' approaches
to different mathematics problem in the same test, in contrast to students
whose plots are not linear. Students with 'trial-and-error' approaches
and with poor symbolization skills show uneven rates of development. It is
not clear at this stage whether an inconsistent approach to different
mathematics problems is a consequence of an uneven rate of development in
the acquisition of mathematical concepts or vice versa.
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TEACHING OF MATHEMATICS AND DEVELOPMENT OF OPERATING COGNITIVE

STRUCTURES - AN EXPERIMENT WITH BRAZILIAN LOW-INCOME CHILDREN.

Maria Apparecida Mamede Neves,Dr.Psy.-PUC/Rio de Janeiro

Maria Lucia Fraga,M.A.-PUC/Rio de Janeiro

In order to study the relationship between the construction
of mathematics elementary notions and the development of its
related cognitive structures, a research-in-action was devel-
oped following a psychopedagogical work with Brazilian chil-
dren from low-income communities of Rio de Janeiro that pre-

sented learning disabilities and repeated 1st grade several

times. Data gathered has proved the treatment's efficiency and
allowed for some statements to be made on the subject of psy-
chology for mathematics education.

An investigation in the field of mathematics education is currently

being developed at the Psychopedagogic Guidance and Counselling Center

(NOAP) of the Pontificia Universidade CatOlica do Rio de Janeiro (PUC/

RJ/ - as a research-in-action - whereby a group of children from

low-income communities of the city of Rio de Janeiro - slow learners-is

being followed up and evaluated in a methodic and systematic manner.

The whole job carried out was based on the assumption that every re-

search on knowledge construction must consider the dynamics of mental

structures involved. Therefore, in the specific case of this investiga-

tion, its main purpose was to investigate the relationship existing be-

tween the acquisition of basic elementary notions of mathematics and

the development of cognitive structures which are essential so that the

learning process would take place. The research sought to take into

account the psychological, cultural and social variables involved in

the act of teaching and learning mathematics.

The psychopedagogic performance plan selected to be developed among the

children therefore always kept up a close link with children's modes of

life and experiences, gathered while tending to them and therefore such

plan was founded on Brazilian mathematics education which advocates,

according to Lopes (1979), both the differentiation of knowledge of

mathematics as a tool of life and science, in its strick sense, and

the democratization of teaching. This was therefore a project whose aim

was not only the implementation of the "corpus" of specific knowledge
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but also and chiefly a presentation of an explicit social and poli-

tical commitment.

METHODOLOGY

The formative evaluation was chosen instead of the somative one as pat-

tern of evaluation of the experiment because of the nature of this

investigation, thus being able to differ and to discuss not only the

most important aspects related to the mathematic knowledge construc-

tion itself, but mainly tho psychological phenomena envolved while the

whole process took place.

As a result of a previous psychodiagnosis of the children involved in

the experiment, randomized groups were formed based on their cognitive,

affective and social steps of development and submitted to the specific

treatment. Groups were assisted on weekly basis during a school year

by a psychopedagogic team made up of a coordinator and an observer,

both permanent.

The work with the children was based on problem solving using group dip

cussion, taking into account the children's own experiences of life and

interests. Toys and other familiar objects pertaining to the same so-

cial level of these children were used to develop this work, but any

other object, even junk, was also used once it enabled children to

build up games. Systematic observation of group dynamics was selected

as the main tool of this research.

Data gathered was submitted to regular discussion by the group coordi -

nators as well as to a technical committee made up of psychologists

and pedagogs. The former joined the latter and both evaluated the

research's development being possible the re-elaboration of the system
itself.

RESULTS

The experiment's first step has been accomplished and some results can

be pointed out: 1) in a large approach, it is possible to consider

that a significant change took place in children's general behavior as

well as in their school performance, confirmed by their school's feed-

2
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back; 2) in a strict point of view, this change was expressed by sev-

eral skills, such as:

Corporal Emotional & Social Cognitive4--) ( ----)1

wareness of one's own

ody

onfrontation between body

-pace and the surrounding

orld

Construction of:

. Identity

. Autonomy

. Group companion

ship

Construction of objects

establishing: grouping,

one to one pairing, clam

sification patterns; use

of words and of numbers

for counting

;wareness of corporal

limits according to one's

wn possibilities

Positioning of objects

Symmetric and asymmetric

relations

wareness of the intention

ality of movements; better

orporal perfornv

Emotional control

Initiative

Industry

Posing problems

CONCLUSIONS

Data gathered allowed, at the first approach level, for some statements

to be made on the subject of mathematics education psychology:

1) Results achieved strenghthen the thesis of authors such as Benjamin

(1955), Piaget (1975) and Lopes (1979) among others, in the sense that

cognitive structures refer chiefly to logico-mathematical activities

while they are specific to the human being through some peculiar acts

which he, and only he himself, can exercise over the objects, such as

for example; to classify, put in order, modify and change. It was prov-

en that these activities are actually implicit in children's action, in

their playing and in their games and that they constitute the very es-

sence for acquiring
different school contents. It became very clear that

logic and mathematics, at least in their genesis, are not constructed

independently; they are linked to one another, and inasmuch as if an
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individual is to operate, he must be able to establish
simultaneously

coordinated relations and to modify these same coordinations by associ-
ation, inversion and reversi,,n.

2) The experience carried
out provided children with a space in which

to use their own bodies as a basis to understand
mathematics, since it

advocates that an interrelationship
between the body objects is essen-

cial. It is by experimenting
a multiplicity of possible body coordina-

tions with the body itself, with the bodies of others and with differ-
ent materials, within a given space and time. that mathematics is
learned.

Results achieved showed that only by going through these steps, man will
be able to advancequalite;.ively,

by developing certain activities
which will reflect complex

mental actions derived from data gathered
in the body-object

relationship. School practices arc some of those
specific complex learning processes of men's abilities and therefore
require psychomotor practices to be developed.

Acquisition of mathematical techniques and symbolic formulations, strict
ly speaking, preceded by body action which is related to an activity
actually exercised in the world of objects, becomes then much more
effective. It has become evident that it is by acting spontaneously that
children, even having failed previously in school, can acquire their
first knowledge of mathematics, such as for example, simple mathemat-
ical calculations, even though they may not be able to express then in
a more systematic way. (Kamii, 1984, Vayer, 1973).

3) A third point
covers the emotional link which is established between

the individual and that which he learns. It was not considered, suggest
ed by Piaget (1954) that the emotional behavior of mental functions is
understood only into energetic

terms as opposed to the cognitive behav-
ior which constitutes the structural aspect. Likewise, it was not con-
sidered that effectivity cannot change cognitive structures, even though
it may systematically interfere in the contents of that same structure
(Piaget, 1954). On the contrary: a hypothesis was assumed in this inves
tigation (with Berms, 1971 and Mamede Neves, 1977) that cognitive and
affective aspects are both psychic structures which, if

reenergized dur
ing the processes of evocation or (re)perception, will acquire a cer-
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tain psychic intensity, by showing itself as an experience respectively

ideational or perceptual, emotional or endo-perceptual. In the specific

case of the experiment carried out, it was verified that many children

bore a negative emotional link with learning of mathematics and that,

through an adequate assistance, it was possible to restructure said

link. These links became, without a doubt, structuring elements of the

type of ccnstruction of mathematical knowledge, with all pertinent

consequences, which goes to prove the assumption taken.

4) Finally, the experiment stressed the great importance of sociocul-

tural aspects in the act of learning. When child reaches the stage of

formal learning it already bears in itself a whole structure of knowl -

edge which reflects the culture of its family and its social milieu ,

which culture, however, is not always compatible with or used (and some

times denied) by the culture of school. That is why oftentimes there

appear certain inaurmontable obstacles in the act of learning,which are,

however, considered only as beig of a cognitive nature.

A great deal of the children assisted in the present experiment showed

them: problems. Only by respecting that knowledge, adjusting to tan -

guage, to conduct and to socialization which they bore in themselves,it

was possible to (re)construct the proposed knowledge.
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TPE COMPINATORIAL SOLVING CAPACITY
IN CHILDREN AND ADOLESCENTS

Efraim Fischbein, Avikam Cant

School of Fducation
Tel Aviv University

The following factors were considered: The typf, of
combinatorial problem (arrangements, permutations and
combinations); the number and nature of elements; the
effect of age (grade 6, age 11-12 and grade 8, age
13-14); the effect of instruction. In order to check
the effect of instruction, a pre-test, an immediate and
a delayed post-test were administrated. The following

findings have to be mentioned: a) The performances with
digits'are higher than those with concrete objects
(colors, members in committees) h) The performances with
arrangements and permutation problems are better than

those with combinations. c) Roth ape and instruction
have a net positive effect but in younger subjects
(grade 6) the percentages of correct solutions for
combinatorial problems remain under 40Z even after

instruction.

In the Piagetinn theory the combinatorial capacity represents a

fundamental component of formal reasoning. The propositional logic of

adolescents is said to express basically the combinatorial resources

of their thinking (Piaget and Inhelder, 1975; Inhelder and Pinget,

1958). On the other hand, combinatiorial analysis represents a

powerful and important branch of mathematics related to probabilities,

linear programing, the theory of games, topology, number theory,

network analysis, etc. The literature concerned with the

psychological aspects refer mainly to the development of formal

operations (Nelmark, 1975; Roherge, 1976; Van, No and Adams, 1979;

Pallrand, 1979; Wollman, 1982). Some other publications consider the

didactical aspects (Vapur, 1970; Dessert, 1971; Ranucci, 1972; Padar

L)(
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and Hadass, 1981; Ouintero, 1985). A few deal with training

strategies (Fiachbein, Parpu and Hinzat, 1970; Parrett, 1975; White,
1982).

The main aims of our research were to determine the optimal age for

teaching cominstorial analysis systematically and the optimal

strategies to accomplish this aim. An interesting cognitive

-didactical problem was also to establish the effect of the nature of

elements considered (abstract versus concrete elements).

THE PESIGH

The subjects were 84 elementary and high school pupils enrolled in two

schools in Tel Aviv situated in a middle class urban area. Two age

(grade) levels were investigated: age 11-12 (grade 6), 43 subjects;

and age 13-14 (grade 8), 41 subjects.

The Lessons: Two junior high school and two high school cl

participated in the teaching program. Each class received 6 lessons

of 45 min. each distributed over four weeks. The topics were taught in

the following order: Arrangements with end without repetitions;

permutations; combinations. Arrangements and rgiingliaie) were taught

using tree diagrams. For solving combinations - which cannot be

produced directly by the means of diagrams - one has taught the

formula:

The lessons had mainly an intuitive - experimental character but always

lead to the solving formula.

Testing Procedures: Thirty-nine items distributed into thre groups of

questions were used. The items referred to the following

conbinatorial questions: 02, C42, C43; P3, P4; A32, A42, A43

(with repetitions); A32, A42, A43 (without repetitions). Fach of

these problems was presented in three different embodiments (digits,

colors, tasks in committees).

distributed randomly in three

two items (C42 and C52) which

all three questionnaires. In

9 6 9

These thirty-three items were

questionnaires. In addition there were

appeared with the same embodiments in

order to neutralize as much as possible
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the effect of order, the various types of problems and embodiments
appeared in different orders in the three questionnaires.

Procedure: The questionnaires were administrated collectively in the
usual classroom conditions. Each subject received only one of the
three questionnaires. There were three testing sessions: a) A
pre -teat session, a week he,'

:e the beginning of the lessons; h) a
poet -teat session, a week after the end of the lessons; and c) a
delayed poet -test session, 6 months after the instructional period.

Examples of Items: (1) Given 4 digits: 2, 4, 7, 9, how many numbers
of 3 digits each may one obtain? Fsch digit may he used more than
once, i.e.; 222. (The solution: 43 64). (2) Given a three member
committee (president, cashier and secretary) and 4 candidates. Now
many different committees may be formed? (The solution: A43 without
repetition 24).

RESULTS

In Table 1 the data have been collapsed according to the mathematical
type of problem and the sequence of the teat administrations.

Table 1.
Percentages of Correct Answers*

GRADE 6 GRADE 8

n -n n 0C. p k RAy, A P k RAk,_ AyL

Pre-Teat 35.62 16.11 16.47 17.35 49.57 21.52 27.08 35.83

Post-Test 30.48 58.17 43.92 48.52 39.19 16.38 59.40 75.46

Delayed
Post-Test 39.68 46.27 43.86 44.60 60.09 62.91 52.87 49.07

The numbers represent the percentages obtained bycollapsing the data of the 13 items in the four maintypes of combinatorial problems. The symbol RALstands for arrangements with repetitions.
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The type of combinatorial problem, order of difficulty.

Let ua consider first the order of difficulty before the instructional

sessions. The most difficult type at both age levels is that of the

permutation problems, followed by arrangements with repetitions,

Arrangements without repetitions and finally (the highest proportion

of correct solutions) the combination problems. This finding confirms

that of Piaget and Inhelder (1975). At the post-test the picture Is

completely changed. At both age levels the combination problems

provide the lowert frequencies of correct answers, and on the

contrary, the permutations which seem to be the most difficult at an

Intuitive, pre-instructional level, become the easiest after the

students have learned a systematic solution procedure (the tree

diagrams and the formula Pri n!). The explanation is obvious. The

formulae for permutations and arrangements are simpler than that for

combinations. In Addition, for combinations there is no tree diagram

which may be used directly.

On the other hand, it is important to
observe that while at the sixth

grade level the performance, for
combination problems are lower than

the performances for the other types of problems, in grade 8 the

combinational problems yield proportions of correct answers which are

similar or even better than those obtained with other types of

problems.

The nature of the elements: Let us recall that three types of

elements have been used: digits, colors and individuals fulfilling

tasks in committees. It is evident from Table 2 that the problems

using digits yield the highest proportions of correct solutions.

There is no systematic difference
between colors and committees.

991
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Table 2.
Percentages orTISTrert Answers*

GRADE 6 GRADE 8

commit
Digits Colors -tees

l.ommit
Digits Colors -tees

Pre-Test 28.54 19.65 17.67 46.78 25.47 31.52

Post-Test 45.19 46.88 40.21 69.83 58.3 55.84

Delayed
Poet -Test 49.44 41.04 39.61 67.08 53.27 55.44

The numbers represent percentages obtained by
collapsing the date so as to reveal the effect
of the nature of elements.

We suggest the following explanations: Firstly, students

are more used to operate mentally with digits and numbers

than with flags and committees. On the other hand, a

concrete embodiment represents a good productive model, if

it leads easier to the solution by its own structure. This

is not the case with flgas and committees in combinational

problems. The arbitrary transformations have nothing to do

with the nature of the embodiment.

The effect of age: The subjects belonged to the age groups

11-12 (incipient phase of the formal operational period)

and 13-14 (the accomplishment phase of the same period).

The results show (both Table 1 and Table 2) that the older

subjects perform clearly better than the younger ones at

each type of problem and at all the three administrations

of the tests.

The effect of instruction: As expected, the students got

better results at most combinational tasks after the

instructional period. As it has been shown above, the

picture with combination problems is more complicated - a

drop of the proportions of correct answers at the first

post-test and a rise again at the delayed post-test (see

Table 1).

() t)
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Generally speaking, one may conclude that at both age

levels students evidently take profit from instruction.

Except for combinations, 50 to 75 percent of them learn and

remember the solution procedures.

The solving strategies: Each subject has also been asked

to indicate explicitly the strategy and the formulae he has

used for solving the problems. This has been done only for

4 problems out of the 13 given in order not to extend

excessively the time for solving the problems.

Table 3.
Percentages of corfect Answers

GRADE

Poet-
Test

8

Del.
Poet -
Test

bicaUb 6

Pre-
Test

Poet
Test

Del.
Poet-
Test

Pre-
Test

lotol cor. 1/.91 44.19 41.B6 5U.54 46.34 Sb.10
Formula --- 11.63 6.98 --- 7.32 2.44
Sets * 27.91 32.55 34.88 58.54 39.0 53.66

rotal Lor. 13.95 61./9 61./9 91.46 /3.1) 614.19
nlagr/For. --- 13.95 4.65 --- 31.71 11.20

PK Formula --- 30.23 25.58 --- 26.83 14.63
Diagram --- 6.98 6.98 --- 4.88 7.32
Sets A 13.95 4.65 25.58 41.46 9.76 34.16

Total uor. 34.81I 511.14 46.51 JI./U /5.61 /0./.5
Diagr/For. --- 16.28 4.65 --- 14.63 12.20

RA"
It

Formula 4 16.28 18.60 --- 31.71 29.29
Diagram --- 13.95 2.33 --- 7.32 2.44
Sets * 25.58 11.63 20.93 31.70 21.95 26.83

Total Cot. 1/.91 /5.ti1 /).61 9I.21 UU.49 56.74
Diagr/For. 2.33 13.95 6.98 --- 24.29 2.44C Formula ----- 32.55 30.23 --- 34.16 9.76

". Diagram
-
-- 9.30 4.65 --- 4.88 9.76

Sets * 11 16.28 30.23 51.22 17.07 36.59

* The term "seta" mennu here that the subjects did simply
draw up groups of elements. "Diagram/Formula" means that
the subjects have used both the dlegrem and the formula.
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Three types of strategies are recorded in Table 3.:

diagrams, formulae and the production of groups of

elements. As expected, at the pre-test almost all the

subjects simply wrote the various groups of elements.

There is no spontaneous use of diagrams and formulae. At

the first and second post-test, the image Is changed. Many

subjects use after instruction the taught diagrams and

formulae. Put there are remarkable differences between the

various types of problems: The most frequent method

used is the formula, especially for permutations and

arrangements without repetition. Diagrams are also used,

but lens frequently. On the contrary, for solving

combinations most of the subjects - at both age levels -

continue to produce groups of elements without resorting to

the taught formula.

Didactical implications

F.lementary combinatorial analysis can certainly he

taught systematically in grade six using tree diagrams and

adequate formulae. We would not advise the teaching of

combinationsat this stage. In grade P, studenta learn

without special difficulties arrangements and permutations.

The teaching of combinations (including the understanding

of the formula) still raises certain difficulties, but it

is possible thattwith an increased number of lessons.one

may succeed.
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SCHEMAS DE COMMAISSAMCE DES REPRESEMTAT1OMS

MAKES D'EURESSIOMS RELATIOMMELLES MATHEMATIQUES PRODUITES

PAR DES ELEUES DE 9 A 12 AMS DAMS UM EMUIROMMEMEMT DE

PROGRAMMATION OBJET

Lemoyne Eisele et Legault Bertrand

Universite de Montreal

Abstract

The main issue of the research is to get insight about the

role and the development of knowledge schemas used by nine

to twelve years old children in arithmetic word problem

solving. The program we develop creates an object

environment providing a visual representation of the kind of

relational mathematical expressions frequently included in

additive and multiplicative word problems. The program is

written in Micro-Smalltalk and runs on a Macintosh.

Children are invited to represent ten expressions with this

environment and with two natural environments. The analysis

of children behaviors is a first step in the identification

of knowledge schemes used by children in the construction of

visual representations of relational mathematical

e,preasiona,

Quell sont les schemes de connaissance appliqués dans la

resolution de problemes' Duels sont les processus de construction

de ces schimas? Ces questions sant au centre des preoccupations

d'un bon nombre de chercheurs en sciences cognitives, en

intelligence artificielle et en didactigue (Anderson, 1963;

Chalklin, 1985, Chi et al., 1931, Clement, 1980; Greeno, 1960;

Hinsley, Hayes et Simon, 1977, Mayer, I98

Si l'illustration ou la representation imagee externe

d'infvrmation: inclu:e: dun: le: enonces dr problemes constitue

937
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Loujours un aoyen privilege par les pedagogues pour faciliter chez

l'eleve I' interpretation de problemea urithmeiques concrets, de

plus en plus de chercheors s'interrogent sur les conditions

d'efficacite de ce precede didactique. Les resultats des

echerches conduites par Poage et Pcoge (1977), Campbell, 1981,

Bednarz, Janvier et Poirier (1983, 1985) sur le role des

representations imagees ou des illustrations dans la comprehension

problemes, des concepts ou des notions mathematiques soulevent

en effet de telles interrogations. Ils montrent que tress souvent

les interpretations de ces representations par les eleves different

de celles des adultes qui les ont construites.

L'etudc actuelle a pour object if principal de preciser les

si:hemas de connaissance a la base des representation, imagoes

d'expressions relationnelles mathematiques produites par des Sieves

de 9 a 12 ans.

Methodes

10 eleves du second cycle du primaire participent

l'eperimentation. 3 eleves de 1 ieme annee, 4 eleves de 5 ieme

annee et 3 eleves de 6 ieme annee. Ces eleves sont choisis on

function de lours performances a une epreuuc de correction et de

resolution de problemes utilisee dans une etude anterieure sur les

representations imagees (Lemoyne, 1985; Savard et Lemoyne, 1986),6

celles des eleves de lour classe, un de ces eleves ayant participe

a l'e,amen prelimiruire de l'environnement objet.

Chacun des eleves e!.t invite a produire une representation

imagee des eApressions " autant que, moins que, fois plus que, de

plus que, n objets par, plus que, n objets duns chaque, n objets

pour, de MOir0 que, chacun des... a n objets ", d'abord dans un

environnement nuturel non controignant puis, dans un environnement

998
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oaturel contraignant et enfin, dans un environnement de

programmation objet contraignam, Dans les treis situations,

l'espace qu'il peut utiliser pour le deasin est iderdique. Dans

I'enuironnement nature; non controignant, it peut choisir lee

objets qu'il desire et les dessiner sur le papier mis a 'so

disposition, dons l'environnement naturel contraignant, it ne

peut utiliser que lee dessins d'objets mis a .5o disposition et

n'ayant pas a dessiner lui-mane, so tache en est une de selection

et d'arrangement des objets; dons l'environnement de programmation

objet, l'eleve choisit parmi lee objets a so disposition ceux

qu'il desire et place cos objets star l'ecran. Dons l'environnement

de programmation objet et dons l'environnement naturel

contraignant, lee objets sant identiques. Mous decrivons

saintenant de facon tree succinte l'environnement objet.

L'environnement objet est constitue des classes suivantes

d'objets: fruits (poire, ananas, (raise) , humains (garcun, fillet,

animauA aquatiques (grenouille, poison, tortue), formes

geometriques (cercle, triangle, corre), liquides (eau, lait, jus de

posse, jus d'orange, jus de carotte, jus de tomate), fleurs (rose,

prioevere, marguerite) . fleches (simple, double), textes (porter,

decrire, etiqueter, penser) . Les fruits sort places sur dee

plateuA, les animaaA aquatiques dans des aquariums, lee flours dans

des vases ou des pots, les liquides dons des verres, les formes

geometriques sent encadrees par des carres. Divorces methodes

sant associees MIA classes d'objets, a) it est possible de

modifier la taille et to nombre de fruits, d' onimaux aquatiques,

de figures geumetriques; lee modifications sont accompognees dun

changement proportionnel de lours contenants respectifs; b) it est

possible de modifier les quantites de liquides, la hauteur , la

lorgeur et l'inclinaison des verres; c) it est possible de modifier
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l'eeientation et l'e.presoion des humaino, d) il est possible de

modifier, la longueur et l'oeientation des fleches, de coevertir lea

flecheo en traits, e) it est enfin possible de modifier le format

des testes. L'eleve accede uuA objets par un menu gm' lui permet

de choisir un objet, de le modifier selon leo methodes associeas

tot objet, de le deplacer, de le copier, de le suppeimer. Les

actions effectuees par chacun des eleves de mese que les

iotervallea entre cos actions sont enregistres dans un fichier

"eleve", ce Itchier conatitue le protocole 30t40.5 a l'onalyse.

kiln de moitriser l'environnement objet, chacun des eleven est

Invite d appliquer a chacune des classes d'objets lee actions

offertes par le menu; au cause de cette activite preliminaire,

l'e\perimentateur repond aussi 6 touter questions relatives

l'utilisation de l'environnement. Pour illustrer cet

environnement, nous reproduisons quelques eAtraits du comportement

'fun oujot ainsi que le dessin produit pour l'expression "de plus

que",

Actions Dues in

I. Fgeo: nouveau

2. Fgeo: modif. forme

cercle--:triangle,

Fgeo: modif, deplacer mmisee ea.+ Pans' mu« -dm ors omme.

f. Fgeo. choisir - copier

5. Fgeo: modif: deplacer (671;;i7iD

6. Fgeo: modif: quantite

4-- 3
7. Te..te: nouveau

O. Te,te. modif: bulle

parlor-- decrire

"about de description

9. Te,te: modif. (*lacer

10. Tote. nouveau

11. Te,te. modif. bulle

parler---,etiqueter

0
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"ojout d'un te,ste"

12. Te..te: modif: deplacer

Resultats

Dons l'environnement naturel non contraignant, pour chacune des
4

expressions relationnelles, la majorite des sujets n'ont recours qu'a

des collections constituees d'un seul type d'objets (ex: deux

collections de crayons); deux eleves de 6 ieme annee et 1 eleve de 5

'elite annee utilisent au mains d une occasion des collections

constituees d'objets n'appartenant pas au ieme ensemble (ex: une

collection de crayons et une collection de pommes) ou des collections

d'objets differents 0c/is appurtenant a un mere ensemble (ex: une

collection de pollees et une collection de bananes). Dons

l'environnement naturel contraignant et dans l'environnement objet, la

majorite des eleves oe montrent au mains a une occasion capables

d'utiliaer des collections constituees d'objets n'appartenant pas d un

merle ensemble; ce comportement est observe dans plus d'un tiers des

representations produites. Dans l'environnement naturel contraignant,

on observe aussi chez la majorite des eleves le recours a des

collections constituees d'objets differents appurtenant 6 un same

ensemble; ce recours est mains frequent toutefois dans l'environnement

objet et s'explique per l'emploi de procedes de reproduction d'objets,

procedes economiques. Enfin, dans l'environnement naturel non

contraignant un sujet de 5 ieme annee et un sujet de 6 ieme annee

utilisent au mains a une occasion des mesurea de quantite de liquide

pour representer une relation additive at multiplicative tandis que

dans lea autres environnements, la majorite des sujets de 6 ieme

annee et quelques sujeta de 5 ieme et de i ieme annees utilisent de

teller mesures au mains a une occasion.

Le recoups a des procedes pour specifier les relations entre les
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vbiets des representations est comparable dans l'environnement naturel

non contraignunt et dans l'environnement objet et plus frequent que

dans l'environnement naturel non controipont. Dans l'environnement

nature' non contraignant, pour lea expressions additives, is

relations !--. :reciaeea par lee expressions faciales des personnages

Landis que pour leo expressions multiplicatives des textes descriptifs

specifient lee relations. Dans l'environnement objet, des textes

descript:fs expriment generalement lee relations; les personages

dans cet environnement sont souvent objets des relations, faisant

olors partie de collections. Les procedis sont surtout utilises par

lea eleves de 5 ieme et 6 ieme armies.

Tous lee eleves utilisent dans la construction de plus de la

moitie des representations les methodes de duplication raises a leur

disposition; Iarsque de telles methodes sant utilisees, une foia la

closse d'objets choicie, lea actions sant realisees tree rapidement,

suns hesitation. Un texte descriptif accompare generalement les

representations ainsi produites et ces representations sant aussi dans

;'ensemble adequatee. Les eleves de 4 ieme armee ont mains

frequemment que ceux des autres niveaux recours a de telles methodes

et ceux qui y recaurent ne completent pas frequemment leurs

representations par un texte descriptif. Enfin, chez lee eleves de 5

ieme et de 6 ieme armee', ces methodes sont appliquees aux diverses

classes d'ubjets; un souci de varier lee objets des relations semble

e;pliquer ce fait.

Si ('utilisation des objets de la classe textes eat observee chez

la majorite des eleves des divers niveaux scolaires, seuis lee sujets

de 5 ieme et de 6 ieme clenees se montrent capables de choisir lee

objets appropries de cette classe; lea sujets de 4 ieme armee se

contentent geneealement d'inseeer ;curs textes dans les fenetres qui

conventionnellement sant associees aux dialogues (eerier) ou aux

G2
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eefle,iuns (penser). Chez les, eleven des autres niveaux

toutefois, le recours a des objets adequats de la classe testes se

fait progressivement, ainsi, au tours des premieres representations,

le choiA des objets e.A effectue apres un intervalle de plusieurs

secondes (jusqu'a 125 secondes chez un sujet) et on observe souvent

plusieurs modifications de ce choiA.

L'examen des protocoles montre aussi que plusieurs des sujets

qui recourent a des objets appurtenant a diverses classes pour

illustrer une expression ne parviennent pas d construire une

representation qui les satisfasse; ils ne gardent alors qu'un objet

specifique, generalement un objet de l'une ou l'autre des classes

'fruits", "fleurs", "animaux aquatiques", "fortes geometriques" et

trey souvent procedent A une duplication de cet objet. Ce

comportement est cependant plus frequemment observe chez lee eleven

de 4 ieme armee que chez les eleves des autres niveaux.

Quelques sujets seulement ont recours a des fleches ou a des

personnages pour specifier le sens des relations entre les objets;

dans !'environnement de programmation objet, ces objets sont

consideres au ese titre que les autres objets. Ainsi, deux sujets

de 6 ieme armee utilisent des fleches a titre d'objets de la

relation "a objets pour"; un sujet de 5 ieme annee represente to

relation "foia plus que" par 15 Neches et 5 prenoms.
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INTRINSIC TO NON INTRINSIC GEOMETRY

Chronls Kynigos
University of London Institute of Education

Turtle geometry, apart from being defined as
intAirlifk"'kas a special characteristic; it invites children to
identify with the turtle and thus form a body syntonic thinking
'scheme to drive It on the screen to make figures and shapes.
This is a report of on - going research whose aim Is to throw
further light on the nature of this "Intrinsic shema' ,

Investigate the extent to, and the way in which children choose
to use it, and whether It Is possible for the children to use the
schema to understand concepts belonging to Euclidean and
Cartesian geometry. The research concerns 20 11 12 year old
Greek children, with 40 to 50 hours of experience with Turtle
geometry prior to the study.

The theoretical framework of the study Is based on the role of Logo and
turtle geometry within a specific view of mathematics education; i.e.
learning mathematics Is seen as an
experience, rather than an effort to ciescriin some ontological reality. The

child learns mathematics by building with elements which It can find in

its own experience (Von Glaserfeld, 1984). Papert (1980) uses words like
'doing" and "owning' mathematics to stress the dynamic and active
Involvement of the child. Boyles and Noss ((b), In press) use the notion of
°functional mathematical activity", i.e. the child using mathematical ideas
and concepts as tools (rather than objects, Douady 1982) to solve

problems In situations which are personally meaningful.

f . ,

Logo Is seen by more and more educators as a powerful tool for creating
educational environments in accordance with the above perspective. Turtle
geometry, a very important part of Logo, has a particular characteristic;
when children turtle geometry, they can identify with the turtle, and
therefore use personal experience about their bodies to think about the

shapes and figures they want to make. I am approaching this process,
which Papert and Lawler call "intrinsic thinking', in two ways.

Firstly, in terms of the structuring of intuitive geometrical knowledge, i.e.
the way children link very simple sets or "units" of such knowledge to the

turtle's actions. They acquire these 'units" from very early personal
experience of movement in space. DiSessa might call these units
"phenomenological primitives", although his study was In the context of
physics (diSessa 1982). Lawler (1985) puts forward the notion of a
microview to talk about domain specific fragments of personal experience.
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He contends that the personal geometry microview is "ancestrar to the
intrinsic geometry microview. Secondly, the approach stresses the
importance of the interplay ((ouady 1982) between the mental image,
graphical output and formal symbolic code which is vivid when doing
turtle geometry (Hoy les and Noss (b), in press). How does intrinsic thinking
influence this interplay?

OVERALL OBJECTIVES.

The study is split into four parts (studies 1, 2, 3 and 4) and involves the
observation of children engaged in Logo activities which require the use of
the turtle to solve intrinsic, euclidean and cartesian geometrical
problems. The aim is to gain insight into the ways the intrinsic schema
can be used by the children for developing an understanding of concepts
belonging to these three geometrical systems. In relation to the four
studies, the research objectives can be split into;

a) illuminating the intrinsic schema, by creating environments where
the children of the study can choose whether to use it to solve geometrical
problems or not (studies 1, 2, 3 and 4),

b) investigating the extent: to, and the way in which,the schema is used
to construct geometrical figures whose properties allow the pupil to
choose between interpreting them intrinsically or non - intrinsically
(study 1), and

c) investigating whether it Is possible for children to use the schema
for making natural links between intrinsic geometry and other geometrical
domains, namely euclidean and cartesian geometry (studies 2, 3 and 4).

OVERALL METHODOLOGY.

The research involves 20 11 12 year old children from the Psyhtco
College Athens, who, prior to the study, have had 40 - 50 hours of
experience with turtle geometry in an informal setting, in pairs and threes
to one machine. The research is split into four studies, for all of which the
children were observed in detail, the data consisting of; audio taping of
everything that was said, soft and hard copies of verbatim transcriptions
translated in english, soft and hard copies of everything the children
typed, hard copies and possibility for more graphics screen dumps, soft
and hard copies of all the procedures the children wanted to save on disk,
researcher's notes on anything of importance which might escape the rest
of the data, and the childrens' required and non required notes on paper.
In study I, 16 children working individually on structured tasks, were
observed and interviewed. Studies 2, 3 and 4 employed pairs of children
working in collaboration, my role being that of a participant observer. Two
notions are central for the methodology of studies 2, 3 and 4 That of a
*microworld", i.e. 'Logo based situations constructed so that the pupil

0 0 iJ
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will come up against embedded mathematical ideas In the context of
meaningful activity" (Hoyies and Noss (b), In press), and that of a
"conceptual field, i.e. "a set of situations, the mastering of which
requites a variety of concepts, procedures and symbolic representations
tightly connected with one another" (Vergnaud 1982). The studies involve
children provided with microworlds constructed so that the use of the
intrimilc schema is applicable for understanding non intrinsic
geometrical Ideas, i.e. the "tools" can be used for both intrinsic and non
-intrinsic geometrical representational systems. In this sense,

microworlds with such characteristic; may be described as "conceptual
pathways" from the former representational system to the latter. The
preliminary results presented In this paper, are examples of the children
using the schema In specific geometrical situations.

USING EUCLIDEAN IDEAS FOR TURTLE GECtlETRIC TASKS (STUDY I ).

The study involved 16 children, individually attempting to construct
certain geometrical figures in Logo, which were given to them on paper,
one at a time. The figures were such that their properties allow the pupil
to choose between interpreting them intrinsically or non - Intrinsically.
The procedure was as follows. They were given the figure on paper and
time to think. They were then requested to talk about and write down their
plan before constructing the figure on the computer. An interview
followed, requesting verbal explanation of what they did, whether they
saw different ways of construction, and if yes, which one they preferred
and why. The childrens' activities are analysed with respect to:

a) Which properties they perceive explicitly and which they Ignore.
b) How they interpret the properties, and
c) How the properties are used to construct the figure.

The example given concerns the childrens' verbal plan for the task of
constructing a -window" figure which revealed a split in the way they
organised the figure in their minds; i.e. how a large square and cross"
organisation of the figure (7 children out of 16) invoked tt,e use of a non
intrinsic property (e.g. the centre of a square, which is away from, the
turtle's path) in contrast to a "four adjoining squares" organisation (9 out
of 16). In the four square interpretation the children did not seem to use
the centre apart from interpreting it as the screen's centre to tai,K about
the turtle's initial position. Further analysis will show which ;worerties
they did use and how they interpreted them. In the square zied cross
interpretation, the children used their understanding of a ncn intrinsic
property to take the turtle to a specific point away from its path in a
logical (vs perceptual Hillel 86) way. Is it possible to create environments
rich In opportunities for children to integrate their intrinsic schema with
the "logical' (Euclidean) or "analytical" (Cartesian) characteristics of
other geometries? This issue is investigated in studies 2, 3 and 4

007
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PROGRESSING FROM AN INTRINSIC TO A EUCLIDEAN DEFINITION (STUDY 2).

The study involved a learning sequence, the design of which was influenced
by the UDGS model for learning maths (Hoy les and Noss (a), In press). The
aim of the sequence, which lasted 15 hours in total, was for a pair of
children to see the need for, investigate and work out different ways of
constructing a circle in tasks meaningful to them. In the end, they had
written four distinct procedures for these constructions, progressing from
an intrinsic "curvature" definition to that of a euclidean 'centre and
equidistant points" (figure 2, a to d), and used them for their own projects.
Following the sequence, in a method similar to that of study 1, the
children attempted to solve structured tasks, individually at first and then
colaboratively. The tasks involved constructions of geometric shapes
incorporating the circle (e.g. figure 4). The children could choose which
procedure to use. They were then interviewed in a similar spirit as in
study 1. The analysis concerns; 1) the extent and the ways In which they
see the need for and use Euclidean features of the circle while
constructing it in the familiar intrinsic process in meaningful contexts,
11) the nature and the extent of the children' use of the Euclidean features
employed in each construction in projects of their own choice, and ill) the
influence of their experience on the way they interpret geometrical
properties.

The following example is a case of an explicit use of the radius (and an
Implicit of the centre). The children had spent time trying to construct
figure 3 using CIR4 (figure 2a), and as a result saw the need for and
constructed CIR9 (figure 2b). They tried CIR9 a few times on the computer
and then attempted to do figure 3 again. They typed the following without
talking; CIR9 50 PU RT 90 FD 5 LT 90 PD CIR9
Valentin': "How much shall we do it? (she typed 45)
Chronis: "Why 45?
V: "Because this is 45.
C: "So?
V: "Eh, the radius... 45 Is the radius, since before it was 50, minus 5 Is 45.
In CIR9, the turtle ccr)structs the circle in the intrinsic way, but the irtput
Implies using 2 non Intrinsic feature of the circle. The Interface between
the two circles is again an intrinsic turtle move, but the quantification of
FD requires an operation on the length of the radius. Thus, the children
cause intrinsic actions with non intrinsic quantifications.

CIR4 S CIR9 5$ CIR19 TC SS
(a) (b) (c) (d)

FIGURE Y.
f RUM All 4111111131C ?O A =DEAN DuilUTION

FIGURE 3,

MCI FIGURE 4,

RIM
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USING TOOLS TO BRIDGE INTRINSIC AND EUCLIDEAN GEOMETRY (STUDY 3).

This study was designed to investigate how a POST/DIRECTION/DISTANCE
microworld (Loethe 1985) could serve for developing an understanding of
euclidean geometric concepts (e.g. an Isosceles triangle). The ideas
embedded In using the turtle's tools serve as a -bridge" from intrinsic to
euclidean or cartesian geometry. The childrens' activities, which lasted
for IS hours in total, fail under 3 categories;

a) Making sense of the concepts involved in using the turtle's measuring
instruments,

b) Constucting geometrical figures which require the use of these tools,
and

c) Carrying out projects where the employment and choice of tool and
how they would be used Is left to the children.

The following extract is from a category a) activity. The task Is to use the
turtle to find the length of the sides and the size of the angles of a
triangle formed by three points on the screen. The children had used the
turtle's instruments to join up the points and measure the side lengths.
Although they used the turtle's "protractor to cause the action of the
turtle turning to face a point, they had difficulty in realising how to use It
to measure the internal angle. This is what Nikos said when he suddenly
saw how to do it (figure 5).

N: We turn it there, where it can do RT and then we do it...."
He then typed the following;

?PRINT DIRECTION :11
136.705

?RT 135.705
?PRINT DIRECTION :C
43.2961 C

yi36.705

FIGURE S,

After that he said;
N: "Since we couldn't find the angle when it (the turtle) looked towards
AC, we put It to look towards beta (B) and like that we could f Ind the angle
and we found it."

The children distinguished the measurement from the turtle's action (it
was their preferred strategy at the beginning), while trying to make sense

of the situation. Their need to measure a -euclidean* angle (Internal), led
them to cause the turtle to change Its heading to where It can make the
measurement (i.e. to its right). This resulted in a need to integrate a static
and dynamic interpetation of angle (Kieran 1986).



ATTEMPTING TO APPROACH CARTESIAN GEOMETRY (STUDY 4).

Lawler's research shows us how large the gap between intrinsic and
cartesian geometry is by illustrating the failure of a 6 year old child to
form a microview about the latter, based on her personal/turtle geometry
microview. He also illustrates the child's reluctance to abandon this
microview and use a different ancestral microview to make sense of
cartesian concepts. Study 4 involved the developing of three separate
learning paths from turtle geometry to cartesian geometry. Each of the
three paths employed a different ancestor, thus building different bridges
from intrinsic to cartesian geometry. Each pair of children (one for each
path) started from a different set of activities. The structured tasks that
the pairs attempted from then on were common and designed to probe the
links each pair made to previous experience in order to understand the
concepts which underlie driving the turtle in the coordinate plane.

The example given concerns a pair of children engaged in the first set of
common activities. This pair's initial activities involved constructing a
simple grid, using the POST/DIRECTION/DISTANCE microworld, and
drawing several shapes on the grid using the turtle's instruments. The task
now, was to take the turtle to a specific point on the screen, having the
SETX, SETY and SETH commends at their disposal only. Prior to the
following extract, they had taken the turtle to points on the first, second
and third quadrant. For this point (-100 80), there was a difference on the
screen; the axes were invisible. The children guessed the X coordinate
wrongly, giving It a -120 value instead of -100. Their first reaction was
to try and use the command BK 20, but BK would not function. They then
spent time discussing which was the plus and the minus region on the axis
and finally, typed in the following; SETH 0 SETH 90 SETX -20.

The first two commands illustrate the manner in which the children
imposed a sequential `turning' property to the SETH command, and their
resistance to see It as a placing of the heading in an absolute system. The
third command seems even more interesting. It illustrates two kinds of
confusion.
a) Perceiving coordinate values (names of places) as numerical.
b) Perceiving the sign as an operation rather than signifying a region on
the axis.

The children also found difficulty in distinguishing the plus and minus
regions, and in using the origin as a starting point for counting (they
frequently counted from the edge of the screen to the centre). The
following extract shows how Anna used her turtle Identification schema
to make sense of the situation;
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A "I think I of it. We told it (turtle) here 'lift me up and take me to minus
20' and -20 in relation to axis X is here (finger). Say that axis X Is, lets
say here, -20 Is here."

CONCLUSION.

Preliminary results seem to Indicate that children are ready to employ
their intrinsic schema In turtle geometric situations, even when they have
the option not to do so by using Ideas from other geometries. Futhermore,
examples have been given where the use of such Ideas has occured as an
extension of the schema. Further analysis will aim at Illuminating the
nature of the schema and the potential for children to use It for
understanding the relations among the differential (Intrinsic), euclidean
and cartesian systems of geometry.
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RETONDEES COGNITIVES DUNE INITIATION A LA FROGRWMATION EN LOGO

Jean Retschitski

Univereiti de Fribourg

De nombreusee recherches ont its entreprises pour tenter de

mettre an evidence lea progrAs effectuis par des eldvos eyant eu

l'occesion de pratiquer la programmation Logo. Les renultste de cos

etudes wont sullies contrestie at lour interpretation donne lieu A des

controverses eases vices. C'est einsi qua si Pea et Kurland (1984)

concluent A is quasi absence d'effets de transfert des acquisitions,

Clements at Gullo (1984) ont eux trouve des progris eignificatifs dans

different. domain.. oagnitife. L'impression generale qui oft (*age de

la littirature eat qua les resulteta eont plutft en retrait par rap-

port ousettentes suscitees par ces nouvelles activitis, mama soil

convient de se girder de tirer des conclusions trop latices.

La specificite is notre recherche eat d'une part d'avoir combine

lea aspects d'evaluetion clasiques avec une observation tree attentive

des ectivitee des elAves, et dleutre part d'avoir ports cur un he

pour lequel relativement pee d'etudes avaient 6t6 entrepriees, A

savoir le debut de l'ecole eecondaire.

NETHIODE

Le coura d'initiation A la programmation on LOGO, propose a une

classe de lere generale (414vee de 12-13 ens) a remplace durant 22

uemaines des houres d'itude et d'information generale. Le (Dour! keit

donne par la maitresse de claese, enseignant par cilleuro lee mathema-

tiques. L'enseignement West deroule en demi-clauses par groupea de 2,

exceptionnellement 3 kayos.

L'ecole possedent des micro-ordinateurs TI 99/4, le langage choi-

si fut le TI-LOGO. L'option pedagogique retenue reponait our la notion

de pro jets destines a conntituer A la foie une motivation at un fil

conducteur permettant d'aborder differente Repeats du langage.

Eine cinquentaine di:levee de section generale ont perticipe

netts recherche. Le plan d'expirience etait congu pour mettre en

evidence d'iventuelles differences cognitiven dans difffirents domaines

eusceptiblee d'atre affectee par l'activitit de programmation.

0 2,
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Lew lopseuves retenues

Nous evens s4lectionne six 6preuves psychologiques our is base

d'une part de lour lien possible avec l'activite de programmation in

LOGO, ce qui nous a incite a retenir den 6preuven avant une composante

apatiale ou des epreuvea de resolution de problem°, ct d'autre part en

tenant co:npte de l'age des sujets. Quatre epreuves ont etc peseees

collectivementt

Le CkTTELL CPT3, test d'intelligence generale

- Les BRIQOES, test d'aptitude upatiale

- Les ROOLEAUX, epreuve portant sur is representation de la oom-

positim de deux mouvementa.

Le GROUP EMBEDDED FIGURES TEST (GEFT), epreuve portant our is

dpendance-indepondance a l'egard du champ.

Deux epreuves ont its pasnees individuellement lore d'un entretien

cliniques

- La SERIATIM DR WIDE, adaptee par Retechitski (1978) sur is

base de liepreuve decrite par Piaget it Inhelder (1941).

L'epreuve des PERMUTATIMIS de jetons, portant our lea aspects

combinatoireo.

Le maitresee responsable du emirs LOGO a mis au point une epreuve

dont is plupart des items portaient sur des contenus droches de ceux

touches lors des cours de programmation. L'epreuve comprenait 6 items,

dont lea 4 premiers concernaient is geometric, les 2 derniera d'autres

domaines mathematigues.

Cetto epreuve a etc soumine avant et apres le cours de programme-

tion A rensemble des eleves des clauses concernees per is recherche.

Enfin, pour Ovaluer les epporte de l'enseignement de la program-

motion dans le domaine informatique, nous avone elabore une epreuve

comportant lee quatre parties cuivantea: representation du system°,

comprehension de programmes, production de programmes, comprehension

de concepts informatiques.

Observationa

Len sessions Logo ont egalement etc observees tree finement,

cheque groupe keit soit directement observe par un collaborateur du

projet, soit enregistre en video. Ce dispositif etait destine a mettre

en evidence lee differences individuelles dans is participation su
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°ours at le r81e plus ou :wins dynemique de cheque &live den. nivolu-

tion des projets at is resolution des problolmen en vue dune mile an

relation ultirieure avec lee resultata enregistris aux op:mauves pay-

chologiques an debut it en fin :Panne. scolaire.

RAIRRASTS

Aspects qmalitatitfs

Wermaignante a choisi de Weser lee enfants programmer i lour

propre rythme. Cette option a eu pour consequence de provoquer d'im-

partantes differences entre las &levee au niveau des acquisitions dans

le domains de is prograsmation. Si certain &levee ont bien mattrise

les primitives geomitriquos, la notion de procedure at ont pu de ce

fait realise: dee projets interactif (jeux ilimentaires), voire

reoourir A dee procedures recursive*, d'autres elives n'ont travaille

qua dens le domains de la musique i un niveau asses elimentairs.

LAW cheervateurs out et4 frappes per le manque de motivation pour

l'activiti proposes. Cot aspect de l'ambiance du cours Wexprimait de

plusieurs maniere. i bavardeges entre lee Alive., attentes passives

die qu'un problems surgisseit, plaints* par rapport au temps qui passe

lentement, etc. Los (14ves avaient done de la difficult& A travailler

pour eux-sines, i as motivar pour lour projet.

En digit de cos impressions negatives, l'epreuve informatique

passim dams le cadre du post-test a mis in evidence qua lee acquisi-

tions des eaves en Logo et:tient bien reolles pour is majoriti d'antre

eux.

Aspects geratitstifs

Mous avon applique une analyse de variance i deux facteurs A

l'enaemble des ipreuvee pour lesquellea des donnies ont pu Ctrs obte-

nues tent au pre-test quiet: post-test. Les deux facteurs psis en

compte par l'analyee etaient done dune part is statut du groups

(experimental ou contrBle) at d'sutre part le moment (pre-test ou

post-test). Le Tableau 1 resume is risultat de cette analyse pour lee

bpreuves psychologiques.

11 ressort de l'examen de oar resultats quo globalement on n'ob-

serve qua peas de program entre le pre-teat at le post-test, sauf pour

l'epreuve de Cattell. Les sutras epreuves semblent done securer des

caractiristiques plus stables des aujets. On pout souligner qu'aucune
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Tableau 1: Resultate de l'analyse de variance MANOVA a 2 facteure

Sources de variation

Epreuves

Pre-Post Entre

groupes

Interaction

CATTELL CFT3 TS NS NS

G.E.F.T. NS TS NS

ROULEAUX NS NS NS

BRIQUES NS TS NS

PERMUTATIONS NS TS NS

SERIATION NS NS NS

epreuve ne donne lieu A une interaction significative, ce qui indique

que les differences observees ne cant pas sttribuables a l'effet des

variables introduites dans l'experience, puisqu'elles sont presentee

des le debut de l'annee scolaire, comme le montre is Figure 1, qui

illustre les resultats de l'epreuve des Briques.

Figure 1: Diagramme des interactions pour l'epreuve des BRIQUES

22

20

18

Analyse qualitative de 14preuve de vAriation

Si les effete globaux sont soft discrete, soit absents, on pou-

vait s'attendre tout de mgme A c que la pratique de la programmation

puisse manifenter sea effete dans lee epreuves presentant un lien plus

etroit avec Pactivite sego. Cola nous semblait Stre le cas de

l'epreuve de seriation de poids, proche des algorithmes de tri at se
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laissant Bien decxire en tenses de traitement de l'information (itera-

tion, optimisation, recursiviti).

S'il keit peu realists do s'attendre é des differences masolves

quant au niveau des solutions, an revanche on pouvait aupposer que

l'axperience de is programmation permattrait aux sujets de mieux

p.rcevoir is structuration de l'act.ivite et leur fournirait une plus

grand. misance pour co qui est de l'explicitetion de lour procedure.

Le Tableau 2 presente lea niveaux attribues pour in conduit.

(plus ou swine systematique) de is strategic.

Tableau 2: Seriation de poids / Conduits de is stratigie

Groups LOGO Groupe CONTROLE

POST-TESTS POST,-TESTS

1 2 3 4 1 2 3 4

1 2 0 0 0 1 0 1 0 1

PRE- 2 2 1 3 1 2 1 1 0 0

TESTS 3 1 2 2 1 3 0 1 4 4

4 0 0 0 7 4 1 0 4 6

1 Non eyetisatique 2 Peu system. 3 Debut de systems 4 Tres system.

Dans le groups LOGO, 5 sujete progressent entre le pre-test et le

post-test, alors que 12 sujets oe situent au memo niveau et que 5

sujets obtiennent un niveau moine evolue. Dans is groups CONTROLS, ces

effectifa soot respectivement de 6, 11 et 7 sujets. Une analyse simi-

lairs applique. aux autres dimensions des conduites observees lora de

cette epreuve donne des resultate comparablen. On eat donc amens

constater l'absence d'effet do is variable principale de notre etude

sur cola dimensions plus qualitativea des conduites relatives a is

seriation.

Eprouve do Rathkasatiques

i.e Tableau 3 resume les resultats de l'analyse de is variance ap-

pliquie A chacun des items prie separementainsi qu'A llepreuve to-

tals.

_O ifs
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Tableau 3: Analyse de variGoce de l'epreuve de mathematiquee

Source de variation

PRE-POST ENTRE INTERACTION

GROUPES

1 Estimation dangles TS NS*NS NS

2 Composition Wangles S S NS

3 Calcul angles parallelogramme TS TS NS
*

4 Nombre cStes polygones TS S S

5 Problomes arithmetiques NS NS NS

6 Sequence d'instructions logiques NS NS NS
*

Score total TS TS TS

* Resultat presque significatif (P inferieur a .10)

On conetate que des differences apperaionent eurtout pour les

items geometriques, auspi Bien en ce qui concerns lee progres entre le

debut et la fin de l'annee ecolaire qu'entre lee deux groupes.

Pour ce qui est de l'interaction, on peut noter que la difference

est surtout marquee Icxequ'on considere l'epreuve totale. Dane ce cas,

c'est le groupe experimental qui a progresse plus que le groupe contr6le

comme le montre is Figure 2.

Figure 2: Diagramme des interactions pour l'epreuve de mathematiquee

LOGO

CONTROLE

PRE POST

^0
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CCNCLUSION

L'ensemble des resultats obtenus lore de cette recherche confirm.

la tendance principals dos etudes similaires. La pratique de quelque

30 heures de programmation en LOGO ne suffit pas d provoquer des

program mesurables cur lee different.. variables cognitive. retenues

dans notre stud.. Le soul effet aignificatif a etil obtonu pour une

ipreuve de mathimatiques portant cur des contenus prochee de l'acti-

vita Logo.

Cele ne suffit hvidemment pee d denier l'interat d'une tells

activite ni A affirmer qu'aucun progras n'a ate accompli. Au contraire

l'epreuve Winformatique a montre que lea acquisitions des elives en

Logo itaient Bien rielles. Ce que nos resultats suggerent c'eat qu'il

s'agit de connaiesances d caractere local, non transferables im-

mediatement A des domains different*.

Par &Miura on ne peut pas exclure que des program aient pu kre

accomplis cur des dimensions que nous n'avons pas coneiderees. Enfin

des analyses plus fines tenant compte notamment des risultats des

observations it permettant de diffirencier lee sujets selon le degri

de lour implication dans l'activiti sant en coure et pourront

inflichir quelque peu lea conclusions provisoires de cette recherche.
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MENTAL REPRESENTATION OF RECURSIVE STRUCTURES

Kristina Hausmann

Piadagogische Nochschule Karlsruhe (West Germany)

In a West German research project we are investigating how

recursive structures are represented by 7th and 8th graders.

We use intensive interviews with different problems and

analyse the student's way to the solution. Especially working
on the "Tower of Hanoi" may reveal different recursive or

non-recursive strategies.

Recursion is an important problem solving tool in mathematics and in many

mathematical applications. But in mathematics as well as in computer

sciences the concept is not at all easy to understand and to acquire

(KURLAND & PEA 1983, HAUSSMANN 1986). In a West German research project

we want to investigate how children learn recursive structures and how

they develop a cognitive representation of recursion. In this investiga-

tion we are working with 7th and 8th graders aged 12 to 15.

It is evident that we have to use a method which is adequate for students

of this specific age and this developmental stage. We decided to work

with the students in a LOGO environment. LOGO is a computer language

which permits an easy introduction to sophisticated programming concepts.

So we suppose that working with LOGO may be a link between the more

intuitive use of recursion in everyday life (HAUSSMANN & REISS 1986) and

recursive structures used in mathematics. Moreover, learning to program

is an example of the acquisition of a complex cognitive skill. The obser-

vation of this process seems to allow generalisations (ANDERSON 1984). So

we presume that our investigation is of importance for the acquisition of

recursive structures in mathematics instruction.

One of our most important research methods in this project is the use of

intensive interviews. In such an interview only one student and the

interviewer take part. The interviewer presents different problems to the

student, and he or she is supposed to work on these problems. We are not

primarily aiming at a correct answer. The main purpose is to get insights

in the student's way towards the solution of a specific problem and the

understanding of the student's explanations to his or her answers. We

-1.0- - t
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made the first interviews after about ten hours of programming instruc-

tion. At this time the students were familiar with some LOGO primitives

and the most important syntax rules. They had almost no experience with

the use of recursive calls in a computer program. The students did not

only lack the experience of recursive structures. Moreover they did not

have more than a vague knowledge of other control structures.

The problems presented during the interviews reflected four 'afferent

tasks in the construction of a computer program. These tasks are

planning, writing, understanding, and debugging of a computer program

(see PEA 8 KURLAND 1983). All these problems are aimed at the identifica-

tion of iterative and/or recursive structures in the representation of

the problem's solution. The last problem was presented to the students

with the same goal but was supposed to reveal another aspect of

recursion. We asked the students to work with the "TOWER OF HANOI". This

problem is well known in the problem solving literature. There is a tower

made of N disks of decreasing diameter. This stack is set up on a rod A.

It has to be moved to a rod B by using an intermediate rod C. There are

two rules. The first one is that only one disk may be moved at a time,

the second rule says that a big disk may never be put over a smaller one.

If there is a tower made of three disks at least seven moves will be

necessary This number depends on the strategy. It is well known that the

optimum strategy is recursive. During the interviews the students had to

solve this problem with three and with four disks.

We think that a problem like this in advantageous in two respects. On the

one hand we may have a look at the way students deal with recursive

structures in a non-verbal way. If the students have difficulties with

the programming language these difficulties will not interact with defi-

ciencies in recursive thinking. On the other hand the students may be

working on a recursive problem without having to be conscious of its

recursive structure. They do not have to reflect their way of solution.

Let us take a look at the problem's solution while working with three

disks. We have to start by moving the smallest disk. It may be moved to

rod B or rod C, which is our own choice. Moving the second disk is

different in a certain respect. We might once more take the smallest

disk, and find a new position for it either on the free rod or on rod A.

But this would not be a substantial alteration of the situation. Actually

we cannot choose the next move freely. If the smallest disk is on rod B,

0 Z, 0
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we have to move the middle-sized disk to rod C.

on rod C we move the middle-sized disk to rod B.

are true

If the smallest disk Is
Similar considerations

as well for the following moves of the disks. We therefore

distinguish between optional and compulsory movements of the disks.

KLIX (1971) describes a representation of all possible moves of the disks

in a tree. He thereby combines the optional and the compulsory moves. In

this way he gets a triangle which reflects in an interesting manner the

recursive structure of the problem. The picture shows this tree with

respect to the 3-disk-problem. A. problem solver starts at the upper

corner of the triangle. The nodes at the lower corners on the left and on

the right represent the complete tower erected on rod B respectively on

rod C. All other nodes in this tree represent the different possibilities

for the intermediate stages of the disks.

1 3 2
1 23 -

123 --

23 1 - 23 1

3 1 2 3 2 1

3 - 12 12 -

- 3 1 12 3

1 2 3
1- 23

- 123-
- 23 1
2 3 1

12 -3
12 3

123
2 1 3

- 123

Every solution of the problem may be represented as a certain way through

this tree. But if this solution is made with regard to the recursive

structure of the problem, not every way through this tree will be chosen

by a problem solver. In the first step for example only moves in the

upper triangle are useful. They leave the position of the largest disk

unchanged. It is clear that the 3-disk-tower has to be constructed on rod

in order

possible for

few moves in

solution is

to move the largest disk to C. A similar consideration is

the middle-sized disk. So we have a further restriction to a

the upper triangle. The optimum strategy and so the optimum

represented by the movements along an edge. Thinking
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recursively while solving this problem may be regarded as the successive

restriction of the problem space.

A similar tree may be made for the 4-disk-problem or for any problem with

N disks to be moved. The diagram for four disks is made up out of three

smaller triangles. All these three triangles represent 3-disk-problems

which are part of the 4-disk-problem. The upper triangle includes all

moves which lead to a 3-disk-tower on the intermediate rod. The lower

triangles represent the movement of the 3-disk-tower to their final

position. We analysed the solutions of all students in terms of this tree

representation. Here are some of our findings for three students.

TOM (13 years old)

TOM is an 8th grader who is very much interested in computer programming.

He had some knowledge of BASIC prior to the LOGO instruction. TOM has a

computer of his own which enables him to work at home on the problems

given during the course. Therefore he has more practice and a more pro-

found knowledge of the LOGO syntax than the other students in the course.

Here Is Tom's solution of the "Towe of Hanoi"-problem.

TOM's strategy is a local one. At the beginning he aims at moving the

largest disk from rod A to rod C. But he is making moves all over the

upper triangle which means that TOM does not generalise his consideration

made for the largest disk. He does not pay attention to the global

objective of moving the whole tower. The hypothesis about TOM's strategy

is hardened by looking at the lower triangle. After moving the largest

disk he is erecting another local goal which is the move of the next

disk to rod C. Once more we cannot find evidence for another strategy. He
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is performing moves all over the tree for the 2-disk-problem in a trial

and error manner

superfluous moves.

It is obvious that

WO (14 years old)

Only after moving the third disk there are no more

The situation now seems to be evident for the student.

TOM does not use a recursive strategy.

UDO is also an 8th grader. During the LOGO course he usually works with

one or two class-mates. Prior to the interviews it was difficult to say

anything about his abilities in problem solving with the computer because

UDO is a very reserved and shy student. He hardly ever takes part in any

discussions in the class-room. Let us look at his moves of the four

disks. His solution of the problem seems to be without an overriding

strategy. He moves the disks quite randomly. His local goals do not

influence his searching space.

Ahh.

- 4 123 AIWA* 123 4

JAN (14 years old)

JAN is one of the students in the class of 7th graders. He does net have

any opportunity to work with a computer except during the LOGO course.

JAN is a good problem solver while working with the computer. Usually he

develops further ideas while working in the course on the given problems.

Therefore he creates quite elaborate LOGO procedures. JAN does his own

work thoroughly but at the same time he helps othcr students in the

class-room doing their work. His solution shows the optimum path through

the tree. It is also interesting that JAN is very fast while working on

the "Tower of Hanoi"-problem. There is only a break of a few seconds

after moving the largest disk to rod C. We regard this break as part of

restructuring the problem (see also COHORS-FRESENBORG 1985).

.1.0?3
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The goal of our investigation was to describe representations of the

solutions of a recursive problem. We found out that students have differ-

ent strategies which they apply while working on the problem. We could

reveal a hierarchy of strategies following the description of KLIX

(1971).
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A PROLOG DATABASE 01 TAGUS ESTUARY PROBLEMS:

IMPLICATIONS ON THE MATHEMATICS AID LOGIC CONCEPTS

Maria-Cristina Zambujo

Esc. Sec. No.1 Olivais

Projecto MINERVA

PROLOG (PRogramming in LOGic) is a programming language in
its own right, available in numerous implementations. It

was chosen by the Japanese Fifth Generation Computer Sys-
tems researchers as the fundamental starting points in

their development of a new generation of computer system.
It is being applied internationally in research areas such
as expert systems and databases.
The purpose of this study is to check: 1-to what extent
PROLOG is a language accessible to secondary students; 2-
-the characteristics and potentialities concerning the le-
arning of mathematics, of the environement supplied by the
construction of a PROLOG database.
Students in the sample envolved (7th and 9th graders) did
not show great difficulty in dealing with PROLOG and PROLOG
was a source of motivation of question posing in maths
learning and helped create a new pedagogical student-cen-
tred atmosphere.

INTRODUCTION

One of the fundamental and unseparable rights of Man is the right to a

good education. Nowadays in cur society where knowledge grows old at an

unprecedented speed owing basically to the rapid evolution of new

information technologies, school lacks adaptability. This results in a

considerable decrease and, sometimes, in a total absence of the lear-

ner's motivation together with his failure.
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Teaching is not only an art, it is also a whole science requiring sensi-

tivity to react quickly and adequately to the learner's needs.

The use of computers can allow a wide range of changes on the teacher-

student relationship. As a matter of fact, it appears as an element

which works as the basis of an active learning, interacting with tea-

chers and students, allowing storage, processing and systematic retrie-

val of information, thus ultimately contributing to a new pedagogical

atmosphere.

Hartley (1981a, 1981b) emphasized the importance of the learner's role

in this new environment supplied by the appearance of the computer:

"Only by allowing the student himself to make choices, to Justify they

and see their facts, will he learn about the process of making educatio-

nal decisions; only in this way will he become self-evaluative and learn

how to learn".

The Artificial Intelligence (A.I.) is a special branch of informatics in

permanent change. As far as A.I. is concerned, the Alvey Commits*, agre-

eing with the Japanese initiative, has recommended a new emphasis on its

study: "We want more powerful information processing systems with a more

effective transfer of human intelligence and knowledge to the compu-

ter... The action must start in the schools" ( Alvey, 1082). A. I. allows

the focus on the analieya of human learning activity. Kargaret Boden

(1977) writes about this subject: :Artificial Intelligence is not the

otudy of computers but of intelligence in thought and action...".

Hawkins (1981) adds; "in expert appears very much as an analytical tool,

helping the users make well-informed decisions without forcing them to

accept any particular interpretation or procedure". Among the languages

available today, PROLOG (PROgramaing in LOGic) seems to offer great op-

portunities in education. With a high declarative power, it can be used

by the non-computer-specialist, ideally in his or her natural language,

to solve problems concerning objects and their relationships.

The ease of interrogation of a logic database (qwary language) provides

it with an interpretative and deductive characteristic, keeping a con-

versation between the user and the computer. In short, it in a formal

language that can represent knowledge and it is suited both to the deve-

lopment of programs and to the storage of knowledge and its consulta-

tion.

Ennals (1981) argues: "PROLOG has a number of uses in work with
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computers - as a database qwery language for specifying the information

to be retrieved from databases; as a language for specifying problem

prior to their solution by computer programs; as a formal language for

the automatation of deductive reasoning; as a representation of informa-

tion for natural language processing; and as a very high-level program-

ming language in its own right".

More recently, Cabrol (1986) suggests that PROLOG is one of the higher-

-level languages with a great success,

Creating situations which lead to mathematization, in specified contexts

familiar to learners and in close contact with aspects of real life, is

one of the goals of the teaching of mathematics, The construction of a

database, in a programming language, close to the natural one, and bea-

ring a strong qwery power PROLOG - will be able to open new perspecti-

ves which provide a contact with some meaningful applications of

Mathematics, and are necessary to the construction of its theory.

So, the aims of this study are to check:

1) To what extent PROLOG is a language accessible to secondary students.

More specifically:

a- which logical concepts in PROLOG programming 7th and 9th grade

students show;

b- what effects PROLOG programming hen on the development and

consolidation of such concepts;

c- how 7th and 9th grade students differentiate as far as the prece

dent aspects are concerned.

2) The characteristics and potentialities, concerning the learning of

mathematics, of the environment supplied by the construction of a PROLOG

database. More specifically:

a- the difficulties inherent to the construction and understanding of

a database;

b- the effects of such an environment on the acquisition and develop

ment of mathematical concepts;

c- the effects on the interpretation students make from the phenomenon

represented in the database;

d- the implications in terns of exploration and creation of knowledge

by students.
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NE1WID

The research study woo conducted in a Lin a secondary school. Eight
students were involved: four 7th grade stud, Is and four 9th grsde stu-
dents, selected among thirty 7th-, 8th- on eticgrede students who vo-
lunteered to submit to a pre-test for the p Apcnie of assessing coacepts

concerning the predicate Logic.

The eight students selected belonged to both GWICU two girls and two
boys in each grade -, and can be considered to have a modium level both

in school achievement and as far as the results in the pre-test are con-

cerned. Social status was formed to be similir in the eight students in-

volved.

The hardware used in the study was the folleeing: two Olivetti mdcrocsms

puters X19 and 1L24, with 512kb and 256kb RAM, respectively. PROLOG, Sue
to its demand of RAM, could oaly be used is the 1419 unit. Softwnre was

also used such an word processing (Open Access), S.Cac3. Paper-and-len-

cil as well as calculators were used too,

In a first phase, which consisted in one-hour three sessions, students

learned how to program roughly in ARITY/PROLOG. The phase comprehended a

tutorial, containing some basic notions of ARITY/PROLOG such as varia-

bles, facts and lists. Such a tutorial was built up by an informatic te-

chnician who also participated in the study.

In a oecond phase, which consisted of one-hour twelve sessions, students

dealt with sties problems concerning the Tagus Estuary, having teamed up

in subgroups of two elements: one subgroup of boys and one subgroup of

girls for each level. All students were constantly required to organize

the database or solving problems concerning their work,

Each student owned a note book where the information necessary to carry

cut his/her work was written down.

Thus, two databases on Tagus Estuary problems were built up by the 7th

grade and the 9th grade students.

Assessment was made through observation as well as two tests on Predi-

cate Calculus such as variable symbols, compound terms, function sym-

bols, predicate symbols, logical connectives and mathematical concepts

variables, proportions, relations, equations, statistics, graphs.
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DEVELOPKEli OF ACTIVITIES

After students have chosen same themes connected with Tagus Estuary pro-

blems, /students posed some questions of two types: qualitative and quan-

titative questions. 7th graders showed a tendency to pose qualitative

questions while 9th graders posed more quantitative ones, such as:

"Vhich faunal species was of higher frequency in the sample considered?"

The two subgroups of the same level worked in each session: while one

group was working with the database, the other group used such means as

bibliography, primary sources, and carried out adequate calculations and

build up graphs in order to organize the information.

The activities involved concerned the units of the Tagus fauna, the re-

lationship between environeesut and species, and polution in the Es-

tuary. As these problems were posed, it was stated the need to calculate

seams, modus, measures of variability and solve equations, use varia-

bles, stablish relationships, built up graphs and interpret them, as

well as the need to locate the spots under focus in maps and construct

models also involving some geometry concepts.

COICLUSIOIS

About the organization of the PROLOG database, 7th grade studonta showed

sore difficulty in the use of this language than the 9th graders (they

made more mistakes iu notation - brackets, coaxes, full-stops were, so-

metimes absent, which caused a slower work pace).

However, they showed more ready - in tures of time - to seek informa-

tion, while 9th graders organized information better having consulted

fewer sources.

About the mathematical concepts, the notion a2 variable and its substi-

tution did not bring any difficultivo in whatever level considered. Is-

sues concerning proportions and problem interpretation were satisfac-

torily solved by both levels. Abcut the translation of problem into mat-

hematical language 9th graders showed to be more at ease than 7th gra-

ders.

About the concepts of predicate logic, 7th graders showed more diffi-

culty than 9th graders.

About the advantages of a computer representation questions can be asked

which may involve exploring information from a washer of different parts
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of books, if we take advantage of the "qwery-the-user" facility the sys-

tem can prompt us for missing information, and as a result can learn new

knowledge during the interaction; the user can at any time add amend or

delete information and create new facts or rules; questions can be asked

which were not envisaged when the information was entered.

Information supplied by different sources can be compared, by analysing

the information obtained and its source through the study of knowledge

representation.

A new pedagogical, student-centred atmosphere is thus created. Many

questions will require further information and computer motives the re-

search and learning.

Students generaly understood better Tagus Estuary problems with the help

of PROLOG as they were motivated by the issues aroused.
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E.111STRUCTING THE CONCEPT IMAGE OF A TANG F.NT

David Tall

University of Warwick. U.K ,

When a learner meets a new mathematical concept, it may be invested with
implicit properties arising from the context, producing an idiosyncratic

imagemage which may cause cognitive conflict at a later stage (Tall &
Vinner, 1981). The purpose of this empirical research is to test the
hypothesis that interactive computer programs, encouraging teacher
demonstration and pupil investigation of a wide variety of examples and
non-examples, may be used to help students develop a richer concept image
capable of responding more appropriately to new situations. Three
experimental classes of sixteen year-olds were taught using computer
packages capable of magnifying graphs to see if they "looked straight", and
to draw a line through two close points on a graph. These formed the basis
of class discussion and small group investigations to encourage the formation
of a coherent relationship between the concepts of gradient and tangent. For
comparison, five other classes were taught by more traditional methods. Two
questionnaires administered during the course confirmed that the
experimental students were able to respond more appropriately in new
situations, for example in the case where a function is given by a different
formula to the left and right. However, the notion of a "generic tangent" - an
imagined line touching the graph at only one point (even where this is
inappropriate) - persisted in both groups, though significantly less amongst
the experimental students.

&Wing and testing Mathematical Concepts

The computer introduces a new factor into the classroom relationship between the pupils,

the teacher and the mathematical concepts to be considered. It enables aspects of the

mathematics to be externalised and manipulated on the computer VDU. In terms of

Skemp's three modes of building and testing mathematical concepts (Skemp 1979), it

offers a direct (mode 1) method of building and testing using the computer software, in

addition to discussion with the teacher (mode 2) and internal consistency of the

mathematics in the mind of the learner (mode 3):

computer

pupil

3NN.
teacher mathematics
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This more immediate mode of building and testing can be highly advantageous in
introducing new concepts that previously have seemed extremely abstract to pupils.
However, there may be a danger that the computer introduces inappropriate factors that
may cause difficulties of their own. For example, a "straight line" on a computer VDU is a
coarse sequence of high-lighted pixels that, at best, may only look fairly straight.Such

difficulties require careful handling by the teacher. However, the differences between the
practical (and inaccurate) computer picture and the theoretical ideas can also provoke a
great deal of discussion that can be most rewarding for the pupils. As Hart has observed:

The brain was designed by evolution to deal with natural complexity ,

not neat "logical simplicities". (Hart, 1983, page 52)

Mathematicians analyse concepts in a formal manner, producinga hierarchical development
that may be inappropriate for the developing learner. Instead of formal definitions, it may
be better for the learner to meet fairly complicated situations which require the abstraction
of essential points through handling appropriate examples and non-examples. Such
complexity requires discussion and "negotiation of meaning" between teacher and pupils.

Vinner (1982) has observed that early experiences of the tangent in circle geometry
introduces a belief that the tangent is a line that touches the graph at one point and does not
cross it; this produces a concept image that causes cognitive conflict when more extreme
cases are considered, such as the tangent at a point at inflection, where it does cross the
curve, or the case of a tangent at a cusp, which is slighdy more contentious.

Classroom activities

In three experimental classes, of 12, 14 and 16 pupils, the aim was to negotiate the
meaning of the tangent concept through using the computer to draw a line through two
very close points on the graph as part of a broader introduction to the idea of gradient of a
graph in the calculus. This was to be demonstrated by the teacher leading a discussion
centred on the computer, before encouraging the students to work with the computer in
small groups. It was part of the brief for the experimental students to consider cases, such
as y=lsitud, which have "corners" where they have neither gradient, tangentor derivative,
though they visibly have different left and right gradients. One of the programs used
purported to draw a "tangent", when it actually drew the straight line through (x,f(x)),
(x+h,f(x+h)) for h=0.0001. This seemed to draw a "tangent" to y=lsinx1 at the origin,
providing a rich source of discussion. The researcher took an active part in the
experimental group of 14 pupils, suggesting activities to be followed by the other two
groups, whilst the five control classes followed a more traditional strategy assuming an
intuitive knowledge of the meaning of a tangent. All teachers kept diaries of their activities.
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The Test investigation

Two brief tests were xdrninistered to the students during the course of their work. The first

followed immediately after they had studied the notion of the gradient of a graph at a point,

the second after they had studied the notion of a tangent in greater detail. Both involved the

same sequence of graphs:

-1

-1

(4) gi.abs(x3)
x (xS0)

(5) x4-x2 (xL0)
x (xS0)

(6) 111 witox

In the GRADIENT INVESTIGATION , for each graph the students were asked:

Can you calculate the gradient at x=0 ? YES/NO

If YES, what Is the gradient, If NO, why not ?

In the TANGENT INVESTIGATION they were asked:

Does the graph have a tangent at x=0 ? YES/NO

If YES, please sketch the tangent, if NO, why not?

In each case the first question was to establish a base-line of performance, it being hoped

that virtually all students would be able to answer the question correctly. The second

question tested the concepts of gradient/tangent at a point with different left and right

gradients, (where the experimental students would expect to have an advantage). The third

tested the concept of gradient/tangent at a cusp (and here mathematicians may fail to agree

over whether there is a tangent or not!) The fourth involved a function for which the

students did not know the formula for the derivative, so they could not easily solve the

problem in either case by differentiation. The fifth and sixth cause difficulties because there
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arc different formulae on either side of the point under consideration. The fifth has the
additional difficulty that it does have a tangent at the origin but, to the left, the tangent
coincides with the graph and so cusses conflict with those students who believe that a
tangent touches the graph at one point only. The last two questions, in particular, would
test a students' concept images in a broader context than they had previously encountered.

The tests were also administered to a group of first year university mathematics students,
who are nxire highly qualified than the students in eithercontrol or experimental groups.

In the limited space at the disposal of this paper I shall report the total responses of the
control and experimental students. In Tall (1986) there is a deeper consideration of
matched pairs of students (matched on a pre-test not given here) with and without previous
calculus experience which supports the score conclusions.

In each table the "correct" response will be given in bold type (though its "correctness" is
sometimes a matter of opinion); other responses will be subdivided wherever appropriate.
Where "statistical significance" is quoted, this will always be using a one - tailed z2-tea,
sub-dividing the responses of experimental and control groups into "correct" and "all
other" responses, with the hypothesis that there will be more correct responses from the
experimental group. The experimental students usually perform at least as well as the
university group. Unless explicit mention is made, itmay be assumed that the differences
between the experimental students and the university students is not statistically significant.

Graph (1): y=x2-x
faC80,801

correct incorrect n,
Experimental (N.41) 40 1 0
Control (N.65) 59 6 0
University (N.47) 47 0 0

1.1111201
correct incorrect nr

41 0 0
64 1 0
47 0 0

Although marginally more control students gave incorrect responses to the gradient
question, this is not statistically significant.

Graph (2): y=abs(x)
Quadiefil

Y.F.E;aLtLAILUE tfQ
Experim. (N-41) 2 0 0 1 38
Control (N.65) 23 14 4 3 21
University (N-47) 7 9 2 1 36

18113218
marry two loft tiottbakuga pia

2 6 0 0 1 32
8 9 0 2 17 29
2 0 0 0 8 37

More experimental students give NO responses than control (r2r--34.73, p<0.000001),
and more say there is no tangent (xl--9.10, p<0.01). The experimental students NO
responses are significantly higher than those at university (x2=3.12 , pc0.05) whilst the
numbers responding with no tangent are not significantly different (z2=0.03).
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The control students use their concept images to put forward a number of reasonable

hypotheses, such as noting that the gradient has the two values t1, or averaging the two

values to get zero, or calculating the derivative of abs(x) to get abs(1), or simply ignoring

the abs symbol altogether to obtain the derivative 1. Several control students showed

insight into the problem, asserting that there was no gradient with comments such as:

"no, because the line is going in two directions at 90 degrees".

Note that five experimental students assert there are two tangents, almost certain?) the

legacy of discussion about left" and "right" tangents.

Graph (3): y = 'I(abs(x))

Gradient is1110111

ysa
r2..talbitt j babe other nom nr

8 1 1 0 3 1 0 36 0Expertm. (N.41) 0 5 27 0
Control (N.65) 10 11 16 6 20 2 3 1 23 10 3 24 1

Unlvers1 ly(N47) 14 5 4 6 11 0 2 1 23 2 0 19 0

This question is difficult to answer, for it even provokes debate amongst mathematicians.

It does not magnify to look straight at the origin (with two superimposed half-lines), so a

theoretical case can be made for no tangent and no gradient (noted above in bold type).

Some would argue that there is a vertical (undirected?) tangent, with infinite gradient

(noted in italics). A few students draw a "balance" tangent along the x-axis.

Significantly more experimental students respond NO to the gradient than control

(x2.41.16, p<0.01), and more experimental students than university (x2=5.16, p<0.05).

Grouping those who respond NO, or give the gradient as infinity (YES or NO), shows

significantly more experimental students than control (x2=20.46, p<0.001), and more

experimental than university (x2=4.52, p<0.05).

Significantly more experimental students than control say that there is no tangent

(x2=17.71, p<0.0001), and more experimental than university (x2=7A3, p<0.01).
Combining "no tangent" with "vertical tangent", there are significantly more responses in

the combined category from experimental students than from control (x2=10.79, p<0.01).

Graph (4): y=abs(x3)
atadian1

YFILQ.1.2Lothaz 11S2 of
lomat

borlzontol au nena DL
(N.41) 3S 5 39Experirn. 0 1 0 2 0 0

Control (N.65) 36 22 5 2 0 46 0 1 0

Univoralty (N.47) 35 9 1 2 0 46 0 1 0
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Although most students state the gradient is zero, many perform an erroneous
differentiation, such as giving the derivative of abs(x3) as either abs(3x2) or 3x2 (a correct
formula being 3x(abs(x))...) It may be that some giving the response 0 may have made the
same error without writing it down. There is a significantly larger number of experimental

students responding with gradient 0 without making an expliciterror (x24.90, pc0.01).
There is no significant difference between experimental students and university students
and no significant difference in the drawing of the tangent at the origin between any of the
groups.

Graph (5): y=x (x_10), y =z +z2 020

&WW1 Tanaent
YES: 1 eta( KO or alandaniganaric-Mhar not rc

Experim. (N.41) 311 1 0 1 31 0 0 2 0
Control (N.45) 32 8 24 1 22 25 2 15 1
University (N.47) 45 0 2 0 29 14 0 4 0

This is the most interesting example of all. The experimental students are very successful at
calculating the gradient of the curve at the origin, even though all functions considered in
the course were given as single formulae. The control students, however, find difficulties
because they calculate the gradient by differentiation and are confused by the different
formulae on either side of the origin. Comments include:

"The line changes its characteristics - it is two graphs."

"Because at x=0 is what two functions meet."

Significantly more experimental students give the gradient as 1(x21.91, p<0.0001).

The tangent produces another difficulty because it coincides with the graph itself to the left
of the origin. Coerced by their belief that a tangent touches the graph at one point only,
many students draw the tangent a little off the curve, so that it seems to touch only once.
This is termed a generic tangent in the table, a generic concept being defined as one
abstracted as being common to a whole class of previous experiences. Even a minority of
the experimental students draw the generic tangent including some saying the gradient is I.
However, the number drawing a standard tangent is significantly higher amongst
experimental than control. (z2a15.91, p<0.0001).

Graph (6): y=x (xS0), y=x2 (s0)

YES
Gradient TAXI=

NQ or manta ten aft risibL Warm Ala nora rat
Expetion. (N.41) 30
Control (N.65) 39
Unlvera3y(N.47) 43

1 0 3

5 0 0 3 0 0 1 0 37 0
24 2 3 4 2 4 7 4 33 3

3 1 1 4 0 1 2 0 31I 1
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Significantly more experimental students respond correctly to the gradient question

(x2=8.09, p<0.01). The tangent question has a wide variety of responses, with some

seeing "many" or an "infinite number" of tangents touching the corner on the graph, others

seeing two, or one (either left, right, or a line balancing at a rakish angle on the corner).

Once again, significantly more experimental students explain that there is "no tangent" at

the origin (x2=10.79, p<0.01).

farlaigun

The research emphasises the difficulties embodied in the tangent concept, but suggests that

the experiences of the experimental group helped them to develop a more coherent concept

image, with an enhanced ability to transfer this knowledge to a new context. For example,

they weft better able to interpret the tangent/gradient at a point where the formulae changed

but left and right gradients were the same. However, potential conflicts remained, with a

significant number of students retaining the notion of a "generic tangent" which "touches

the graph at a single point", giving difficulties when the tangent coincides with part of the

graph.

At the general level the research lends support to the theory that the computer may be used

to focus on essential properties of a new concept by providing software that enables the

user to manipulate examples and non-examples of the concept in a moderately complex

context. This allows a curriculum development to be more appropriate cognitively by

giving students general ideas of concepts at an early stage, to encourage discussion and the

active construction of a shared meaning.
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LA STRUCTURE ITERATIVO-REPETITIVE COWIE CHAMP CONCEPYUEL DANS

L'ENSEIGNCMENT ELEMENTAIRE ET SECONDAIRE EN MATHEMATIQUES ET INFORMATIQUE

THE ITERATIVE - REPETITIVE STRUCTURE AS A CONCEPTUAL FIELD IN THE

ELEMENTARY AND SECONDARY LEVELS IN MATHEMATICS AND COMPUTER SCIENCE.

ROUCHIER ANDRE

I.R.E.M. - UNIVERSITE D'ORLEANS.

Many researches have been done in the field of
cognitive difficulties of beginners, children or adults,
when programming complex structures like the realization
of a lbw in various sorts of languages, imperative
(Pascal) and applicative (LOGO). From a curriculum point
of view, it is necessary now to develop a broader
approach about learning and teaching this sort of
structure. With this respect we have to take into account
that Repetition, Iteration and Recursion belong to and
define the same conceptual field integrating various
aspects connected to other mathematics and computer
science concepts, for Instance multiplication at the
elementary level, induction and aspects of the limit
process at the secondary level.

In this presentation we are developing a first
attempt in the description of the internal and external
relations in the field of Iterative-Repetitive Structures
(I.R.S.) and the informations we have about cognitive and
didactical difficulties.

La notion de champ conceptuel a 6t6 proposee par Gerard VERGNAUD

[8 ], [4], 11 y a quelques annies pour fournir des moyens de construire

des cadres interpretatifs, aussi bien pour l'enaeignement que pour la

recherche, dans le moyen et le long terme, des .difficultes de nombreux

elhves au coura de l'apprentlasage de certains concepts. Les exemples qui

ont et6 les plus diveloppes sont l'addition et la multiplication h

travers leurs extensions successives, extensions de domaines numdriques

de validite, extension de champs d'utilisation et de fonctionnement.

Prendre en compte cette notion s'appuie au moins sur deux sorter de

considerations :

- celle qui tient au concept ou au contenu etudie. I1 s'agit

d'identifier et de mettre en evidence la tres grande variete de

problemes et de situations dans lesquels ils sont impliques. C'est is

can de ceux que nous avons cite precedemment.
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celle qui tient aux eleves engages dans des apprentissages a propos de

ces notions, a l'analyse et a l'interpretation de leurs comportements

des lors qu'ils sont orientes par les caracteristiques

dpistemologiques du contenu.

Un des problemes de is recherche en didactique des mathematiques,

outre l'identifIcation et l'utilisation des notions et concepts

didactiques necessaires, est ce]ui du decoupage du savoir qu'elle dolt

operer. Celui que suggere l'enseignement exists comme objet d'etude.

C'est un product, le product d'un travail de transformation proprement

didactique qui modifie dune certaine maniere lee objets de savoir[

De nombreuses recherches ont montrd qu'on ne saurait le consIderer come

un donne. I1 faut done operer d'autres decoupages ; la notion de champ

conceptuel est un moyen de les effectuer.

La structure de repetition-Iteration : S.R.I.

Mathematiques et Informatique offrent e des notions communes des

cadres conceptuels ainsi que des formalismes sensiblement differents.

C'est le ces de ce que nous appellerons ici la structure de repetition

Iteration (S.R.I.)

L'iteration a un statut particulier en mathematiques. Stricto

sensu, it nest pas objet d'etude pas plus qu'elle nest objet

d'enseignement n3 au niveau elementaire ni au niveau secondalre. Elle est

toutefois engagee explicitement dans des definitions (multiplication,

nombres reels), dens des ocritures et des manipulations de sommes et de

products, dans le calcul sur les limites. Elle a done un rOle triple :

Un rOle producteur : de nouveaux objets, de nouvelles

representations,

- Un rOle prescripteur : elle indique les operations quill faut

effectuer,

- Un rOle de descrlpteur : elle dit comment est constitue un objet ou

un processus.

En informatique, la repetition- iteration est un opCrateur general

qui reprdsente une forme de coordination d'operations elementaires pour

construire des objets de plus haut niveau. Elle intervient dans tous les

langages de programmatIon, aussi been ceux qui sont assocles aux

calculatrices programmables que ceux, de plus haut niveau, dans lesquels

elle est codee recursivement. Nous inclurons ici, dgalement, les outils

de programmation et de calcul que sont les tableurs.
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Le traitement algorithmique et informatique de l'iteration va

ajouter une quatrieme caracteristique a nos trots proprietes precedentes,

l'effectivite, autrement dit le dimension de realisation du calcul. Elle

vs appeler et provoquer de nouvelles coordinations, done une autre

connaissance at un autre usage de l'objet qui nous interesse ici.

Schemes et lance:ries pour is S.R.I.

La structure repetivo-iterative est un opbrateur essential pour

l'analyse des objets complexes. Elle se rattache a un certain nombres de

schemes d'actions fondamentaux qui peuvent etre associds a l'economie

des designations at des processus. Peconomie des designations, c'est de

pouvoir representer a l'aide d'une ecriture condensee et limitde des

objets at des processue pour lesquela cette ecriture serait, a priori, de

longueur egale a celle de is Hate exhaustive des actions a accomplir

pour les calculer ou pour les determiner. Peconomie des processus, c'est

l'identification de lour manifestation dons un nombre Important de

situations pour qu'il soft necessaire de le considdrer en tent qua tel

come un objet d'etude. C'est le ras de la multiplication, pour laquelle

ce qui precede represents une description du schema general de

l'introduction R l'ecole 61ementaire.

Certes, is multiplication ne represente pas le premier scheme

repetito-iteratif qui puisse etre rencontre par des jeunes enfants, mais

ea construction dans l'enseignement realise la premiere miss en forme

matnematique d'une realisation de in S.R.I. 2] .

C'est d'ailleurs en prenant appui sur cet example qua nous

pouvons perler metaphoriquement du "pouvoir multiplicatif" de

l'iteration. I1 s'agit la d'une dimension conceptuelle qui nous paralt

iaportante ; it y a changement d'ordre. Un ordre lineaire, ou

sequentialise est outil de base dans la construction d'un ordre de

complexitt suporieure (salon une epistdmologie naive de is complexite

'Merits par les mathematiques).

Lea realisations d'iteration at lours descriptions font

intervenir un certain nombre de contraintes qui sont dCpendantes du cadre

dans lequel elles se situent : mathdmatique et/ou informatique et, dans

ce dernier cos, de choix imposes par les concepteurs du langage dans

lequel on est amends a travailler. Autrement dit, les codages de

repetition-iteration vont devoir absorber un certain nombre de charges

cognitivea (qui ne renvoient pas seulement a les difficultes de nature

seulement eyntaxique).
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Ainsi, la S.R.I. est prise dans un dispositif double :

Le dispositif du probleme quo l'on souhaite traitor nu rdsoudre et

dans lequel elle apparalt come un element de solution,

Le dispositif de reconnaissance et de realisation de la solution, qui

comprend en particulier l'ensemble des operations possibles lours

coordinations et les modes de description correspondants[ 3].

Les operateurs les plus puissants ne sont pas forcdment les plus souples:

Cette analyse des elements de complexite propres au S.R.I. va

done prendre en compte une autre dimension de sa signification

dpistdmologique. I1 s'agit de l'identification
des elements de controle

qu'il est necessaire de construire pour utiliser et construire des

repetitions et des iterations notamment dans le cadre informatiques ou

dens un cadre qui permettra de problematiser
l'effectivite. Ces elements

de contrOle sont de deux types :

- Ceux qui sont associes aux contrairtes de formulation pour is

reussite, c'est-A-dire pour
l'ecriture de procedures effectives.

Ceux qui sont de type cognitif,
c'est-a-dire qui sont de l'ordre des

operations du sujet pour la
production des elements du premier type.

11 n'y a pas quo des ours effets de syntaxe A passer do

l'ecriture dune repetition striate de type suivant en LOGO et en

PASCAL:

I. POUR ROI
REFETE 10 [ECRIS [I AM THE BEST] ).

FIN

II. PROGRAM WELLIMNE;
Vd4 iAmteget;
begin

bon i:=4 to 10 do whitetn 111 AM THE BEST.);

end.

puisqu'une modification de Is consign change tree fortement les

relations entre lea elements de ces
programmes, le mode d'engsgement des

concepts et leur interpretation. Completer en effet par une demande du

type :
Vokdke d'appaition de

cheque phha4e d Vechan vs

interroger sur ce qu'on pourrait appeler le
contrOle interne et le r8le

de is variable I qui, en
general, n'est pas pergue comme une variable. En

effet les difficultes des eleves debutant se re.roupent en trots

classes:
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3. On ne peut pad ulaiaen
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Le de to boucle, AiADA to

1.340g/tame ne tounneAa.it pad de La mime
manti4e.

On pourra ne voir dons cat exemple que des indices de non- -
comprehension d'une realisation particuliere de la S.R.I. C'est une
premiere interpretation.

La seconde interpretation nous irons la chercher du cote de ce
qui nous occupe ici. A operateur puissant (REPETE) occultation de
fonctionnement et absence de souplesse dans l'adaptatien a un probleme
"derive". La complexito, de fait, (et non pas seulement son etude)
s'appule et se nourrit sur le type de contraintes structurelles que
mantra cet eeemple.

peut y avoir un debit sur la "puissance" des operateurs que va
offrir un langage pour coder la S.R.I. L'exemple

precedent mantre les
'unites mem de ce debit. Par ailleurs, it montre (isei que la
"puissance" est a mettre en relation avec une extension du champ de
fanctionnement, ce qui eat Lilian propre aux objets que categorise is
notion de champ conceptuel. I1 s'agit d'abord de construire des elements
do contrdle qui ant ate enonces au paragraphe

precedent, autrement dit
d'interioriser des schemes etiou des regles d'utilisation.

y a eu un certain nombre d'etudes
sur le sujet, etudes qui ant

ate effectuees dans des contextes determines. C'est le cos des travaux
d'E. Saloway[ 7 ] dans is cis des boucles en Pascal. La problemetique de
l'integration des plans est determinante dans is mise a jour des
mecunismes d'appropriation et de leurs etapes. II y a construction de
schemes "autonomec ", par exemple is schema de compteur at is schema de la
variable d'accumulation. Schemes qui vorit d'une part se coordonner,
d'autre part correspondre a des conduites par lesquelles on va chercher h
les appliquer en analysant le probleme dans cette perspective. I1 y a
lieu, lb, construction d'une

competence specifique.
Dans is cas de l'ecriture recursive des iterations avec le

langage LOGO, nous avons pu mettre en evidence [5], dans un contexte
d'enseignement been defini, des operateurs d'un autre type, internee h la
forme recursive elle-meme et permettant au sujet de decider stir In place
relative de l'indicateur de l'action de base du programme et du moteur de
l'iteration (apeel recursif).
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La S.R.I. comme mice en ordre d'informatione et d'operations.

Du point de vue des etudes didactiques nous commas directement

interesses aux conditions propres a permettre l'identification du jeu

mutuel des elements du probleme et de is solution dans un contexte

particulier de production et de mice en oeuvre de cette solution. On

cherchera done a faire varier des elements du contexte autant que les

problemes eux-memes.

Par exemple, les relations entre les competences reelles du

dispositif d'execution, les representations cue peuvent en avoir les

eleves A un moment donna de l'apprentissage et les solutions qui vont

etre mixes en oeuvre sent tres iinportantes. 11 y a en fait mutant

interiorlsation des operateurs que construction dune conception des

competences du dispositif [ 3].

tors d'un travail anterieur A prepos de Pascal [61, une situation

introductive de l'iteration etait composee d'un problame d'ecriture de

programme de calcul de multiplication d'entiers pour un dispositif

compose d'un operateur humain et de deux machines A et B. Sur le machine

A seule l'addition pouvait fonctionner, sur la machine 8, seule

l'operation etait possible. Una fois ecrit, le programme c;evait etre

communique a un recepteur qui recevant deux nombres devait executer le

programme puis expliquer ce qu'il etait cense calculer. I1 s'agissait

d'identifier des formes de structuration d'un type d'iteration

andeterminee.

Ce dispositif est Insuffisant pour permettre l'identification des

informations qu'il est necessaire de coder dans un corps de boucle. D'un

point de vue nnIf, ce sea elles qui doivent etre iterees. Elles sent

done de nature "cooperative" : que faut-il savoir si, s'arretant a une

etape quelconque du calcul, on veut donner D quelqu'un les moyens de le

poursuivre ?

CONCLUSION.

11 semble qu'il suit d'ores et 6.1,0 necessaire de compter

l'iteration comme un des objets nouveaux de l'enseignement des

mathematiques a l'ecole elementaire et au niveau secondaire. I1 ne s'agit

pas d'une notion toute faite. Au contraire, tout donne a penser que par

se richesse rotionnelle, is variete de sex domaines d'application, sex

relations avec des concepts fondamentaux cosine ceiui de variable, it

faille l'engager dans un grand nombre de situations pendant une periode

de temps significative. A cote du mouvement, propre i l'evolution des

curriculums qui ve tepdre ins6rer dans l'enseignement des mathematiques
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des problemes comportant plusieurs modes d'utilisation de l'iteration, it

paralt necessaire de developper des etudes specifiques b is place et at_

role de cette not ions is construction des connaissances en

mathematiques et en informatique. Nous avons essaye ici de soulever

quelques elements qui nous pareissent significatifs.
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TEACHING IEPRESENTATION AND SOLUTION FOR
THREE TYPES OF ALGEBRA WORD PROBLEMS:

A STUDY WITH LEARNING DISABLED ADOLESCENTS

Nancy L. Hutchinson

Queen's University

ABSTRACT

Recent theoretical work suggests problem solving in
algebra consists of two phases: representation and
solution. Adolescents, particularly learning disabled
ones, have difficulty with algebraic word problems. The
purpose of this study was to design and investigate the
effectiveness of instruction in representation and
solution for learning disabled adolescents.

Instruction for each phase was based on cognitive
task analysis, and included declarative knowledge,
modelling of procedural knowledge by
thinking aloud, guided practice, and independent
practice. Data were derived from problem-solving
measures, think-aloud protocols, and interviews about
metacognition. Students astered representation and
solution and maintained and transferred what they had
learned. They acquired schemata for algebraic word
problems.

OBJECTIVES

This study builds upon the cognitive theories of problem solving
developed by instructional psychologists. For these researchers,
problem solving in knowledge-rich domains consists of two phases:
problem representation and problem solution (Mayer, 1985). Recent

reviews show that while there are few differences in ability to solve,
experts are better than novices at representation (Glaser, 1984).
Despite this, most instruction has focused on solution. The focus of

the study reported here is on representation as well as solution in
learning disabled adolescents. Although many adolescents fail to
understand and solve algebraic word problems, the learning disabled
seldom suceed at this task (Lee G Hudson, 1981). Although these
students have average ability, they evidence psychological processing
problems and achieve poorly in particular curriculum areas.
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The first purpose of this study was to design instruction in

problem representation as well as problem solution of algebraic word
problems, based on current cognitive theory. The second purpose was
to investigate the effectiveness of this cognitive theory-based
instruction for teaching learning disabled adolescents representation
and solution of particular problem types, for the construction of
problem schemata, and for transfer to related problems.

THEORETICAL FRAMEWORX AND INSTRUCTIONAL DESIGN

The theoretical underpinnings of the study enter in two ways;
first the conceptualization of problem representation and solution;
and second the delivery of the knowledge (both declarative and

procedural) that students need to successfully represent and solve.
First, the conceptualization of problem representation and

solution is described. This study addressed several convergent
theories in instructional psychology in an integrated research design.
Mayer's (1985) conceptualization of two phases of problem-solving
instruction was adopted. Simon and Hayes' (1976) notion of problem
isomorphs was employed in discerning three problem types for
instruction. Reif and Heller's (1982) prescriptive task analysis of
physics problems served as a model for analyzing these algebra problem
types. Instructional procedures incorporated recent developments in
declarative and procedural knowledge with principles of cognitive
behavior modification. Together, these accounts suggest that students
can construct problem representations if they are taught schemata for
the most important a'_gebrc word problems.

There are two major systems for classifying algebra wore'
problems; by the form of the underlying equations, and by the general
fors of the story line. The first is based on the mathematical
relations present in the problem and refers to the structure of the
solution equation. The second refers to contextual or surf ace details
such as mention of money, age, or river current.

For many problems in the algebra curriculum, there is no

necessary connection between the mathematical structure and the
surface structure. Yet many of the investigations that provide the
strongest evidence for instruction to develop problem schemata
confound the mathematical structure and the story line (e.g., Ilinsley,
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Hayes, G Simon, 1977). Mayer (19811 argued that instruction in
algebra problea solving should be constructed around "templates'
(specific propositional structures combined with a particular story
line) because in general certain major categories of problems
(based on story line) involve characteristic underlying equations.'
This is the case only in formula-based problems, however. Students

who receive instruction for templates must then be taught to
generalize from the template to other problems with the same
mathematical-propositional structure and new story lines, or
isosorphs. Isomorphs are problems in which the solution paths map
directly on to one another in one-to--one fashion (Simon a Hayes,
1976). Three problem isomorphs were selected for instruction in this
study: relational problems, proportion problems, and problems in two
variables and two equations. Each is characterized by the
mathematical relationships that have to be understood for constructing
a thorough and rccurate representation, and by the form of the
equation that haw to be solved. The three problem types are
relational problems, proportion problems, and problems in two
variables and two equations. An example of a relational problem is:
"Sam has $18 more than Tom. Together they have $82. Find how much

money each boy has.' A proportion problem is: 'Brian saved $50 in 18

weeks. At that rate how long will it take him to save $3507" An

example of a problem in two variables and two equations Is: 'Andrew

has 18 coins, some quarters and some dimes. The total value of the
coins is $3.45. Find the number of each kind of coin.' Five story

lines or surface features were used with each problem type. These

story lines concer;t money, age, distance, work, and number.
The second theoretical underpinning of the study is its

instructional design. Recent intervention studies (e.g., Nuzus, 1983)
have employed guided instruction based on cognitive behavior
modification (Heinhenbaum, 1977) to teach learning disabled students
mathematical problems that require one operation or two operations.
Problems like those taught by Huzum (1983) are less complex, and
involve representations requiring primarily a choice of operations.
Principles of guided instruction were adapted for the complex
cognitive task analyses of the three algebraic problem types of thin
study. Guided instruction was conducted for each of representation and
solution, and involved the presentation of declarative knowledge,
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modelling of procedural knowledge by thinking aloud, guided practice
in thinking aloud, and independent practice. Students mastered each
task before proceeding to the next phase of the intervention.
Students employed a self-questioning ntrategy to guide their
construction of representation for each problem, and their
production of a solution. They coapleted the problems on a worksheet
structured to parallel the self- questions. Let/1 led feedback was
provided during the course of thinking aloud and at the close of each
independent prac ice. The self-questions and feedback were faded.

RESEARCH DESIGN AND METHOD

Two overlapping designs were employed to answer questions about
the effectiveness of the instruction: a traditional experimental/
two-group design and a single-subject design. In the two-group
design, the instructed group's performance was compared with a control
group on several dependent measures, including: instructed problem
types, general problem-solving tests, understanding shown in think-
aloud protocols, and a etacognitive interview. In the single-subject
design, the course of intervention was recorded for individual
students. Maintenance for the instructed problem types was measured
six weeks after the end of instruction. Tests of near and far
transfer were administered at the close of instruction. Near-transfer
problems used the same mathematical structure with new story lines,
while far-transfer problems used the same story lines and a more
complex variation of the mathematical structure. The problems and
instructional materials are available in Hutchinson (1986). The

experimental group OW 2) received 12 weeks of the instruction
described above, the three problem isomorphs being teight in
succession.

Instructed problems were scored for thorough and accurate
representation and solution, as well an correct numerical answers,
using criteria based on prescriptive task analysis. Scoring
procedures were developed for rk.".ing the degree of understanding of
representation and solution in think-aloud protocols and for the
setacognitive interviews (Ericsson Simon, 1984). Interrater
reliability coefficients for all scoring procedures exceeded .90.
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Twenty learning-disabled adolescents in grades 8, 9, and 10 in
two schools were randomly assigned to control (N.8) and experimental
(N.12) groups. All students were familiarized with a structured
worksheet designed to cue the steps in problem representation and
problem solution.

RESULTS

Data were derived from problem-solving measures, think-aloud
protocols, and etacognitive interviews. These were examined for
convergent inferences respecting theoretical models in instructional
psychology. As documented below, both the single-subject data and the
group comparisons demonstrated the effectiveness of the designed
instructional approach to representation and solution.

The single-subject data showed that individual students' problem
solving ability increased dramatically for each problem type. For

example, on the baseline measures of representation, the average
percentage of problems represented correctly by all instructed
students was less then 5%. During instruction in representation the
average percentage of problems represented correctly was 84%. The

students showed near transfer to problems with altered story lines in
83% of the cases and far transfer to problems with slightly more
complex mathematical structure in 60% of the cases. Six weeks later,
in 90% of the cases, students reached criterion for maintenance on
problem types they had mastered during instruction.

All between group comparisons favoured the instructed students
over the control group. A significantly higher proportion of
instructed students reached criterion in representation and in
solution for each problem type. Fisher's Exact Test on posttest
pr.vortions was significant in all nine cases (2<.05, d =1). Analysis

of covariance on adjusted posttest scores on an open-ended problem-
solving test showed that scores of the instructed group were
significantly higher, F(1, 17) = 37.79, p<.05. Similarly analysis of
covariance demonstrated the superiority of the instructed group on the
metacognitive interview, F(1, 17) = 32.38, p<.05. On the think-aloud
protocols, there was no overlap between the distributions of scores.
The instructed group was clearly higher on each of representation and
solution.
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Think-aloud protocols showed shifts following instruction from
mare reading comprehension of problem statements to exxession and
application of domain-specific algebraic knowledge, and shifts from
use of arithmetic operations to algebraic procedures. Content
analyses of protocols and interviews suggested that instructed
students had constructed schemata for the three types of algebraic
problems based on mathematical structure.

IMPORTANCE OF THE STUDY FOR
THE STUDY OF THE PSYCHOLOGY OF MATHEMATICAL EDUCATION

The currant instructional study was conducted with a sample of
learning disabled adolescents and replication with a normal sample is
necessary in order to draw general, widely applicable conclusions.
This study affirmed the current models of problem solving composed of
two phases: representation and solution (Mayer, 1985). It
demonstrated that specific instruction in representation is feasible
and effective (Reif & Heller, 1982). The notion of instructable
problem isomorphs yea refined and substantiated with qualitative data
about the nature of schemata for algebraic problem types (Simon
Mayer, 1976). Recomecxlations were made for future research in
instruction of problem representation and for the study of the
construction of problem schemata, based on psychological theory
applied to mathematics education.
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THE RELATIONSHIP BETWEEN MATHEMATICS LEARNING AND
AUDITORY PERCEPTION

George B. Shirk and Car/toe 0. DeFosse

The University of Toledo

This ongoing study examines the relationship between
mathematics performance and auditory perceptual deficits.
Twenty-one children identified as either mathematics
impaired (N-13) or mathematics and reading impaired (N-8)
were tested for auditory reception and perception
deficits and mathematics performance. With the exception
of some minimal central auditory processing deficits, all
subjects tested within the normal range for peripheral
acuity and central auditory functions. All subjects
demonstrated abnormal cortical integration abilities as
aaseased by the CFW batter,. The Arithmetic and Reading
group demonstrated poorer performance throughout the
battery with pronounced deficits on the auditory memory
subtesta as well as on arithmetic content.

The study examines the relationship between specific auditory

perceptual characteristics and matiimatics performance in children

experiencing difficulties learning mathematics. The children in-

cluded in this study can be defined as "mathematics deficient,"

rather than "learning disabled." None fit the definition of 'learn-

ing disability.' This distinction is essential, for evidence exists

that a child with a mathematics learning disability will have visual

perception deficits rather than auditory perception deficits. (Strang

and Rourke, 1985)

Fuson and Hall (1983) have demonstrated that a weAlth of informa-

tion is known by the typical primary grade child. This knowledge is

processed priarily in the tactile and visual modality but as the

level of content abstraction increases, the child must shift to a

auditory madality for learning with a decreased reliance on tactile

and visual perceptual skills.

Thus it is possible for a child with an auditory perception defi-

cit to posssas a good understanding of the mathematics taught in the

primary grades, e.g., counting, numeration, basic addition, etc., yet

experience difficulty learning mathematics in the middle school.

This occurs because the content to be learned in the early grades re-

quires learning a limited number of graphemic symbols which can be
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acquired visually or tactually, without resorting to complex, audi-

tory/visual linguistic transcoding. However, understanding mathema-

tics in the upper grades require. effective perceptual integration of

the auditory and visual sensory input systems. Hiebert (1984) terms

this integration "site 2" and defines it as the stage where "form and

understanding are linked when children connect a procedure or algor-

ithm with the underlying concept or rationale that motivates the pro-

cedure."

If the transcoding is inefficient and requires additional pro-

cessing time, then heavy demands upon the auditory memory system re-

sult in a loss of information from memory prior to completion of prob-

lem solving tasks. Perceptual learning is based upon experience, and

is generally defined as the ability to "extract information from the

environment." (Gibson) Children with auditory perceptual disorders

can hear sounds, but may not be able to recognize that the sounds are

relevant or needed for auditory association or other cognitive pro-

cessing. (Gibson and Levin, 1975) As Sloan notes, defects in the

auditory processing system become more apparent as the task at

hand uses more complex sounds.

Cathcart (1974) identified listening ability as being the most

significant non-mathematical variable for mathematics learning, but

did not define what he meant by the term 'listening ability.' A

positive relationahip exists between the matching of modality i.e.,

Cross-Modality, and mathematics learning. (Sawada and Jarman, 1978)

Freides (1974) suggests an interaction between modality mathcing and

information complexity. Cross-Modality refers to the ability to

transform meaning between two different sensory systems.

Cross-modality matching occurs when a child relates a teacher's

verbal instructions with the symbols which the teacher has written

on a chalkboard. Mathematical algorithms are commonly presented as

series of oral/visual instructions to be memorized. A child with an

auditory/visual perceptual deficit may have trouble moving from the

grapehmic system, i.e., blackboard demonstrations, or textbook ex-

planations to accoustic system, i.e., the teacher's oral instructions.

Fletcher & Loveland (1986, p. 31) indicated the exact nature of

the cognitive deficit in arithmetic-disabled children has not yet been

established. One possible reason for the failure to identify these

cognitive processes may be due to the failure to identify impairments

of sensory reception, sensory transmission in the central nervous
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system. All of these systems must be functioning appropriately before

normal cognitive operations can be performed efficiently.

METHOD

The assessment proceudre consisted of the following:

Auditory Three-phase auditory perceptual battery for evaluating the

physiological status of the peripheral auditory mechanism,

central auditory transmission network, and central auditory/

visual perceptual-association systems.

Mathematics Administration of the Kay -math test

auditory Perceptual Battery

I. Peripheral Acuity comprehensive auditory test battery was

administered to assess peripheral hearing acuity. This battery con-

sisted of puts -tons threshold testing at 250-500-1000. 2000-4000-8000

HZ. via air conduction for both ears, Speech-Reception thresholds bi-

laterally, and bilateral Speech - Discrimination percentage for undis-

torted words.

II. cantraLludjsatyAakeame= consisting of seven subtests was

administered to evaluate physiological function of central auditory

pathways of the brain-stem, primary auditory reception areas and audi-

tory association areas of the cerebra: cortex. Two of the subtests

assess the function of the brain-stem, and the remaining five subtest

evaluate function of auditory processing centers in the cortex.

III. 4 was assessed through

administration of the Goldman-Fristoe-Woodcock Battery of auditory

skills (GFW) (finkenbinder, 1973). Three auditory memory tests mea-

sure short-term retention of acoustic information. Seven visual-

linguistic tests measure auditory/visual integration functions and

two test assess auditory figure-ground processing abilities.

Dubiecta

Croup A. Mathematics only Ten subjects consisted of 3 females and 7

males ranging in age from 7 to 14 years.

Group B. Mathematics and Reading Eleven subjects consisted of 5

females and 6 males ranging in age from 10 to 13 years.
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Each child in both groups had experienced difficulty learning

mathematics but none qualified tor special education placement. None

were diagnosed as neurologically impaired or mentally retarded.

Results

peripheral audiVALYTJUULII212.r....kkthRIR112/:

Right Ear Left Ear

Pure-tone averages -8db to +10 dB -5dB to +10 dB

Speech Thershold on to 15 dB -5db to 4.11 dB

Speech Discrimination 84% to 100% 92% to 10U%

table 1

central Auditory teuLexultl:

Fourteen subtest scores were obtained for each subject in both

experimental groups. A total of seventy scores for each ear for the

Croup A and seventy-seven scores per ocr for the Group B subjects.

Gremp_ti, 14.3% of the right and left ear scores fell in the abnormal

range. Abnormal scores occurred most often on the Dichotic sen-

tences subtest (25%), on the competing conditions of the SSW (25%)

and 15% of the enrors on the Low-Pass-Filtered-Word test. The

abnormal scores primarily occurred on the subtest which cause the

greatest load on selective attention.

Group B 24.6% of the right ear scores and 23.4% of the left ear

scores were abnormal. Combined abnormal scores totaled 24%. Ab-

normal scores occurred primarily on subtests that load heavily on

selective attention skills (62%) subtests such as Competing Sen-

tences, Dichotic sentences, and the competing conditions on the

Staggered Spondaic Word test (SSW). In addition this group had

difficulty with shifting directional attention between right and

left ears. This pattern of directional processing deficit is

seldom seen in other learning deficient populations according to

Jack Willeford.

Auditory perception and AuditorviBli2Mremjts
All twenty-one subjects tested in the two groups pertormed well

below the fiftieth percentile level on the Selective Attention subtest
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of the Coldman-Frestoe-Woodcock Auditory skills battery. The ability

to screen out nonrelevant acoustic signals and attend to meaningful

material is impaired in all of the subjects tested. Group A subjects

tended to do slightly better than Group B subjects on this subtest.

The GFW has three subtests that assess auditory memory function. They

are; Recognition memory, Content memory, and Sequential memory. The

poorest Group B performance occurred on the Content memory subtest

where all scores fell below the 25th percentile level. In contrast

the poorest score for the Group A on this subtest was the 39th percen-

tile and only two of ten subjects socres fell below the fiftieth

percentile level. The Group A demonstrated mixed performance on the

two remaining auditory memory subtests (Recognition memory & Sequen-

tial memory) with almost an equal split above the 50 percentile level

and the 50 percentile level. It is apparent that both groups

have ineffizient auditory memory skills, however, the impairment is

more pronounced in the Group B subjects. Group B are more likely to

rank below the 50 percentile level on all three auditory membory

tasks than are the Group A subjects. Only 18t of the Group B subjects

had percentile socrt:.' on the Recognition memory and Content memory

subtest above the 50 percentile level. This group did slightly bet-

ter on the Sequential memory subtest where 27% of the scores were

above the 50 percentile level. Performance by Group A was some what

better for these three subtest on Recognition memory 501 of the scores

were above 50 percentile level, 601 of the subjects ranked above the

50 percentile level on the Content memory subtest and 501 of the group

ranked above this level on the Sequential memory task. Most of the

twenty -one subjects had trouble with material on the Sound mimicry

subtest where only 24t ranked above the 50 percentile level. In

general Group A tended to do well on five of the six remaining GFW

subtests that required auditory and visual transcoding abilities.

Group A did show very poor scores on the Sound mimicry subtest where

all but two subjects scored below the 37th percentile. This group

has trouble imitating nonsense syllables received auditorally. In

addition 60% of Group A did poorly on the Spelling of Sounds subtest.

Bethematics Testing

With three exceptions, all subjects tested below grade level

on the Key-math Test.
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Paste Areas-Addition, Subtraction, Multiplication, Division

Basic Facts Algorithms

Group A Mean t 100 85

Group B Mean ft 94 49

table 2

While there was no consistent area of weakness among Group A

students, the weakest area for Group B students was Word Problems

and Mental computations.

Discussion

Results of the peripheral auditory assessment confirmed that all

of the subjects had normal hearing acuity for nondistorted acoustic

stimuli. Group A subjects performed in the normal range on 86% of

the central auditory subtest scores, while Group B subjects scored

normally on 76t of this battery. It is apparent from these findings

that some of the subjects tested have central auditory transmission

deficits which may adversely affect accuracy of processing at the

perceptual and association centers in the brain. It is not possible

with the current test battery to determine how much of the decreased

performance is a result of the central auditory deficit or to deter-

mine how much might be due to accompanying auditory perceptual and/

or association deficit.

The GFW assessment battery evaluated the auditory/visual percep-

tion skills on the subjects. All twenty-one subject demonstrated

poor performance on tasks requiring selective screening of acoustic

signals. Three areas of auditory memory were assessed by the GFW

and generally the Group A subjects had leas auditory memory diffi-

culty than the Group B subjects. Both groups did show restricted

auditory memory abilities, however these problems were more pro-

nounced in the Group B subjects. Sound imitation of nonsense syl-

lables and spelling of sounds heard as nonsense syllables were dif-

ficult skills for Group A subjects. In general the Group B subjects

had more difficulty on subtest tasks which required transcoding be-

tween the acoustic symbol system and graphemic symbol system.

There was a marked difference between Group A and Group B subjects

with respect to mathematics performance. While both groups performed

equally well on basic facts group A subjects scores were markedly

higher in the algorithms.
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GENDER DIFFERENCES in ACHIEVEMENTS and ;n CAUSAL ATTRIBUTION ci

PERFORMANCE in HIGHSCHOOL MATHEMATICS

Miri Amit and Nitsa Movshovitz-Hadar

Technion Israel Institute of Technolog

Background

High school mathematics constitutes a critical filter for

contiNuing education and for higher professional training in various

areas of technology and the natural sciences. The existing

occupational gap between males and females In these areas max

therefore be traced to the issue of gender differences in

mathematics education in high school which was found to be much

wider than in other school topics (Movshovitz-Hadar 1984). The

existing gap between the relative percentages of boys (26.4%) and of

girls (121) electing the study of math in highest level offered by

school at grades 11, 12 in Israel (C.B.S., 1986) suggested this

study.

Objectives

The study was aimed at answering two main questions:

1. Are there sex differences in the causal attribution of success

and failure in the study of mathematics in grade 10 (where math

learning is mandatory)

2. How do mathematics achievements in grade 10 relate to patterns

of causal attribution and to sex?
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The Sample

The sample consisted of 384 students in 10th grade (178 male

and 206 females) from three comprehensive highschools. The choice

of 10th grade population was based on the assumption that causal

attribution has direct implications on students' future choice of

level of the study of mathematics, in grades 11, 12.

It should be noted that mathematics classes in 10th grade in

Israel are ussually not grouped according to achievement level. At

the end of 10th grade students chose the level the wish to take in

11th grade and, are regrouped accordingly. Mathematics study is

mandatory at the lowest level. Students who wish to study more than

that continue in 12th grade.

The Instruments

The date. pertaining to the level of achievement were obtained

from school records.

Causal attribution was measured by means of the °Math

Attribution Scale' (Fennema et al., 1979) which was translated to

Heorew revalidated and adopted for the purpose of this study. The

assign of this scale was based upon Weiner's Causal Attribution

Theory (Wiener 1974). The scale presented four cases of failure and

four cases of success in mathematics studies. Each case was followed

by four causes, one of each of the following categories: ability,

task, effort or environment. Examinee's task was to evaluate the

personal relevance of each cause to each event. Thus, eight

attribution patterns emerged, four of the type: (success, cause),

and four of the type: (failure, cause).
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Main Results

Most of the results obtained in this study support the results

of an earlier study carried out in the U.S. (Wolleat et al. 1980).

1. Significant gender differences (p < .05/ were found in seven of

the eight causal attribution of success and failure in

mathematics studies. Males attributed their success in

mathematics to personal ability to a greater extent than

females. On the other hand, females significantly more than

males attributed their failure to (lack of) personal ability

and their success to effort, task and environment. They also

attributed their failure to task and environment significantly

more than boys did. Table 1 shows the results.

Table 1:

Sex Differences in Causal Attribution Patterns (C.A.P)

(178 boys and 206 girls in 10th grade. * p < .051

C.A.P. Sex Mean (S.D.) t-value

Success-Ability M 13.65 (3.52) 4.03 *

F 12.2? (3.14)

Success-Effort M 14.15 (3.69) -2.81 *

F 15.17 (3.30)

Success-task M 14.8? (2.64) -3.24 *

F 15.73 (2.53)

Success-Environment M 14.67 (2.99) -2.02 *

F 15.27 (2.81)

Failure-Ability M 10.38 (3.39) -4.07 *

F 11.82 (3.57)

Failure-Effort M 14.97 (2.68) 0.25

F 14.89 (3.35)

Failure-Task M 13.11 (2.74) -3.75 *

14.13 (2.63)

Failure-Environment M 12.09 (2.99) -3.31 *

F 13.09 (2.87)
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2. Male and female students of equal achievement level differeq

significantly (p ( .05) in their attribution patterns. Those

differences increased in magnitude as the level of achievement

went up. As shown in Table 2 below, gender differences in the

upper achievement group were significant in seven out of the

eight attribution patterns, <the direction of the differences

were similar to the ones found with respect to question one).

The gender differences in the medium achievement level group

were significant in four attribution patterns. No significant

differences were found in the lower achievement group (0 <

score < 54, 38 boys and 52 girls).

Table 2
Sex Differences in Causal Attribution Patterns (C.A.P)

Within Achievement Level (10th grade. *p < .05)

High Achievement
75 < score ( 100

(65 boys, 68 girls)

C.A.P. Sex Mean (S.D.) t-value

Medium Achivement
55 < score < 74

(75 boys, 86 girls)

Mean (S.D.) t-value

Suc.-Ability M 15.6 (2.9) 3.54 * 12.8 (3.6) 1.52

F 13.8 (3.1) 12.1 (2.7)

Suc.-Effort M 13.4 (4.1) -2.26 * 14.2 (3.3) -2.79 *

F 14.9 (3.3) 15.9 (3.0)

Suc.-Task M 15.2 (2.6) -2.33 * 14.? (2.5) -2.72 *

F 16.3 (2.7) 15.7 (2.2)

Suc.-Env. M 14.1 (3.0) -2.21 * 15.0 (3.0) -1.12

F 15.1 (2.6) 15.6 (2.8)

Fail.-Ability M 8.9 (2.1) -2.59 * 10.7 (3.1) -2.21 *

F 10.4 (3.7) 11.8 (3.1)

Fail.-Effort M 14.8 (2.9) .12 14.9 (2.6) .41

F 14.7 "3.5i 15.0 (3.4)

Fail.-Task M 12.? (2.7) -1.99 * 13.3 (2.9) -3.20 *

F 13.6 (2.5) 14.6 (2.5)

Fail.-Env. M 11.7 (3.3) -2.58 * 12.3 (2.8) -1.85

F 13.2 (5.4) 13.1 (2.6)
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Brief Discussion and lmalications

According to the causal attribution theory and its implications

for the field of learning, systematic attribution of failure in

mathematics to lack of personal ability and attribution of success

to the kind of task or to environment may lead to 'learned

helplessness' and consequently to reduced achievement or to

avoidance of mathematics. The attribution patterns of 10th grade

females, in particular for those of the higher achievement level, as

described above, may have a deter mental affect on the actualization

of their mathematical talent and to the avoidance of extensive

studies of mathematics in the future. The existing low rate of

enrollment of females in high level mathematic courses in grade 11

and 12, may therefore be related to their attribution patterns for

success and failure in mathematics.

This study suggests that an active intervention, aimed at

changing attribution patterns in needed for female students at the

early stages of their high school edcation. Such an intervention, if

proves successful, may improve the achievement level among female

students and widen their mathematics education, which may in turn

contribute to a greater vocational integration of women in the

various fields of technology and natural sciences.

The discussion will be expanded in the conference.
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SECONDARY SCHOOL STUDENTS' AND TEACHERS' UNDERSTANDING

OF DEMONSTRATION IN GEOMETRY

Annette Braconne, Jean J. Dionne
Universite Laval

Abstract

The purpose of this study is (1) to describe, within a model

of understanding, the secondary school students' and

teachers' understanding of proof and demonstration in

geometry and (2) to seek what kind of relationship could

exist between the understanding of a demonstration and the

van Hiele levels. Our sample consists of 220 students

learning demonstration in French secondary schools and their

13 teachers. Each of the persons answered the "correction

test", whose design refers to the model of understanding, and

the Van Hiele Test. The results indicate that proof and

demonstration are not synonymous for the teachers as well as

for the studiints. Proof belongs to different modes of

understanding but demonstration always pertains to the formal

one, teachers emphasizing
presentation and wording. Students

seem not to favour such an emphasis. There is no obvious

relationship between the understanding of a demonstration and

the van Hiele levels.

RATIONALE (see note 1 at the end)

Even if it has not comp12te1y disappeared from secondary mathematics

curricula, geometry is now a less important topic than it was before.

This is especially true when one thinks of geometry with demonstration:

nowadays, the ger-.11try taught in classes is generally intuitive or

descriptive. But in one countries, such as France, students are still

taught formal demonstration. This usually brings out a lot of

difficulties: whatever may be, the teachers' efforts and achievement

in their teaching, it is well known that a large number of their

students fail to understand demonstration (APMEP, 1979).

Some studies (Carpenter et al., 1980; Usiskin, 1982; Senk, 1985)

indicate that fewer than 15 percent of highschool graduates in the
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United States master proof writing. According to these studies, at the

end of a full-year course in geometry, in which proof writing is

studied, about 30 percent of the students reach a 75 percent mastery of

proof while 25 percent of the same sample have virtually no competence

in writing proofs. A canadian study (Williams, 1980) shows that only
those students who were classified as high achievers by their teacher,

less than 30 percent of the sample, exhibited any understanding of the
meaning of proof in mathematics. However, having asked teachers their

opinions about high school geometry course, Gearhart (1975) reports
that half of the responding teachers think that 50 percent of the
students are able to prove a medium difficulty theorem such as "the
diagonals of a rectangle are congruent". Furthermore, 89 percent of

these teachers indicated that proofs are not a too difficult topic.

According to Freudehthal (1973), "to progress in rigour, the first step

is to doubt the rigour one believes in at this moment. Without this
doubt, there is no letting other people to prescribe oneself new

criteria of rigour." Therefore, the question arises: would not the

problem be that teachers are unable to communicate their students the

rigour criteria which are linked to their idea of demonstration?
Teachers may be asking one thing and the students understanding

something else, the same words carrying different meanings for the

teachers and the students. This lead to the general objectives of this
research:

1) To describe the students' and teachers' understanding of a

demonstration;

2) To describe the students' and teachers' idea of proof;

3) To establish some kind of relationship between a student's

understanding of a demonstration and his achievement in

mathematics.

FRAMEWORK

Constructivist learning theories being the general framework of this
study, references are made to the theory of levels of thinking in

geometry initiated by P.M. van Hiele. A model of understanding of proof

and demonstration was built altogether. This model although summarily
sketched, is drawn from those by Skemp, Byers and Herscovics,

Herscovics and Bergeron. This model includes five modes organised as on
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the figure below. These modes are defined in the following way:

Naive

Intuitive

Instrumental Relational

formal

naive: "you can tell from the

figure". No other argument

is necessary for the

subject to be convinced;

intuitive: the figure is not

enough to convince the

subject but any argument

is convincing, whatever

that argument is a

mathematical one or not;

- instrumental: the subject lingers over each step of the demonstration

without getting any global idea of it;

- relational: the subject is intercaled only in the important arguments

of the demonstration;

- formal: the subject masters the instrumental and relational

understanding.

This model being sketched out, a small experimentation was carried out

in order to test its adequacy. That study revealed that, indeed, the

model appeared adequate to describe any understanding showed by the

students or the teachers. It revealed altogether that the word "proof"

seemed to have a different meaning for the teachers than it has for the

students and that some kind of relationship could exist between the

kind of understanding achieved and the van Hiele levels. Therefore, the

following questions arose and became the main objectives of this study:

- do "proof" and "demonstration" have different meanings for

teachers and students and, if any, how could that difference

be qualified?

- is there really a relationship between the students' mode of

understanding of proof and demonstration and the van Hiele

level he or she attained?
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SAMPLES AND TOOLS

One of the objectives being to describe the students and teachers

understanding of a demonstration in geometry, it was necessary to work

with students to whom demonstration was actually taught and with

teachers who were teaching demonstration. This is the reason why the

study has been carried out in France with more than 200 students of 3e

(fourth year of secondary school: the students were 15 years old) and

with 13 teachers. Each student was initiated to demonstration the

previous year and some of the teachers met were responsible for their

initiation.

Two main tools were used for the experimentation, both with students

and teachers. On one hand, the van Hiele Levels Test created ty Usiskin

et al. (1982) was translated in French: this 25 questions test was

designed to evaluate someone's level of thought in one or the other of

the five levels described in the van Hiele theory. On the other hand, a

"correction test" was built: it consist of a geometry problem taken

from a text book of 4e in France and of 12 different solutions given by

12 fictive students. Each of these solutions was designed to belong to

a precise mode of understanding: more precisely, there were 3 formal

solutions, 2 relational, 2 instrumental, 2 intuitive, 1 naive, 1

completely false solution and a solution which remained unclassified

but that was considered interesting because of its content.

The students were asked to answer the van Hiele Test, to evaluate 6 of

the 12 solutions (2 formal, 2 relational and 2 intuitive) and to

justify their evaluation. For that evaluation, the students had to

answer three questions: 1) which of the 6 solutions is the most

convincing for you? 2) which solution looks like the one you would give

if you were asked to answer that problem? 3) which solution looks like

the one your teacher generally expects? The scores those students have

had in mathematics the previous year were also recorded.

The teachers were also asked to answer the van Hiele test and they had,

during interview, to grade all the 12 solutions of the correction test,

their reactions being audio-taped. Before they started to grade the

copies, teachers were asked to solve the problem and to write down the

solution they would have given to their students. Finally, they were

asked some general questions such as "how do you generally teach
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demonstration?" or "how important do you think demonstration is in

mathematics education?".

RESULTS

In the following paragraphs, the results referring to the model of

understanding and to the accuracy of its structure will first be

presented. The interviews with the teachers will than be analysed and,

finally, the students answers will be sum up.

The model of understanding itself and, particularly, its stromboidal

structure, have been corroborated by the teachers' reaction while

grading the students' solutions, by the marks they gave and, above all,

by the comments they made. Schematically, the means of the marks given

the solutions grouped in each mode were the following: naive: 0,

intuitive: 0.5, instrumental: 2.5, relational: 2.5, formal: 4.5. But

within each mode, the marks given by the teachers are more divergent

than their comments, i.e. different marks derive from similar reactions

and analyses of the same texts. The fictive students' solutions

belonging to the naive mode are systematically rejected by all the

teachers whereas in texts of intuitive type, some teachers can see some

justifications, i.e. for those teachers, the student has begun to

analyse the figure and its properties. Following these reactions, we

were led to reclassify two solutions. The first one, which was once

located in the intuitive mode, was downgraded in the naive mode

because, in the teachers' view, the student had just read the figure.

The second one was the one we had kept without classifying it: it is

now located in the intuitive mode since it shows some analyzing in the

figure. Finally, we also noticed that many teachers have spontaneously

compared solutions which, according to our view, were actually

belonging to the same mode of understanding.

From the interviews with the teachers, we clearly see that for these

people, "proof" and "demonstration" are not synonymous. The teachers

were convinced of the result of the problem as soon as they have

finished to draw the figure: any other argument was unusefull even if

some of them gave some more arguments to justify their conviction.

However, their attitude became completely different when they were

asked to write down the "type-solution": they then made a "real"
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demonstration, a "literary formal proof", that is a proof written down

in "whole words" and complete phrases. Their requirements for rigour,

presentation and wording, all these being very accurate in their

opinion, were again felt in the scores they gave to each solution. As a

general rule, half of the marks was reserved for presentation, the

other half being given for arguments. Thus, the teachers tended to be

more indulgent for the instrumental texts, congratulating the students'

efforts in their attemp to reproduce the "type-solution" than they were

for the relational ones where, although the problem was judged

understood, "it was badly worded". The marks attribuated to the formal

solutions give new evidences of their stringent requirements of

presentation: the solutions where the formalism was not the literary

one (the "two colums" or the "tree" formats) have been penalised, the

student loosing half of a point because of his choice of presentation.

Let us add that tne literary formal text was also occasionally

criticized for lack of clearness of the connections between the

different parts of the demonstration. However, the teachers recognized

that a tree-format formal demonstration could be considered as a

convincing solution even if they were not willing to accept it. Later

in the interviews, the teachers explained that, according to them,

demonstration is a very important activity in geometry and that it was

a real educational task for the students, especially for the learning

of rigourous deductive arguments. But there is a kind of contradiction

here between the objectives and the means used to reach them because,

the way demonstration is taught often emphasizes the presentation

rather than the argument itself. it was thus easier for the teachers to

speak about the "advantages" of their favourite presentation than about

the way they used to teach how to construct deductive arguments. And

the requirements for presentation were very different from one teacher

to another but were always judged very important. So, one can ask

oneself how do students feel with such an ambiguity.

The students' reaction to the test showed that two out of three were

convinced by a formal solution rather than by any other type of

solution. This choice is supported by the teachers' preference. But

within the formal mode, the tree-format solution was prefered, 36% of

the student sample having selected that type of solution as the most

convincing. The same thing occured when the students were asked to

identify what would be their teachers' prefered solution: they all

knew that their teacher: expected a formal solution but again, half of

1073



IMonwa..

- 115-

them choose the tree-format solution while, as it was seen, most of the

teachers ask for a literary formal demonstration. The students'

difficulties do not lie in a wrong perception of their teachers'

requirements alone, since only about 37% of our sample would have

given, on their own, a formal solution to the exercise. The other

students choose a solution that would have been intuitive (30%) or

relational (31%). The x' test shows that the students'answers to all

these question are very dependant one from the other: the type of

solution the students judged convincing, the type of solution they

would have given and the type of solution they thought their teachers

expected are bounded together. However, the same x' test indicates

that those answers are independent of the van Hiele levels attained but

shows that those levels attained and the students' marks in mathematics

are strongly linked together.

CONCLUSIONS

Although it has been carried out with a rather small sample, this study

made possible to examine a model of understanding of geometry proofs

and demonstration and to check the accuracy of the stromboidal

structure of its different modes: naive, intuitive, instrumental,

relational and formal.

Furthermore, it has been seen that for the teachers who have

participated to the study, proof and demonstration are not synonymous.

Proof may vary but demonstration is always a formal presentation of a

deductive argument. All the teachers agree with such a definition but

their requirements of rigour, presentation and wording are very

different from one to the other: for the same solution, the same

comments can go with different judgements
and different marks. All the

teachers think that learning to construct deductive argument is very

important for the students: according to their view, demonstration is

the favoured activity for such a learning.

For the students, the difference between proof and demonstration does

not seem to be as clear as it appears to be for the teachers: many

students acknowledge to be unable to construct a formal demonstration,

whatever the format should be. Furthermore, the students have rather

badly identified the solution expected by their teacher, choosing
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correctly the type (formal) but not the format, preferring the

tree-format to the litterary format. Finally, it seems that, although

strongly linked to his or her marks in mathematics, the van Hiele level

attained by a given student remains independant of the mode of

understanding of a formal proof he or she manifests.

Note 1: In this text, "proof" and "demonstration" are defined or

described as follow:

- a proof is an argument or a series of arguments which

convince someone of something, whatever those arguments are

mathematical or not;

a demonstration is an answer to a geometry problem in which

one is asked to give a formal proof of a statement.
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THE DEVELOPMENT OF GEOMETRIC THINKING AMONG BLACK
HIGH SCHOOL PUPILS IN KWAZULU (REPUBLIC OF SOUTH AFRICA)

M.D. de Villiers and R.M. Njisane
Research Unit for Mathematics Educauion of the University of Stellenbosch

(RUMEUS), Republic of South Africa
Abstract

In this study various geometric thought categories (OTC's) typical of and
necessary for high school geometry were distinguished. Although the Van Miele
model of geometric development provided a theoretical framework for these
thought categories, a liner distinction was made between thought categories that
normally appear on the same level Empirical data on these thought categories
was collected via a questionnaire to provide an extensive data base on which may
he founded further curriculum development in high school geometry Our study
supports previous studies on the Van Iliele theory with respect to the
hierarchical nature of the levels, and its explanation of pupils' problems in
geoineti y I lowever, the position of hierarchical classification with respect to
deduction has to he clarified.

1. Objectives of the research

This talk is a discussion of research into pupils' problems in geometry and its relation to the

Van !Hely theory The programme of enquiry was embarked upon with the following in nund

1 To find out if different geometric thought categories lGTG's) form Guttman scales and
how they correspond with the Van Miele model.

2 To ascertain levels at which pupils in different grades function

3 To identify the types of problems confronting pupils in high school geometry

2. Theoretical framework

2.1 The Van Hide Levels

A number 01' sources are available on the different Van Iliele levels of understanding in
geometry For brevity, only the general characteristic of each level is given For inure
information on the levels and the nature of the theory, consult Wirsiup 11976), Mayberry

(19811, Hoffer 11983), Burger & Shaughnessy (1985,861

(1) Level 0 visualization, (2) Level 1 analysis of properties. 13) Level 2 informal deduction
(ordering), 14) level 3 formal deduction. (5) Level 4 formal discernment of mathematics

It is. perhaps important at this point to say something ghoul the level at which hierarchical
class inclusion of geometric figures is supposed to occur Although there seems to be a

consensus amongst American researchers le g Usiskin 982), Seak 119831. Burger &

Shaughnessy 1198611 that it occurs on Level 2 (Ordering), there is somewhat confusion in the

Van Hide literature itself For instance, in Van Iliele (1973. 92 93) Pierre Van I tide argues

that class inclusion can occur on Level I (Analysis of properties) since a child may then

realize that a square is a rhombus because it has all its properties This same point is made by

Dina van Iliele in Fuys et al (1984. 222) I lowever, Pierre van !tide in Fuys it al 11984, 245)

contradicts himself and his wile when writing with reference to the First Level "But at this

level . a square is not necessarily identified as being a rectangle "
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2.2 Research on the Van Hide Model

Research in the U S A on the Van Iliele Model has been done by the abovementioned
researchers Their findings generally are: I that students can he assigned Van Iliele levels

using interviews or written tests and (ii) that the hierarchical nature of the levels seem valid.

However, Burger & Shaughnessy (1986) have questioned the discreteness of these levels.

3. Methodology

3.1 Sample

The sample consisted of 4015 high school pupils in grades 9 to 12. in May /.June 1984. These

were u random sample of pupils taking mathematics in high schools of the Kwn Zulu
Department of Education, situated in the province of Natal The schools ranged from small,

rural schools to big inner-city schools.

32 The instrun=nt

The test consisted of 56 open -ended questions ranging from simple questions like indicating

alternate angles when parallel lines were given, listing the properties of a given figure like a

parallelogram, to questions requiring the interpretation of formal definitions and the
construction of formal proofs. Most items dealt with content as commonly found in the high

school syllabi like parallel lines, perpendicular lines, technical terms. isosceles triangles,
congruent triangles, parallelograms, rectangles, logical inferences, significance of deduction,

perspective on the difference between an axiom and a theorem. In this latter respect more

general content was examined than in most other Van II iele based research

3.3 Validity of the test

The Vun Iliele Model of development in geometry was used as a guide in selecting geometric

though categories and the items by which they were to he evaluated. A feature common to

most items was that pupils had to give a motivation or reason for their responses In this way

it was felt that more reliable interpretations to pupils' responses could he given

The preliminary test having been compiled, it was then given to mathematics educators,

familiar with the Van Niels theory, at the University of Stellenbosch so that they might check

the validity and the adequacy of the items. After their comments, a final test was compiled

which was then used in the investigation (a copy of the test and marking scheme is available

on request)

3.4 Analyses used

3.4.1 Analysis of pupils' responses using GTC's

The present research was aimed at establishing a non prejudiced description of progress in

geometric thinking This was Facilitated by distinguishing a number of different GTC's each

being reflected in a number of test items, and analysing the data in two ways

(a) analysing the differences between the perfbrmance of pupils in the different grades in
the cluster of items belonging to a (TC by cross tabulating the different grades with
the number of items limn a t ategm y in which a pupil exhibited master>
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(hi performing Guttman analyses with respect to various categories (Guttman analysis is
discussed at length in Mayberry 09811 and Njisane (198611.

In the latter, Guttman i,nalyses were done on various subsets of the various categories of
geometric thinking This was to investigate the possibility that certain GIV's do not
necessarily occur On the same level as theoretically lbrmulated This was due to a hypothesis

formulated by Malan (19861 that the development of an analytic perspective on properties

(Level 11 and a logical perspective on the relationship between them (Level 21 may be
independent of the development of a hierarchical classification of class concepts

3.4.2 The different geometric thinking categories GTC's

The different GTC's present in the test are identification of figure types, use of geometric

terminology, interpretation of given definition, one step deductive arguments. verbal

description of properties of figures, longer deduction and hierarchical classification of
geometi is concepts. First of all cross-tabulations of each GTC with the percentage of pupils

obtaining a given number or more correct responses on a arc was done.

3.4.2.1 Performance of pupils under different GTC's

3.4.2.1.1 Identification of figure types and drawing examples (Z)

The table of percentages of pupils obtaining a given number or more correct I

follows
Table 3.1 Number correct

Grade 0 1 2 3 4 5 6 7 8 9 10 11 V.,

9 100,0 99,9 98,4 93,9 81,2 61,5 3E1,8 16,7 5,2 1,1 0,2 0 0

10 100,0 100,0 99,6 97,4 91,7 78,5 58,8 36,2 18,8 6,8 0,9 0 0

11 99,9 99,6 99,6 99,6 98,5 94,5 54,3 64,5 31,5 19,2 6,7 0 0

12 100,0 99,0 99,0 98,7 97,1 95,5 90,0 79,4 60,9 36,4 13,7 0 1

-

On the whole, at least about 40% of the pupils in each grade were able to recognise figures mai

draw them. in 8 or more out of 12 cases.

3.4.2.1.2 Visual recognition of properties (F)

Tune 3.2 Number correct

Grade 0 1 2 3

9 99,9 77,2 25,2 4,1

10 100,0 91,3 53,2 19,4

11 99,8 96,0 82,3 42,1

12 99,9 97,0 85,7 56,7

For the 2 or more correct responses out of 3 as criterium, pupils in grades 10 12 clearly

perform better than those in grade 9

3.4.2.1.3 Use and understanding of descriptive terminology (A)

For this GTC only about 12% of Grade 9 pupils and 39% of Grade 10 pupils were able to give 8

or more positive responses out of 17

1078



-120-

Table 3.3 Climber correct

Grade 0 1 2 3 4 5 6 7 8 9 10 11 12 13

9 100,0 100,0 47,7 90,4 75,1 53,5 34.6 20,3 11,6 5,1 2,5 1.4 1 0

10 100,0 100,0 99,3 56,6 89,7 77,6 61,9 45,5 30,9 18,7 10,9 4,5 1,6 0,4

11 99,9 99,9 99,6 99,0 97,8 94,6 811,5 80,6 68,1 53,7 37,4 23,4 11,3 3,4

12 100,0 99,7 99.4 99,1 98.6 97,8 96,7 92,2 84,0 73,2 56.0 32,5 19.8 8.2

(lkallaktm poeeibl score 17)

3.4.2.1.4 Verbal description of properties of a figtne (or its recognition from o
verbal deactiption) (E)

Table 3.4 Number correct

Grade 0 2 3 4 5 6 7 8

9 100.0 97,3 64,8 21.7 5.3 0.9 0,0 0.0
10 99,5 96.2 78,7 81,1 23.5 8.8 2.3 0,6 0,1

11 100,0 100.0 100,0 90,0 65,4 44,2 25.4 4.6 0,6

12 100.0 97.7 62.4 SSA 68.3 45,1 26,4 10.0 3,7

If one examines the 4 or more out of 8 positive responses. only 5,3% are in grade 9; 23.5% in

grade 10; 65,4% in grade I I and 68,3% in grade 12. It seems as if pupils not only findproblems

with mathematics es such, but aiso with the language in which mathematics is being learnt.

3.4.2.1.6 One step deduction (C)

The percentages of pupils giving 4 or more correct responses out of 7, range from 0,6% in

Grade 9 to 49,6% in Grade 12.

Table 3.5 Mmiaber correct

Credo 0 1 2 3 4 5 6 7

9 100 26.4 15,1 2.5 0,6 0,3 0 0

10 100 50,9 32,4 14,0 6.8 4,0 1,5 0,1

11 100 81,5 61,9 44,3 29.8 10,2 7,0 0,0

12 100 87,1 74,4 03,3 49,6 38,3 19.0 3,4

3.4.2.1.6 Longer deduction (D)

These results show that formal deduction (proof) is one of the most difficult activities fur

children. Only 0,2% grade 9 pupils; 2,9% in grade 10; 22.2% in grade I I and 42,6% in grade 12

gave 3 or more correct responses out of 6.

Table 3.6 Number correct

Grad* 0 1 2 3 4 5 5

9 100,0 25,7 2,5 0,2

10 100,0 53,3 13,1 2,9

11 99,9 81,7 40,9 22,2

12 100,0 87,9 66,3 42,6

0,0
0,7
6,5
19,6

0,0
0,1
2,1
7,2

0.0
0.0
0,0

3,2
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3.4.2,1.7 Hierarchical classification (B)

Table 3.7 Number correct

Grade 0 1 2 3 4 5 6 1 8

9 100,0 86,2 28.1 9,4 0,5 0 0 0 0

so 87,4 50,5 29.1 '1.1 1,7 0,2 0 0 a

II 98,0 63.8 30,8 14,5 5.0 0,3 0 0 0

12 100.0 74,1 35,9 18,0 5,1 1.9 0 0 0

Hierarchical classification seems to he much more difficult than the other arc.,, as can he
seen from the fact that only 0,5%-5,1% were correct in 4 or more items out of 8. It is also

significant that compared to the other GTC's, very little improvement occurred through the

grades,

3.4.2.1.8 Reading and interpretation of given definitions (G.)

Table 3.8 Mmomber correct

Grads 0 1 2 3 4

9 100,0 45,6 10,9 4.3 0,7

10 100,0 03,0 22,4 8,1 3,2

11 100,0 76,4 37,8 16,4 4,3

12 100,0 84,4 57.0 41,:' 13,2

On this GTC only 10,9% pupils in Grade 9 to 57.8% in Grade 12 gave 2 or more correct
responses out of 4.

3.4.3 Guttman analysis

For the deternimation of the division points in each GTC, the eriterium of 50% was used In

cases where the division points fell on nun - integer values, integer values just above or below

were chosen as division points Guttman analysis for the total set of GTC's yielded coefficients
of reproducibility IC 1 of 0,8907 and at scalahelity IC / of 0,5159. When G was left out due to

its low correlations with the other categories, C,, = 0.9100 while C. = 0,0141, indicative at

the presence of a possible learning hierarchy Various subsets of the remaining Gf("s were

further chosen l'or Guttman analyses

3.4.3.1 Ordering of GTC's

The various Guttman analyses yielded the following ordering ur geometric thinking
categories beginning with the easiest up to the most difficult
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From the above, the following general observations were made

pupils at Van Melo Level 0 seem reasonably capable of recognizing certain obvious
visual properties of figures like equal or parallel sides. 90' degree angles or equal base
angles in isosceles triangles

simpler one-step deduction is possible at lower Van fliele levels as evidenced by the fact
that E and C continually interchanged depending on the division points chosen

hierarchical classification was clearly the most difficult (ITC for pupils.

4.1 Conclusions

The data generally provides support for the Van I 'idle Model, except that hierarchical
classification barely emerges, even among pupils via performed quite well in questions

requiring formal deduction The data suggests that contrary to the Van I liele theory.

hierarchical classification is not a prerequisite for formal deductive thinking These

conch:slims are furthermore supported by un independent study by Milan (19/00 using a
different experimental procedure Also in Usisk in (19821. an examination of student,' all

perhirmunces on items I3 and 14. at 20% arid 13% respectively, compare int-avow ahl y with

the other three items of the same level ut 48%, 43% and 30% In another study presently
underway, Smith (1987) has found similar results using a slightly adapted version of the

CDASSCetest in Usiskin (19821

4.2 Satne implications for mathematics teaching and further research

Although the data shows clear evidence of progress through the grades, only about 20% of
grade 12 students show signs of mastering deduction involving more than one step The low

facility levels for the category, verbal description of properties of figures (45% for grade 121,

strongly suggests that insufficient development of Van Elide Level 1 takes place This
conclusion is also supported by qualitative analyses of the actual responses of pupils to
questions, which indicate serious difficulties in mastering English geometric language
(English being a second language for the pupils, their mother tongue being Zulu).

Obviously the relationship between hierarchical thinking and the basic Van )lisle theory
should be clarified by further studies before firm conclusions can be drawn Furthermore the
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Van Miele theory needs refinement in reprd to the levels at which deduction can occur. It is

felt that simpler Intuitive deductive reueoning is possible at levels lower than Level 2.
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CONSTRUC/70N D'UN PROCESSUS D' APPRENTISSAGE DE LA NOTION DE

SYMETR1E ORT11OGONALE POUR DES ELEVFS DE 11 ANS

Denise GRENIER

Equipe de Didactique des Mathematiques et de l'Informatique de Grenoble, France

Abstract
A teaching process about the notion of Reflection has been developed here from
results of previous investigations which had shown particularly that erroneous
conceptions persist after school teaching and that some didactical variabies have
an infflluence on pupils'answcrs. First, a theoretical analysis of the processwill
be !resented. in order to explain our didactics! choices according to the teaching
aims, and the pupils'coneeptions brought into play. Then, some results of the
progress of the teaching sequence are given, especially the pupils'procedures
and difficulties, and the changes with regard to the designed alms.

Cadre genial de la recherche
L'objectif general de cella recherche est l'etude des conceptions des eleves sir Is symetrie

orthogonale et des conditions didactiqucs de lens evolution. Line etude twistable mends auprbs

d'elives de 11 1 15 ane a mis en evidence dune part, l'existence de conceptions erronecs qui

semblent resister I l'enseignement et d'sutre part, !Influence de certaines variables sur les

reponses des dives dans une ache de construction I main levee. Ces resultats ont it6 presentes I

PME 9 (Gretna, 1985).

Cette etude a serri 1 la construction d'un processus d'apprentissage en classe de dime (11 ins)

ayant pour objectif d'apprendre aux eltves 1 utiliser et expliciter les proprietes de la droite de

symetrie dune figure, et I consuuire Is transformie dune figure par une symetrie. Nous

decrivans cc processus sous les aspects solvents :

I - Analyse theoriquc du proccssus : explicitation des variables de situation ct du choix des valcura

dormers I ces variables, analyse des consequences de ces choix sur les conceptions mists en jeu

ct le type d'apprentissage qu'elles doivent provoquer,
11- Analyse du deroulement du processus : caracteriststion des proceduresdes eleves et raise en

evidence des difficultes gulls one rencontrees et du relic de l'enseignant.

I. Analyse thistly* du processus
lire phase : reperage des conceptions 'ninnies des eleves de la classe

L'objectif de eel* phase est de connattre les conceptions initiatesdes eleves de la cheese sur la

notion de droite de symetrie. Nous avons propose aux dlives une tfIche de reconnaissance et de

trace 1 main levee qui met en jcu Is perception globale de la droite de symetrie d'une figure

(position et orientation dans la figure, forme et dimension). Les figures etsient determintes de

facon I faire intervenir lea conceptions erronees repenees dans Its experimentations precedentes,

en particulier :

- le symetrique est situe sur uric metric ligne horizontale dans Is fcuille que la figure objet, ce qui

induit quc les drakes de symetrie ont une direction privilegide, lavcrticale;

- to symeuique est une figure identiquc obtcnue aussi bien par translation, symetrie glissee ou

demi-tour que par une symetrie orthogonatc; ce qui induit quc touts drone partageant Is figure en

deux parties identiques cst une droite de symetrie.
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Cate phase de diagnostic nous permettait d'organiser Is classe de Eagan I favoriser les echangcs,

cn formant des grouper contenant des eleves qui avaicnt manifesto des conceptions differentcs

dans cent *he.

2eme phase: destabilisation des conceptions erronees

Nous avons de nouveau donne aux eleves la tiche de construction I main levee des droites de

symetrie si elks existent. Celle ache ne constitue un probleme quo si le pliage est interdit : dans ce

but, un moyco de dissuasion a consiste tracer les figures sur carton. Pour destabiliser les
conceptions erronees, it fallait jouer sur les variables poninentes dans cette tfiche, en leur dormant

des valetas reconnues comme &ant sources d'erreurs chcz les eleven. Ces variables sont hies I

certaines pmprittes des figures et 1 lour orientation dans la feuille. Nous avons ainsi retenu :

- des figures pouvant etre decompose= en deux parties identiques mais ne presentant pas de

symetrie orthogonak : it s'agissait de &stabiliser Is conception erronee qu'une droite qui partage

une figure en deux parties identiques est une droite de symetrie; ces figures sont de deux types,

figure reguliere autour dune ligne centrals (figure I) et figures presentant tine symetrie centrale

(figures 4, 5, 7, n), ces dernitres etant ortentees dans Is feuille de !mitre I provoquer des

preadult' de "rappel horizontal";

- des figures ayant plusieurs droites do symetrie, done des drones horizontales ou obliques par

rapport aux bords de Is feuille : it s'agissait de destabiliser la conception tres repandue qu'une

droitc de symetrie est verticale (figures 2, 3, 6, 8, 9, 10).

Lea figures etalent dessinets dans mite orientation dans Is (*cultic.

fie. 1 tie. 2 fig. 3

fie. 7

fig. 4 fir. 3

fig. 0 ng.9 (ie. 10 fie. 11

Lorganisikruluiraykl est choisic pour favoriser lcs interactions dans Is classe. Les eaves
travaiilent d'abord par groupes de quatre et doivent se mettre d'accord pour chaquc figure tam tine

reponse commune, le representant d'un groupe devant pouvoir eventuellement defendre sa
solution en l'argumentant, au moment do la mise en commun. L'enstignant a alms pour role do

veiller au bon deroulcment de l'activite, sans porter aucun jugement sur les productions des

Caves. Puis une mise en commun est organise sous le connote de l'enseignant : celui-ci doit

aloe gerer le debit et contrdler les apprentissages, ildoit intervenir si toute Is classe est d'accord

sur un resultat faux ou pour proposer unc solution A un probleme non resolu. L'cnscignant

recapitule ensuite, dans une phase d'institutionnalisation, les proprietes qui perrnettent de refuter

Its conceptions emmies, cn particulicr, pour cette Oche :

- une figure pout avoir plusicurs droites de symetrie et done cellos-el peuvent etre "obliques".
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- unc drake de symetrie passe par le milieu de deux points homologues et cite est orthogonale A la

droite joignant cc' deux points.
La debt do trace "A main !vide met en jcu les propridtes du milieu et d'onhogonalite de la droite

de symetrie. Elle ix met en oeuvre, ni les relations d'incidence (points invariants) ni l'equidistance

des points de la drub& de route paire de points symetriques.

3e plisse utiftsation anslytkste de; proptillis de la drone de symetrie

Nous avons Elabore unc salvia de construction avec instruments des droites de symetrie de

figures, dc relic (Icon qu'un jeu stir les variables des figures et sur les instruments permis
privilegie ou enema rend obtigatoire l'utilisation des proprietes moms comities des eleve,s. A ce

nivesu, les eleves savalent utiliser quatre instruments : Is rtgle gracluee, la rtgle non graduk,

l'equerre et in compas.
Analyscos les actions possiblcs avec chaque instrument dans carte &he. La regle graduk permet

de construire Is drone de symetrie des que connait deux paires de points symetriques. Cest

alms uniquernent is propritte du milieu qui est mise en oeuvre. La regle non gradude ne met en

oeuvre que les propritas d'incidence, par Is construction de l'interseetion de deux segments

symetriques. Bile permet de construire la droite de symetrie des que connait deux paires de

points symetriques, a condition que ceux-ci me forwent pas un rectangle. L'equene permetde

determiner la direction dune droite perpendieulaire A unc autre drolte et passant par un point

donne. La prof:elite d'orthogonalite est aloes utilisie conjointement avec une autre proprida, cello

qui sett I determiner le point par lequel est mare is droite pcspentlieulaire. Le compas permetde

determiner au moms deux points de Is droite de symetrie des qu'on a unc paire de points

symetriques. Cest is proprietd d'equidistanc,e des points de la droite de symeuie de mute palm de

points symetriques qui est mist en oeuvre.

Dans c.hscun des cos, it lint exhiber au mains une paire de pointssymetriques, cc qui necessite

tine anticipation de is position de Is droite de symetrie. Ces points symetriques doivent etre. soil

reconnus. soil traces (Hs sons aloes is rdsultat d'une construction qui reeve des proprietes de Is

symetrie. ce qui rend la detie plus dLfficile pour les eaves).

L'organisation de la elasse est la menu que dans Is phase precedente. Les figures (ckssineea sur

carton rigide) et les instruments fournis runt les suivants

groupe 1 : regle gradude et equate, octogonc et cercles secants sans centres
groupe 2 : regle non graduk et dqucrrc, trapeze isockle et drupeaux
groupe 3 : regle non gradude et compas, cercle sans centre et ellipse avec centre.

Otte41014

twos sans asps

groupe I

<\7 0
Insizt bail* et els nas WWI
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Lattikilltifan.degamMiatIttiSelta.letulanakinizatbicartinuttinsmunengs
La ttgle gradude soffit pour tracer les droll= de syrdirie de l'octogooe (propriete du milieu), mais

on peut utiliser aussi l'equerre (propridt6s du milieu ct orthogonalite). Par contre, la droite de

symetrie des delta corks me peut etre trade qu'en wilisant it Is fois is tegle graddc et Vignette.

Pour les figures du grave 2, deux types de construction sont possible' : avec la rtgle non
graduee et reroute (propritti dlneidence et d'orthogonalite) ou seulement Is tegle non graduee,

en determinant les points d'intersection de deux pains de segments symetriques (proprietes
d'incidence).

Pour ces qua= figures, les pukes de points syrnitriques sont dej1 consuuits.

Le trace de droites de symetrie du cercle a'obtie.nt avec lc comps' et Is regle non graduie en
utilisant les proprietes d'equidistance de deux points quelcooques du cercle. Il few done savoir au

prealable que deux points quelconques du cercle soot symetriquca. Pour coustruire une droite de

symetrie de ('ellipse avec le canpas, it fait determiner in point, sutre que le centre deji donne,

qui soil equidistant de deux points symetriques situ= sur ('ellipse. Mais eta points aunt
eux-memes it construire commie points equidistsnts du centre de l'ellipse, et qui rend Is tactic

difficile.

*me phase : une phase de :xinununicat/on

Lea trois premieres phases de cc processus sont des situations d'action, c'est-i-dire que les
connaissances investies dans les problem= Wont pas d etre formulees. Les expressions utilisers

par lea eleven pour designer Is droitc de symetrie, comme par exernple "droite du milieu" ou
"droite qui partage Is figure en dcux" sent en general comprises par les sutra eleves, parce
qu'entre mix les implicites foncticanent bien. Mais elks peuvent aussi provoquer des erreurs du

fait de lour ambigUite. Par exemple, les droites partageant un rectangle en deux panics identiqucs

sont de dew( types : droite de symetrie ou diagonale. Ls capacite 6 formuler une connaissance fait

panic de l'apprentissage de cello connaissance. Nous averts done &shore unc situation de
communication dans lsquelle d'unc part, Is dcscription des eroprietes ou i'utilisation de
l'expreasion "droite de symetrie" sont des outils do resolution du problem et, d'autre pan, les

implicitcs familiers aux eaves peuvent conduire 1 des reponses modes.

Organisation de l'activild : Les eaves sont mis on bintknes dans deux salles A et B, sans aucun

contact direct, chaque bintime Ai emu en correspondance avec le bin8me Bi. Le bin8me Ai a une

feuillc stir laquelle est dessinde tine figure avec un element (droitc de symetrie ou unc diagonals)

trace dans une num couleur. Le bin8me Bi a unc figure semblable de dimensions differentes, mais

sans filement suppl6mcntaire. Chacun des dcux binomes salt quo l'autre a une figure semblable A

Is sienne et quo Ai a un element en plus. La tfiche de Ai est de decrire cet element dans un message

dcrit (sans dessin) pour Bi, 'fin que celui-ci puisse le reconstru ire. La reussite de factivite pour le

couple (Ai, Pi) est lite a la qualite du message code par Ai, et it Is justcsse du decodage par Di. Le

choix des dimensions different= pour les deux figures intcrdit une description pardes mcsures.

Le choir des figures possedant aussi une symetrie centrale oblige de plus lea chives 1 expliciter In

presence ou l'abscence des proprietes d'orthogonalit6 pour ne pas produire un message ambigu

base sur Is propriete de partage de la figure cn dcux parties idcntiqucs. Dans le cas oil feleine-nt est

drone dc symetrie, Is formulation de scs propridtes ou l'utilisation de ('expression "droite de

symetrie" soot des outils performants.

Les figures propose= soot les reproduites dans Is page suivante.
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State phase : traraforsnation de figura et transforamdon penctuelle

L'objectif de cote phase est de mettre en oeuvre avec ks eltves les procedures de construction du

symetrique dune figure par rapport It one droite donate. Pour route: ceue *he I bleu, II eat
necessaire au prealable de d6composer Is figure en sommets dont it twilit de determiner les

symeniques pour reconsuuire calibration hi figure. Cool necessite quo relive reconnaiate quo It

tract de cot points penuet de construire is figure corupkte, par excmple quo flange d'un segment

est on segment dont la extrentites tont les symetriques des celies du segment objet. 11 taut aunt

traduire les connaissances des proprittes de Ia droite de symetrie dune figure very la construction

du symarique d'un point par rapport I use droile.

Nous averts doubt aux Cayes lea quatre insuuments de construction, puisquc dans cote phase, it

s'agissait d'exbiber les principales procedures de construction du symetrique.

Les variables do /a figure qul jouent dada mak tkbe sate easemiellement Is position relative de la

figure et de is droite et reclamation des flexuous de Is figure par rapport It la droite de symitrie.

Les figures &oaks sow les ativanies :

L'organisation de la classe est Is 'name quo dans lea phases 2 et 3, c'est-i-dire un travail de

groupe suivi d'un debit data la classe, et de l'institutionnalisation par l'enseignant des proprietts

principales du symetrique (rune figure par rapport 3 une droite et de Is mtdiatrice d'un segment.

Enfm, pour metre en evidence Is propriett de retoumement, nous avons propast aux 61tves des

activists (inclividuelles) vtilkant le "papier calque" sous dcux aspects :

- comme outil de differentiation cks statute des droites ayant Is propriet6 de "partager en deux

parties toles" (mice en jeu de to pro(ritte de symetrie =trait);

- comme omit de construction du symetrique dune figure par rapport it une droite. Nius avons

fait jouer Is variable "position relative de la figure objet et de la droite": ails figure ne rencontre

pas la droite de symttrie, il est necessaire pour reussir Is tkbe do rekver la position de Ia droite

par an moms deux points avant do &placer Is feuilk de papicrcalque; it faut =suite poser la droite

sur elk -memo 'pits noir retoumt le calque (propriete d'invariance de la drat de symeuie dans

la transformation).

Nous ddcrivons maintenant quelques aspects du dtroulement du processus : les difficultts

rencontries par lea eltves dans les di fferentes ticks, les conceptions el la appreMissages mis en

jou, cam les objectifs anoints par rapport i ceux prtvus.
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11-Analyse du dfroulement du processus

La tick dc construction 1 main levee a mis en evidence une conception de la droitc de symeirie

commc drone des milieux ou du "milieu de la figure", partageant la figure en deux panics egales.

Cate conception conduit au trace des drones suivantcs :

fig. I De. 4 nil. 5 fig. 10

La prevision du results& du pliage suffit pour provoquer la remise en cause des lignes de symetrie

courbes. Mali, pour chacune des autres figures, la conjonction de ('orientation de la figure dans Is

feuille (horizontale) et du paralldlisme de ses elements rcnd difficile la reconnaissance du statut

errone des droites trades : ces Mtributs provoquent des procedures de type "rappels horizontal ou

vertical" et "parallelisme" qui so nt difficiles i, destabiliser. La propriet6 d'orthogonalite nest mise

en oeuvre que longue les figures ne presentent aucun des attributs perturbant la conception de

symdtric. Enfin, fa conception toes repandue dc Is verticalite de la droite de symetrie, associee it

cello du partage de la figure en deux parties identiques a cmpeche, dank un premier temps, la

reconnaissance de la droite de symetrie pour la figure :

L'aeve doit dans cc cas mencr une analyse differente de la figure. De memo, lorsque le nombre

d'elements identiques est impair, le "double statut" des droites de symetrie (drone de symetrie de

paires d'elements et de l'element restant) nest pas rcconnu.
Un des apprentissages constates lors de cette phase cst Is reconnaissance des differentes
orientations des droites do symdtrie dans la fcuillc. La situation geographique des queue eleves

autour de la figure joue en favour de cot apprentissage, parce qu'elle met en jeu la conservation des

proprietes de la figure par rotation et relativist les directions privilegicles propres & chaque eleve.

L'activite do groupe pour la construction avec instruments de In droite dc symetrie n'a pas aueint

les objectifs d'apprentissage prevus, parce que la propriclte d'egale distance cst la scule disponible

en tent qu'outil pour les eleves dans cette Oche. La regle gradude estdone le soul instrument qui

permet de resoudre le probltme, quel que soil le type de figure proposte. L'utilisation des autrcs

instruments, l'equerre et le compas, pose le probleme de leur adequation aux figures, requerre

servant prioritairernent pour reeve it verifier si la figure compone des angles droits et le compas

comme outii de trace dares de cercle plus que de report de longueurs egales. Sans la regle

gradu6e, les eleves out tense de graduer Its attires instruments ou bien ont trace "au jug6".

Le role de l'enseignant s'est revclle primordial dans cello phase . les relations d'incidence et les

proprietes d'equidistance n'ont dte exhibees qu'au moment de In mise en commun et de

l'institutionnalisation par l'enseignant de cos proprietcls. Le probleme de la finalitede cette tfiche dc

construction reste pose : s'il n'y a pas d'autre but que le trace, les eleves Ile corn prennent pas
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l'interet de construire avec les instruments alors quc les procedures "au jug6" ou "par
tfuonnements" donncnt de ties bons resultats.

Par rapport aux apprentissages !'analyse de la situation de communication temoigne,

ceue tape du processus, de la reconnaissance par les eleves des prop jet& de la droite de syrnetrie

et de leur capache 1 les formula : les eaves ont en effet majoritairement utilise les proprietes de Is

symetrie ou is definition "droite de symetrie" pour rdsoudre le probleme de description de
['Element de type S. Mais ewe situation de communication Ws pas aueint son objectif de remise en

question de la conception erronee qu'une droite partageont tine figure en deux parties identiquca

est une drone de syrnetrie. En effet, Is strategic majoritairement utiliser pour d&rire le segment de

type NS a consige en un "reperage geographique", par rapport I l'orientation de la figure dans la

feuille (horizontale, verticals, oblique, incline), ou par rapport aux bords de la fet:ilie (bits, haul,

gauche, drone). Or, ces messages ont ete tits bien decodes, parse que les implicites correspondent

fonctionnent bien chez les eleves et quc Its figures Ai et Bi avaient la meme orientation darts Is

feuilk. Pour que la tiche mette en jeu la differenciation entre les elements de type S et NS, it faut

faire jouer la variable "orientation dans Is (milk" de la figure.

Dana &tie phase auui, le role de l'enseignani a 6t6 primordial. II a permis de reposer le probleme

de l'ambigtlite de la propriad de "partsge en deux parties egales" au =yen de l'elaboration d'une

activit6 supplementaire dans Is clime, qui pariah en compte les results/Ls observes.

Pour terminer, nous donnons ici sculement quelques resultats de Is phase de construction du

symdtrique dune figure. Celle-ei a revile la durabilite de certaines difficult& chez les eaves, en

patticulier
- la prise en compte coon& de is propritte d'orthogonalite, qui se traduit par exemple par Is regle

d'action suivante : la transform& dune figure est perpcndiculaire 1 la figure objet:

- les difficultes des eleves 1 tracer le symdtriquc lorsque la figure coupe Is droite de symelzie,

difficult& qui font gapparailte lea procedures de prolongcment ou de paralldlisme.

Dans la phase d'institutionnalisation, l'enseignant doit done insister stir Is propri6td
d'orthogonalit6. Lea proprittes de conservation par Is transformation de la nature des elements

dune figure et de leer dimension ne posent pas de probleme pour les eleves.

Unc nouvelle sequel= prenant en compte ces resultats est en tours dc realisation.
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ESTUDIO DE LAS CARACTERISTICAS DE LOS NIVELES DE VAN HIELE

Angel Gutierrez y Adela Jaime

Dpto. de Didactica de la Matematica. Universidad de Valencia.

ABSTRACT. The theory proposed by P.M. and D. van Hiele have

given rise to a model of teaching and learning whose three

main characteristics are discreteness and hierarchy of
levels and usefulness of the theory for prediction.
We present the results of an empirical research which deals

with the hierarchical structure and the predictive property

of the model. The comparison of results obtained by

administering three tests (on polygons, measurement and

solids) to a group of preservice elementary teachers allows

us to formulate the following conclusions:
a) Levels 1 to 4 form a hierarchy, but level 5 has some

particularities that need an in deep investigation.
b) There is not relation between the individual results in

the different tests, so the assessment of pupils' level in a
topic cannot predict their level in other topic.

INTRODUCCION

Una teoria de aprendizaje en matematicas, que actualmente esta

siendo considerada con gran interes, es la desarrollada por P.M. van

Hiele y D. van Hiele-Geldof. Esta teoria as bass en la definicion de

varios niveles de pensamiento, a traves de los cuales progresan los

eatudiantes, estando caracterizado cada nivel por un tipo de

conocimiento, un vocabulario y una forma de razonamiento particulares.

Brevemente, las capacidades adquiridas por un estudiante en los

diferentes niveles son:

Nivel 1 (reconocimiento): Reconoce los objetos y conceptos matematicos

por su aspecto fisico y de forma global, sin distinguir

explIcitamente sus componentes.

Nivel 2 (analisis): Reconoce las componentes de un objeto o concepto

matematico. Es capaz de establecer relaciones entre objetos y/o
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entre componentes, pero solo de forma experimental. No puede

establecer relaciones logicas ni hater descripciones formales.

Nivel 3 (clasificaciOn): Realize relaciones lOgicas y es capaz de

seguir razonamientos deductivos simples, pero no comprende la

funciOn de los elementos de un sistema matematico (axiomas,

definiciones, demostracionea, etc.) y, por lo tanto, no sabe

manejarloa.

Nivel 4 (deduction): Comprende y realize razonamientos deductivos,

pues ya entiende el valor de axiomas, hipotesis, definiciones,

etc., pero todavia no ha adquirido un conocimiento global de be

sistemas axiomaticos y no comprende la necesidad del

razonamiento riguroso.

Nivel 5 (rigor): Comprende la necesidad del razonamiento riguroso, as

capaz de realizar deducciones abctractas a partir de sistemas

axiomiticos diferentea y de analizar y comparar esos sistemas.

El mayor interes de la teoria de van Hiele radica en is

posibilidad de conatruir a partir de ells un modelo de ensefianza de is

geometria, en el cual cads nivel Ileva osociados un tipo de

actividades, un lenguaje y una organizaciOn del aprendizaje que

permiten alcanzar el nivel siguiente. Ejemplos de programas basados en

los nivelea de van Hiele los encontramos en la Union Sovietica,

Holanda y U.S.A. (ver Wirazup (1976), Hoffer (1983), Freudenthal

(1973), Mathematics Resource Project (1978) y Fuys, Geddes (1984)).

Hay tres caracteristicas del modelo que deben ser estudiadas en

profundidad: La discretitud de los niveles, su jerarquia y su

capacidad de transferencia de unos campos de las matematicas a otroe.

Durante los ultimos aRos se han realizado importantes inveatigaciones

en cads una de ellas (Usiskin(1982), Mayberry (1983), Fuys, Geddes

(1984) y Burger, Shaughnessy (1986)), cuyos resultados mess destacados

estAn comentados en Senk (1985), pero no ha sido posible determiner de

forma satisfactoria ninguna de dichas caracteristicaa del modelo.

EL ESTUDIO

A continuation exponemos los resultados de un estudio iniciado en

este curso, con el fin de evaluar la validez de las hipOtesis sobre la
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jerarquizacion de los niveles de van Hiele y is globalidad de los

niveles respecto de diversos campos de la geometria.

Haste ahora, is mayoria de las experiencias desarrolladaa para

determiner las propiedades de la teoria de van Hiele se han basado en

cuestionea de geometria plans relacionadas con los poligonos. La

primers parte del trabajo que hemos realized° ha consistido,en disefiar

tres tests basados en los tres campos mAs importantes de is geometria:

geometria plane (principalmente poligonos), medida de magnitudes

(longitud, superficie y volumes) y geometria especial (principalmente

poliedros).

La comparacion de los niveles alcanzadoe por cada estudiante en

lob diferentes tests nos permite observer la correlation existente

entre silos y, por tanto, conjeturar sobre is globalidad o localidad

de los niveles de van Hiele. Por otra parte, el anAllais independiente

de cada test ha hecho posible medir el grado de jerarquizaciOn de loa

niveles.

Tomando come referencia la eatructura del test de Usiekin (1982),

cada test consta de 5 items pars cada nivel, con 5 respuestas en cada

item. Con el fin de hater mac fiables las comparaciones de los

reeultados, se ha mantenido la misma estructura gramatical en todos

los testa. Reapecto del contenido matemitico de los items, ea ficil

enunciar modelos de cuestionea validos tanto pare geometria plans comp

especial, pero en is medida de magnitudes se presents una organizaciOn

conceptual mucho mss simple que en el caso de poligonos o poliedros,

lo cual hate dificil mantener la semejanza entre los items.

Por otra parte, el disefio de tests basados en conceptos

diferentes de los relacionados con poligonos puede ser util pars abrir

nuevas lineas de investigaciOn sobre el modelo de van Hiele para la

ensefianza de la geometria.

LA MUESTRA

Hemos administrado los tests a 563 alumnos de los tres cursos de

la Escuela de FormaciOn de Profesorado de E.G.H. (ensefianza elemental

espafola) de la Universidad de Valencia. La table 1 indica la cantidad

de estudiantes que ha contested° los diferentes grupos de tests.
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Test P Test M Test S

Test P 409 276 232

Test M -- 392 241

Test S -- 318

Teat P poligonoa

Test M = medida

Teat S = adlidoa

Tests P, M y S: 193 eatudtantes

Tana I

La realizaciOn de los tests ha tenido luger en tree sesiones

diferentes, con un intervalo minimo de tree dies entre una y otra, si

bien en la mayor parte .de los cases este intervalo ha side de 1 6 2

semanas. Los alumnos hen dispuesto de tiempo libre pare contester los

tests (entre 30 y 45 minutos por tOrmino media).

RESULTADOS Y CONCLUSIONES

Es evidente la importancia de los criterion, do paso de niveles y

de asignacion de nivel minimo, elegidoa en el andlisis de las

respuestas a estop tests. Habitualmente se toms como criteria pare

superar un nivol que el estudiante conteste bien 2/3 de las

respuestas, lo cual supone en nuestro case superar 3 6 4 de los 5

items correspondientes a un nivel. La observaciOn di.recta previa de

nuestros alumnos y otros estudios realizadoc con estudiantes de

niveles aemejantes (Mayberry (1983) y Matos (1985)) nos hicieron

suponer a priori quo la mayoria de alumnos estarian en los niveles 2 y

3 (para nosotros, el pnimero de los niveles descritos por van Miele es

el nivel 1 y consideramos en el nivel 0 a quienes no alcanzan el nivel

1). Por este motivo, hemos utilized° dos criterios de superacion de

niveles (ver Usiskin (1982), pg. 23). Hay que procurer:

a) En lop niveles bajos, que be alumnos -o queden por debajo de su

nivel real, por lo que usamos el criteria 3/5.

b) En los niveles altos, que los alumnos no superen un nivel por

respuestas al azar, por lo que empleamos el criterio 4/5.

Memos asignado los niveles de dos formes diferentee: mediante el

criteria 33344 (es decir, 3 de 5 para los tres primeros niveles y 4 de

5 para los don dltimos niveles) y 33444. Ademds, a un alumno que

super los niveles 1 y 2 y Palle el nivel 3 se le ha asignado el nivel

2 (independientemente de los resultados obtenidos on los niveles 4 y

5). La tabla 2 muestra un resumen de los niveles obtenidos.
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Toot P Pea M Tcut S

Nivel 33344 33444 33344 33444 33344 33444

0 4.40 4.40 24.74 24.74 46.28 45.28

1 11.98 11.98 20.92 20.92 44 97 44.9?

2 21.45 57.95 26.00 41.58 1.89 6.29

3 66.72 23.47 22.96 8.67 7.55 3.14

4 1.71 1.71 2.30 2.02 0.00 0.00

5 0.73 0.49 4.08 3.06 0.31 0.31

Tana 2: Diotribuciol, en %, de too alumnos por niveles

El anilisis de estoa resultados ha lido realizado calculando

varioa coeficientes. Para is verificaciOn de la jerarquia de los

niveles me ha empleado el coeficiete R de reproductividad del Analisis

Escalografico de Guttman; este coeficiente, quo evalue is cantidad de

estudientoe que han fallado un nivel pero han pasado otro superior, ha

aido utilizado do forma eficaz on trabajos anterioros, como el de

Mayberry (1983) o el C.S.M.S. Project del Chelsea College (Hart y

otros (1981)). La table 3 contiene lob valores obtenidos al medir las

respuentes correspondientcl. a los niveles 1 a 5.

Tipo de correocidn Tipo de correccidn

Teat 33344 33444 Tout 33344 33444

P 0.940 0.939 0.976 0.990

M 0.868 0.862 M 0.959 0.966

S 0.853 0.903 S 0.858 0.935

Tables 3: Coeficiente P pare

too niveles 1 a

Se suele considerar velida

Tabla 4: Coeficiente para

loo niveles 1 a 4

la jerarquia de los niveles si el

coeficiente R no es inferior a 0.90 (Mayberry (1983)) o a 0.93 (Hart

(1911)). SegOn onto, habria que rechazer la jerarquizaciein do Ion

nivolen de van Hicle en medida de magnitudes y on solidus. No

obatante, un analisis mats detailed° de los resultados pone de relieve

de forma Clara is influencia del nivel 5 en los coeficientes

anteriorea. La table 4 muestra los coeficientes obtenidos al medir

solo las respuestan correspondientec a los niveles 1 a 4.

Eaton reoultados nos llevan a la conclusion de que los cuatro

primerom niveles del modelo de van Hiele forman una jerarquia, pero

que el quinto nivel presenta caracteristicas especialen que deben ser

estudiadas detalladamente, con el fin de reformular sus

caracteristicas o de considerar la posibilidad de eliminarlo del

model°, como sugiere el propio van Hiele (1986, pg.47).

Para evaluar la capacidad de prediction del modelo de van Hiele
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hemon utilizado doe coeficientes. Con el coeficiente C de coneenso de

Loik so wide at grade de diapernion do los nivelea alcanzados por una

persona en los diferontes testa, mientraa que el coeficiente Y do

Kruakal wide la correlacien entre las renpueataa del total de alumnae

a dos de los testa.

El coeficiente C varia entre 0 y 1, C..0 indica disparidad, C.0.5

indica aloatoriedad y Cl . Indica concordancia entre las respuestas.

Hemos agrupado los valoren obtenidos en varios intorvalos; I1= 10,

0.151, 12=10.15, 0.301, 13.10.30, 0.70(, 14.10.70, 0.651, 15. [0.85,

1(. Las greficas muestran 100 porcentajos de alumnos en cede uno de

los intervalos; en cede caso, le columna izquierda corresponde al

critorio 33344 y la columna derecha corresponde al 33444.

60

40

20

0

60 60

40 40

20 20

0

60

40

fi 20

0
I
1 3

I
5

I
1

I
3

I5 I1 I3 I5

Tooth 1 y 2 Tests 1 y 3 Testa 2 y 3 Tests 1, 2 y 3

El coeficiente y tome valores entre -1 y +1 y su aignificado ea

Tipo do correccien el habitual en loo coeficientes

Tests 33344 33444 de corrolaci6n. La table 5

1' y M 0.46 0.52 muostra los valorea obtenidos

P y S 0.45 0.40 pare coda par de testa.

M y S 0.41 0.44 Tanto at coeficiente C coma

Tabta 5: Cdeficiente Y el coeficiente Y indican quo:

1) No hay divergencia entre los diferentea testa.

2) Hay cierto grado do concordancia entre los resultados de los teats,

'pero beta es ineuficiente pare apoyar la hipoteois de la globalidad

de los nivelea de van Hiele.

Tanto nuestra experiencia come Ian otras a las que nos hemon

eferido antes presentan un porcentaje muy reducido de estudiantos en

los niveles 4 y 5, par lo que creemoa que no son validas pars obtener

conclusionee respecto de eston niveles. Una Linea que deberfa ear

seguida en futures inventigacioncs as la de realizar experienciaa con

grupos en los males la mayorfa de las personas eaten en Ion dos

nivelea superiores; es muy probable que on este caso se obtengan

resultados positivos acerca de to capacidad do prediccien del modelo

de van Hiele, pues una persona situada on los tres primeros niveles
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tiene una vision local y fragmentada de las matemdtican quo dificulta
in transferencia de conocimientos de unan areaa a otrau, mientraa quo

aquelloa outudiantes quo han alcenzado el cuarto o quints nivel non
capaces de tenor tam vinidn global de the matemfiticas quo facilitu

dicha tranaferencia. Nueatra hipotedis al respecto on quo lon nivelea
1, 2 y 3 non locales y no permiten realizar

prediccionee, mientraa quo
loo nivelea 4 y 5 non globales y el permiten realizar prediccionen.
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THE ROLE OF COGNITIVE CONFLICT IN UNDERSTANDING MATHEMATICS

Toshiakira FUJII

Institute of Education

University of Tsukuba, JAPAN

ABSTRACT

Cognitive conflict is regarded as a factor that could promote
students' understanding. Focusing on instruKAtal understanding and
relational understanding, this paper aims to clarify the role of
cognitive conflict in students' mathematical understanding, using
the problem of solving a linear inequality. A model of students'
understanding and cognitive conflict was built to analyze students'

answers collected from a lower secondary school. Finally,
implications for teaching were raised to provide teachers with some

idea of how to utilize cognitive conflict questions.

I. INTRODUCTION

In mathematical education, a deep understanding is desirable rather than a

superficial understanding. Typical of the latter is to know what to do without

knowing why, and of the former, is to know what to do and why. In the

teaching/learning process, teachers should make an effort to attain a deep

level of mathematical understanding within students. The author points out the

most effective way of achieving this is to provoke cognitive conflict within

students and let them resolve the conflicts by themselves.

The purpose of this paper is to clarify the role of cognitive conflict in

students' mathematical understanding and to provide teachers with some idea of

how to use cognitive conflict questions to promote students understanding.

The present study focuses on the concepts of 'instrumental understanding'

and 'relational understanding', initially used by R. R. Skemp. As it is crucial

to distinguish between which conceptions are in conflict with each other, a

model of the structure of understanding and cognitive conflict was developed.

These models provided a basis for the following analysis of the students'

understanding of solving linear inequality.

H. THE NOEL OF UNDERSTANDING AND COGNITIVE CONFLICT

(1) The Structure of Instrumental and Relational Understanding

According to R.R.Skemp, instrumental understanding is characterized by
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"rules without reasons" or "the ability to apply an appropriate remembered rule

to the solution of a problem without knowing why the rule works". Namely, it is

the understanding focused on 'how'. In this paper, we distinguish between two

aspects of the 'how':'how in action' and 'how in expression'. The former is the

action aspect of how called 'behaviorized how', that is, it is oriented to

finding an answer. The latter is the verbal aspect of the how callad 'verbalized

how', that is, it is an expression of action procedure in words. Whereas

instrumental understanding is 'knowing what to de, relational understanding is

characterized by "knowing what to do and why'. This structure of understanding

is shown in fig.l.

Relational Und.

Instrumental Und.

How

Verbalized How

[Justification of How

Fig.1

(2) Cognitive Conflict

We may say that not all processes of understanding are developed by

cognitive conflict, but we consider that understanding may be promoted by

resolving the cognitive conflict, especially from instrumental understanding to

relational understanding. It is crucial to identify which conceptions are in

conflict with each other. According to this model of understanding, we can

identify at least three cognitive conflicts:

CI: conflict in 'behaviorized how'

Cs: conflict in 'verbalized how'

C3: conflict in 'justification of how'

In this study, the following problem concerning linear inequality was

given to students to provoke cognitive conflict,

"Usually we would solve a linear inequality such as X-2>5 by adding 2 to

both sides, that is, X-2+2)5+2, and the answer is X>7, or, if a>b, then afc>b+c.

On the other hand, if we were to add 2 to the left side and only 1 to the right,

that is, X-2+2>5+1, we would attain the answer X>6, or, if a>b and e>f, then

ate>b+f. What do you think about the difference ? "

Below is a detailed description of what took place in class when the author

taught a Math class using cogni tive conflict as the motivation for

understanding.

At the very start of the fourth math class session, the students were asked
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to solve three inequalities without prior explanation as to how to do it.( The

first investigation ) One of the students solved the problem "X 2 > 5" this way:

X-2t2 > 5+2. The final answer was 'X > 7'. His explanation is written below.

'There is no change in the inequality 2 < 3 if we add I or 100 or 3.3 to

both sides.

2+1 < 3+1 3 < 4 Therefore, I added 2 to both sides as: X -2 +2 > 5+2.

X > 7 .'

When the teacher asked the student what he meant by "no change", the reply

was "the direction of the inequality sign". Then the teacher made sure that this

answer was supported by most of the students. Next, the teacher asked again,

"If we add 2 to the larger side and 1 (which is smaller than 2) to the smaller

side, we can be sure that the direction of the inequality sign never changes.

This is because we add the larger number to the larger side and the smaller

number to the smaller side. But if we do so,we get X > 6 which is different

from the former answer. What do you think of the difference?"

Based on this type of interaction, the cognitive conflicts which may rise

within individual students were as follows:

CI: With regards to the answer, which is correct , X > 7 or X > 6 ?

Cs: With regards to the procedure to get the answer, which is proper-"to add

the same quantity to both sides, or to add a larger quantity to the larger

side and a smaller quantity to the smaller side ?"

C3; With regards to the validity of the procedure, which is valid even if both

procedures result in no change in the direction of the inequality sign?

These conflicts are shown in figure 2.

Behaviorized How

X 2 > 5
X-2+2>5+2

X>7

Verbalized How

to add the same quantity

to both sides

a>b -* atc>hec

Justification of How

no change in inequality

sign by adding the same

quantity to both side

1

Ci

CZ

Behaviorized How

X 2 > 5
X-2+2>5+1

X >6

Verbalized How

to add a largeTTimaller)

quantity to the larger

(smaller) side

a>b,e>f a+e>tqf

Justification of How

no change in inequality

Cs sign by adding a larger

(smaller)quantity to the

larger(smaller)side

Fig.2

As a result of resolving these cognitive conflicts, we can expect the

1 1 0 0
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students' understanding to be more profound than before. C, will provoke the

student to investigate the correctness or the incorrectness of the answer.

Therefore, by resolving C, the student may move from instrumental understanding

to relational understanding (R,).

RI: 'behaviorized how' and why; namely, *why' is focused on the correctness

(or incorrectness) of the answer

Similarly, conflicts C1 and C3 will lead to relational understanding RI and

R3 respectively.

14: 'verbalized how' and why; namely, "why'is focused on the correctness (or

incorrectness) of the procedure

R3: .why"is focused on the validity of the reason of how

EXPERIMENTAL STUDY

Focusing on the students' understanding of linear inequality, we carried

out an experimental study to clarify the role of cognitive conflict in the

learning process. The subjects used were eighth graders (NAO) at a national

secondary school in Tokyo. The author started with a three-hour introductory

session with the students which consisted of the following: a. citing a

situation and translating it into a mathematical expression (linear

inequality); b. clarifying all possible implications of the said linear

inequality; c. knowing the relationship between the solution set of the linear

inequality and the number line; d. determining the swallest possible value by

treating the linear inequality as a linear equation.

Then, without prior explanation as to how to solve the problem, the

students were asked to solve three linear inequality problems: X-2 > 5, 1/2X+2

> 4, and 2-3X > 8. The number of students who obtained the correct answer for

problems were 40, 38 and 23 respectively. These results are actually very

satisfactory considering that the students had not yet been taught how to solve

linear inequalities. In the third problem, the most common mistake was the

incorrect use of the inequality sign. Using the inequality 'X-2 >5', the

teacher then tried to provoke student conflict by asking if that inequality

could be solved by adding 2 to the left side and 1 to the right side of the

inequality, thus resulting in 'X > 6'. The teacher asked the students to write

what they thought about this suggestion and collected their papers. The

students were then asked to discuss this matter with their classmates, after

which they wrote their final opinions.

Based on the students' opinions, the author constructed 10 categories, 5

levels for understanding and 5 for misunderstanding, to evaluate students'

opinions. (see fig. 3 and its note)
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Misunderstanding 4
Understanding 1

i
inst.

Und.

T

Rel.

Uod.

.....

0
Ro

R, R,

Rs Rz

/73
R3

Fig.3

NOTE : Besides categories of R1,Rz
and R3 mentioned above, Ro and I, Wo-43

are established.

R.: student's description was too vague to classify as either category.

I ,

misunderstanding ,that is, inclusion of some incorrect

terms or explanations in student's written answer.

IV. RESULTS

This paper focused on students who were identified in the first

investigation as having an instrumental understanding level. It aay be

concluded that through provoking and causing students to resolve cognitive

conflicts, students' understanding can be promoted from instrumental

understanding to relational understanding.
However, a closer examination of the

results reveals that the students' state of understanding greatly varies,

implying that cognitive conflict can
be provoked in various ways (depending on

which conceptions are in conflict). The author tried to categorize the state of

understanding in terms of which conceptions are in conflict with each other.

Here are some typical students' answers.
The first type, represented by

students 1137, 111, and 124, is shown in fig. 4; the second type, represented by

students 15, 17, and 140, is shown in fig. 5.

(1) In the first basic type,
conflicts C,,Cz and C3 seem to lead to an

understanding level of 11,,Rz and R3 respectively, thus producing a parallel

line image as shown in fig. 4.

Student 137 arrived at R, by resolving cognitive conflict C,

I :
treated it as an equation

"actually I substituted 8 for X, then the inequality seemed OK

RI: "according to Mr. 0 he substituted 7 for X and found that the answer was

strange so I
thought that that couldn't be right (ie. X couldn't he

greater than U )."
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Student 111 arrived at RI by resolving cognitive conflict C2

I : if 1 subtract 2 from X, the rc.:ilt will still be larger than 5;therefore

it means that X is larger than 7."

14: "it is necessary to add the same quantity to both sides to avoid making

an unnecessary part(6 4 X 5 7).'

R3: "we can find the correct answer for X by adding equal quantities to both

sides.'

Student 124 arrived at R3 by resolving cognitive conflict C3.

I : "I regarded '>. as '=' and treated it as an equality."

R3: "it is okay not to change the direction of the equality sign but the

meaning of the mathematical sentence itself is strange."

R3: "when we simplify the inequality we have to maintain value of X'

Fig.4 Fig.5

(2) The second type shows that the state of understanding changes diversely.

Even the students all started from I but moved in different directions thus

producing a scattered-image as shown in fig. 5. These three students were

considered to be within category I because they got the correct answer for

problem 1, solving it in the same way as an equation. However, they got the

wrong answer for problem 3 when they applied the same logic.

Student 15

: treated it as an equation

RI: "substituting 6.5 for X-2 > 5, 1 got 4.5 < 5 with a change in inequality

sign.

Ri: "1 understand that the value of X is important. 1 understand it through

the number line.

Student 17 moved from I to R, then to R2.

I : treated it as an equation

R,: "'X > 6' is different from the original value of the inequality. 1

substituted 6.2 , which is larger than 6, and got wrong expressions,

(ie 6.2-2 > 5, 4.2>5).

R2: "What we add to both sides of the inequality must be the same because

if we add or subtract different quantities we get the wrong value of X".
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Student 140 moved from ( -to R then to Rs. This could mean that conflict Cs

was the motivation tool which led him eventually to understand R3 .

I : treated it as an equation

RI: We can substitute any number which is larger than 6 for X. (6.1 was

substituted for X)."

Rs: When we change the sentence we should maintain the direction of the

inequality sign and the range of the value of X.

At level RI students 15, 17 and 1140 are all in the same category of

understanding. However, their final states of understanding all differ that is,

RI. Rs and Rs. This suggests that students focused on different aspects of the

cognitive conflict. These differences were, ii turn, reflected in their

approaches taken to resolve the problem, producing varied answers.

V . CONCLUSION

I) Through provoking and causing students to resolve cognitive conflicts,

students' understanding may change from instrumental to relational understanding

(R1 --P3). Therefore cognitive conflicts can be regarded as motives which

promote students' understanding from instrumental to relational understanding.

2) Cognitive conflicts CI --Cs often lead to the understanding of

respectively.Therefore, it is crucial to recognize which cognitive conflict(ie,

C,,Cs or Cs) the student has as this is thought to largely determine his

ultimate level of understanding.

IMPLICATIONS FOR TEACHING

1) In the teaching/learning process, the questions which may provoke conflict in

students are useful especially when the teacher needs to know the state of

understanding of the students. In fact, even if the answers to the problem 'X 2

>5' are all correct, behind this efficiency lies varied states of understanding

which can be revealed through the use of cognitive conflict questions.

2) The cognitive conflict questions should be contrived so that they contain

'behaviorized how', 'verbalized how' and 'justification of how' because this

kind of question will activate students' thought at various levels.
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different frames as In a comic strip, some authors link two drawings by an anew.

One at the technique of analysis used to the paper Just mentioned consists in

dynairuzing static diagram comprising a final and an initial state in order to assess

the role of the arrow and its indIstensable presence hi the diagram. This

dynamization involves creating a scenario of an animated movie sequence This

method shows that sometimes intermediate states cart be inserted in between the

Intim! and final states, sometimes the change is sudden and no 1n-between states can

be introduced

This suggests that the actual use at arrows (external representation) may evoke

mental images ar elements that are linked with some sensortinotor experience

(eternal representation) which can be assigned to two irreducible categories. In this

paper, we examine only the transformations as a:inceptions, as they are mentaty

processed by students' mind Transformations and conceptions of transformation

are consequently Interchangeable in this paper. We shall call temporal a
transformation that involves Intermediate states and procedural the others for

which no intermediate state can be introduced We accept the fact that there still

remain doubtful cases and also that it is not easy to detect students' mental

constructs. We believe it is the price to pay for exploring the domain.

Anommadifflailty
Janvier and Mary (in preparation) and Bednarz N. , Janvier a and Poirier

L(1903) have shown that describing a transformation was difficult to achieve. With

young children, identifying how a number is changed when someone adds or

takes away objects often amounts toprovideng the final state. For example, let

us consider the following easy problem* You have 5 candies in your bedroom desk

drawer, your mummy when you're at school added some candles In the drawer.

When you come back home you turd 9 candies in your drawer. How many did she

add? Most children aged S or 6 would answer 9 or 14 to this question describing the

hansformahon by the final state. The idea of squaring a number brings about a

dilemma ci the same kind. Indeed, x 2 represents a variable, an Individual entity that

changes when x changes. At the same time, it shows as well how x can be

transformed into x2 (by squaring it). This fact explains partially why the

1106
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transformation as such is kingifirci to the final state object which sometimes (as it I

the case here) symbolically depicts; or evokes tt

lapedmistaidisignintigamakinumwmakad.
The subjects of the experiment was 20 boys and gris of year 4 at secondary

level They were selected an the bees of their general ability in mathematics

demonstrated by their belonging to a) six (6) from a stoup taking a strong

concentration in math and science, b) eight (8) from a regular teaching In

mathematics and c) six( 6) taken from a gnaup of weak Ancients. They am had

foamed a biology course the previous yesr including sane Mgt Uttell an the

phenomenon at 'mitosis'. The results obtained in the biology counse were

chortled With two momptions from the group 11, they fk the classification already

done with the ordering done using their mathematics ability.

As it will be noted in the desorption of the tail; the experiment was presented

as a project aimed at improving the diagram used to tar/Abair& We hoped to doing

so to avoid that the task be identified to a kind of school test. The twenty students

were divided equally into an experimental gaup (A) and a control group (13).

In the exprrimental design. both group A and group B were administered the

mitosis diagram task. Group A had warted previously on a series of eramises that

can be oonsidemed as a partuebelion treatment. Group A students narked

individually on those EIGNICillell during four fifteen to twenty minute 1161111011111 our a

period of one month All interviews were videotaped so that the hand gestures

could be obeervable.The general objective of the research (that will be made

precise later) was to observe sad describe the effects of this treatment

which we shall now describe on the mitosis task.

Thcpegollinikaaatumatiounintint
The students had to campiete seven 'arithmetic network" similar to the one

presented in figure I. Calculators were allowed. The loops included in the network

allow the student to automatically check their results Each arrow plays the role of a

transformation In one network the nature of the transformation was asked, in

another a part of the network was absent

Docripilmutithoueitualultairamlank,
The task was developed by Janvier and Mary. It Is Wad %rounds a diagram

1107
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that appears in a biology to and that 'AIMS, The designer (either the book

mercy or the gustrathig artist) has systematically described ag the transformation of

a diramosome by pointing to the results of the hareicanwition appeasing in the

diagram at the end of the arum. Doubling or splitting was indicated by exhibiting the

results namely, two chnimcmomesAfter minor adjustments to narove ambiguities

carried by the warding, the WIDE/ textbook diagram became the one car which the

interviews were based that was used in the Inteiviews (see figure 2).

It b subdividedintc seven parts.

A) igliNghldiEfil.

A central point at the outset is to state dearly that the diagram shows whit

1108
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(Appeals to a chromosome during rnitcoaks and Is BaJuleacitglond_thauts A

short crinversation !allows on how the cells spit

B)SsayittithibLMal (on 1181115 2)

Alter having eciained the wads of the ritagorm, the studentie asked to td

the obey ci the chromosome or what lumen to it during the dearocisorne

OShayablibialhatiank.,
The trancenency on which appalar the widen inscriptions Is then taken away,

and the student is asked to tell in his own yards what does the deornosome owing

taw mitosis

DY2111.011CIL

The kilovolt% definitions are given to the students They are read from a sheet

that will May bra hunt of them llor the rest of the Interview.

METAPHASE period during which the chromosome *pies in.° two poets that

remain cormicted to the cantopmem

ANAPHASE period assns which the centromere divides and models each

diorricnome totally sepals
The student is asked to use a sticker cm "Aida appears
a panning Indies to show on the diagram where are
those plumes

Tim student is presented with a new diagram hat this time the plain

wows -------169are changed hxdatted arrawSt'' " The

interviewer then asked Which diem he (she) prefers the new one or the one

presented at

Dowdptionisctigstilairazet
Author disport is shown to the student. On this one, the words

describing the ternalorritunion are put on the top of fled' arrow Tether than next to

the final slats For exaropte, we wend find

DOUBLING OF

THE CHROMOSOME

110
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Thollogslagram.
The student is asked to tale:, any elements whatsoever ci the previous

diagram in order to mete the diagram he (she) thinks to be the best and to say why?

bitgasidauatuatikaigabstaLutaxpaasc

The main idea behind the task is to offer the student several situations in which, he

(she) can reveal how evolves his (her) conception of tratufamstion This is made

possible thanks to the particular structure of the task which consists in a continuous

attempt to dived the subject from identillying the transformation with the final

state to using the arrow as such to do it. As one can see, every new question is an

attempt to do so gasmen sollicitatioire ar an inducements which became more and

more Inerristible", compelling.

We distinguish in part Bly C), and D) gestures with their finger (or

indication suggested from their speech) whicir would amount to painting the final

state from gestures such as moving the finger along the arrows which would

knplkitly reveal the 'presence' of intermediary states. As for parts 13), F) and G), the

answers of the students were analysed on this basis.

Erealtuawbileinuilau
Thu save& et the 'treatment" was astonishingly high. We win report

simply on a few parts of the tasks, the nest being ,7.vailable at the conference.

In part B) and C), stales were really difesent in nature Par the groug A, as

expected, the snows seem to be considered as ways to go from a state to another. The

stories are told 'with the fingers on the states. For group B, we have noted more

dynamic stories which suggest an unfolding action.

Such a pattern at response is also =libeled with the answers to part 14

ibtphatt, The table presented below is very significant

Classification of the 411 answers given to rat D) of the Mitosis Usk.

group A limuF B

A phase identified with one state 19 12

A phase identified 'eking a regime 0

(one case special)
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The arithmetic network has certainly brought about a tbration on naucedural

conniption that was not dislodged or shaken by the first attempts al the interview.As

the interview progresses not much diange in the studesnts' patterns al rerporae can

be identified as the need table for part El shows.

Clasegicellaa of the MI answere OVIIR to part E) of the Mitosis Usk

group A FX113 B

Armin of the &gam 9 4

Arrows with the description an top 1 6

The other results are similar and the comments provided by the students

all =vela in the same &Idiom liss availability of a temporal conception seem

to have been greatly reducad the arithmetic network exerchse

EfEsimiuna.
We dank that the cauequences of such a study are melon A recant

survey we have made has shown that transtannations in mathematics an be

*WN labeled as procedural or tesnparaL Is it not possible that some form of

instruction hens out to be countsr-productiva In geometry, for malacca, as we will

show at the conierents some transformations are procedural, others are temporal.

But, there rands at the moment a pedagogical aced whidi assumes that

manipulations parasites the elaboration of the right mental support to deal with

algebraically defined transformation. This is contrary to our hidings since we

believe that temporal conceptions cannot be generalized to procedwal ones.
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LA NOTION DE FONCTION A TRAVERS LES REPRESENTATIONS GRAPHIQUES
DU MOUVEMENT. UNE EXPERIMENTATION SUGGEREE PAR L'HISTOIRE.

(Conference will be in english)

Sophie RENE de COTRET
U.Q.A.M. et UNIVERSITE DE GRENOBLE I

ABSTRACT

The notion of function has been initially considered as a "dependent
variable". An historical and epistemological study showed that it is through
the integration of quantitative measures into qualitative representations of the
motion that the concept of dependent variable emerged. With this analysis
as a starting point, we did an experiment with children aged 12-15 to see
how they graphically represent different movements using a qualitative or a
quantitative approach, and so, how they construct their concept of function
as a dependent variable.

La notion de fonction a grandement evolue au cours des siecles demiers. On retrouve un

vaste echantillion de definitions et, avec le temps, le domain semantique de fonction sest

modifie. On remarque, en etudiant quelques definitions, qu'au depart la fonction se resumait

en definitive a la variable dependante puis, peu it peu, entre autre avec l'introduction de la

th6orie ensembliste, elle est devenue une regle de correspondance. La fonction est done pass&

de y=f(x), Ic la variable =1a fonction, a f(x)= ..., ie la fonction =1a regle de correspondance.

Voyons quelques definitions qui nous aideront a mieux saisir cette nuance tics imponante.

"Une fonction f d'un ensemble A dans un ensemble B est une regle de correspondance

qui associe I des elements ale A un et un seul element de B." (Manuels scolaires)

Cauchy (1821): "Lorsque des quantites variables sont tellement Bees entre elles que, la

valeur de l'une d'elles etant donnee on puisse en conclure les valeurs de toutes les autres, on
concoit d'ordinaire ces diverses quantites exprimees au moyen de l'une d'entre elks, qui prend

alors le nom de variable independante et les autres quantites exprimees au moyen de la

variable independante sont ce qu'on appelle des fonctions de cette variable." (Phili, C.)

Euler (1755): Des quantites dependent des attires de maniere que si les autres

changent, ces quantites changent aussi." (Youschkevitch, 1976, p.61)

C'est a Leibniz, dans son "Iviethodus tangentium inversa seu de fonctionibus" (1673)

qu'on doit le premier cmploi du mot fonction pour designer les grandeurs dont les

variations sont flees par une loi.
Ces definitions nous montrent bien que pour Leibniz, Euler et Cauchy, la fonction est la

variable dependante, tandis que dans la premiere definition on a un exemple oe la fonction est

une regle de correspondance.
Cette distinction nous a amenes I retenir pour none etude la notion de fonction comme

variable dependante.

1112
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HISTOIRE

Les limiter impostes nous empechent de retraces ici l'histoire de la notion de fonction. II

est tout de m&me important de retenir que jusqu'a la fin du Moyen Age, it cause de l'obstacle

de l'incommensurabilitt, i1 etait impossible d'avoir des relations numeriques entre deux
variables dtant donne le earactere non continu des nombres, ou pour titre plus précis, etant

donne le caractere non numerique ou incommensurable de certain rapports de grandeurs.

Ainsi, si on voulait exprimer la relation qui vault entre deux choses continues, on ne pouvait

utiliser les nombres, et les proportions entre grandeurs devenaient alors Is solution. Cette

utilisation presque systematiqtie des proportions dissimulait le lien fonctionnel qui pouvait

exister entre les elements cxxisidetes, car on comparait toujours les choses 4 a 4. On ne pouvait

ainsi etablir de relations entre les variations de deux elements; les proportions permettaient

seulement de relies deux rapports. Cet obstacle de l'incommensurabilit6 a crie une
incompatibilite entre numerique et confirm.

Cette conception est encore presence au XIVe siecle comae l'illustre cette premiere phrase

du traite "Tractins tie configuratimilwiAnalitatum et motutp" de Nicolas Oresme
(1323-1382).

"Otraiis res mensurabilis exceptis marls ymaginatur ad modum quantitatis continue."

(Every measurable thing except numbers is imaginable in the manner of continuous quantity.)

(Clagen, 1968, p.167)

Dots ce traitt, Oresme nous foumit une methode permettant de representer les qualites

changeantes an sein dun sujet. Les intensites des qualites (des vitesses) sont representees par

des segments (non des nombres1) dries perpendiculairement it un au= segment representant,

lui, le sujet (le temps). On obtient ainsi tut graphique illustrant les intensites dune qualite ou

dune vitesse I diff&ents points du sujet ou i diffirents temps.

Cette methode graphique offre l'avantage de teller deux elements sans passer par les
proportions. Elle se rapproche done de considerations plus fonctionnelles, cependant, elle

demure totaletnent qualitative et theorique, on pourrait presque dire imaginaire. Oresme, en

effet, n'a jamais meant de quelque facon que ce soit les intensites des qualites ou des vitesses.

Ses configurations &alma *MO purement theoriques et ses graphiques n'illustraient que is

bean dont il imaginait lea configurations des qualites.

C'est avec Galilee et Descartes qu'on assists I l'introduction du quantitatif, des mesures

numeriques dans les representaitons d'Oresme. Et c'est de cette introduction du quantitatif

dam les representations qualitatives du mouvement qu'est nee is fonction. C'est ainsi qu'on a

pu etablix des relations pricises entre deux variables. Nous avons done retenu pour notre

experimentation as deux voles d'etude du mouvement.

EXPERIMENTATION

Nous venous de voir rapidement que les representations qualitatives mettaient en evidence

l'aspect continu du mouvement puis, l'introduction du quantitatif a permis, en disattisant

parfois le phonon ne, d'Etablir des liens de fonctiormalite entre les variables du mouvement.
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Notre experimentation est construite I panic de ces deux types d'etude du mouvement.

Nos sujets, ages de 12 a 15 ans (le et 2e an:16es du secondaire au Quebec) ont etc divises en

deux groupes de dix eleves. Un groupe appele qualitatif et l'autre quantitatif. L'experience se

divise en deux parties.

Dans la premiere partie, on demande aux enfants, groupes par deux, de representer
grriphiquement comment ;eau monte dans differences bouteilles en fonction du temps. Le

materiel foumi aux equipes differ selon qu'elles soot qualitatives ou quantitatives. (5 equipes

qualitatives et 5 equipes quantitatives)

Pour les equipes qualitatives, it s'agit d'un plexiglass, place devant la bouteille qui se

remplit d'ecu, dans lequel on ; fait des coches I intervalles reguliers. Un metronome est plac6

sur la table. A sous les deux battements de metronome, les enfants doivent faire un point sur le

plexiglass I la hauteur rya l'eau est rendue, puis deplacer le plexiglass dune coche.

La procedure des quantitatifs est differente. Dans cur cas, on remplit la houtei le avec un

cylindre gradue. Apres chaque ajout d'eau, ils doivent mesurer avec une regle la hauteur de

l'eau et rinscrire sur une feuille quadrillee oa on a trace des lignes verticales plus foncees

representant le temps (ou chaque nouveau cylindre ajoute).
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111111ii 111111111.111111111111 in
MN Milli EN MI mg manummmilismasemsimesseimmusiormaiimminewo 11111111101111111! MINIMS
NM 1111111111111.011111111111111

11111111.. VII MN MOaspassressimmarniansmisimiammumsmaismummi
1111111111011111111111111111111111111110

1113 MI 11111111111111111111.111111110111111

etti
0

Dans cette premiere panic d'experience, on demande d'abord aux eleves de tracer
experimentalement, avec leur materiel respectif, le graphique de la hauteur de l'eau dans tin

becher en fonction du temps (variation lineaire). Pais, on leur demande de predire l'allure du

graphique pour un plus petit becher qu'on leur presente (variation lindaire). Its verifient

cnsuite experimentalement leur prediciton et conunentent. Enfin, it y a de nouveau prediction

et verification pour tine bouteille conique ou Erlenmeyer (variation non lindaire).

Afin de voir comment les eleves utilisent leurs conceptions dans d'autres types de
problemes nous avons re-serve la deuxieme panic de l'experimentation I l'observation. Dans

cette deuxieme panic, on demande aux equipes de tracer les graphiques de simulations vues

l'ordinateur sans faire de verification. II n'y a plus I cc moment de differences de materiel

enue qualitatifs et quantitatifs.
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Les deux premieres similations illustrent des tiges qui moment; une premiere I vitesse

constante, tine deuxieme it vitesse constante knte puis rapide. On peut comparer ces tiges I

l'eau qui monte dans les bouteilles. La equipes doivent tracer le graphique de I'eau, ou de Is

tige, qui monte en fonction du temps. Les graphiques sont tracts sur du papier millimetrique.

Les enfants peuvent revoir le phenomena aussi souvent qu'iLs le desirent.

Les deux derrieres simulations reprtsentent les men= types de variations, ie une lineaire

puts tine lin4aire par morceaux. Ce qui est vu !'damn tont de petits carres qui apparaissent

dans un rectangle. On explique aux enfants que ccL peut illustrer des gens qui emmenagent

stir un terrain vague. his doivent faire le graphique de comment Ia population, ou le nombre de

cants, varie en fonction du temps. On fait ici une verification apres la presentation du premier

phinornene.

hulk I
Apprentissage

atChtLI lifska Edam=
Example Prediction Prediction

Virificatiai Vilification
&gates de matirlels

Partle II
Observation

Tige i Tige II leola pop Ii
Prediction Prediction Prediction Prediction

Verification
Milne magrifdpour tow

Tableau I: Diroulement de l'experimentadon

ANALYSE

Nous prtsentons ici rapidement Its principales conclusions et strategies de reponses
utilistes. Nous nous ananderons plus longuement sur caw analyse lots de la presentation.

N.B. Torts les graphiques suivants illustrent Is prediction. Pour le Becher II la ligne
pleine ponctuie de points indique l'exemple.

bgicj Apprentissage

Becher TI

groupes oat ripondu de
felon peallik I rumple. Cone
strilegie est due el raisonzament

"Bonne riponse

II sembk que plusieurs groupes aient repondu en ajoutant toujours tine meme quantize par

rapport i Ia courbe de l'exemple. Its obtiennent done tin graphique de points paralltle ii la

premiere courbe. Cette stratdgie est imputable I un raisonnement additif plutOt que
proportionnel. Des recherches sat les rappons et proportions (Karplus, Kieren, Nelson ...)

out fait etas de ce memo probkme. II est intdressant de noter aussi qu'aucun groupe n'a pens6

it faire moins de points etant donne que le petit btcher se remplit plus vite que le gros, ou

encore, qu'il est moins ham.
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Reponse linielni: prise en
compte de la grosseur de Is
bouteille et non de Is forme.

Reponse Ilnisire per morceaux:
difficulte i dessines des points
anion une courbe perabolique.

Outre le "bon graphique", deux types de reponses sont apparues. La premiere, lindaire,

provient d'une strategic o5 seule la grosseur de la bouteille est prise en compte,
independarnrnent de sa forme. L'autre, lintaire par morceaux, est due A la difficulte de
s'eloigner du lineaire et surement aussi au fait que les enfants ne sont pas toujours conscients

qu'une plus grande vitesse signifie une plus grande distance pour un meme intervalle de

temps.

Partie II Observation

Tiges I et II

D-V-T
Qv:elite:tits: plus procha
signifie plus lent.

D-V-T
Quentitatifs: plus prochn
signifie plus vita

A l'epreuve des tiges, nous avons obtenu, en plus des "bons graphiques", plusieurs
reponses o5 Its enfants representaient non pas la hauteur en fonction du temps, mais
simplement la vitesse(I). Parmi celles-ci, nous voulons souligner les reponses du type D-V-T,

c'est-à-dire les problemes de relations Distance-Vitesse-Temps. Ce qui est particulierement

interessant dans ces reponses, c'est que pour le m8me probleme D-V-T, les qualitatifs et

ks quantitatifs repondent de facons opposers. En effet, pour une perception d'un mouvement

lent puis rapide, Its qualitatifs font un graphique o5 les points plus proches signifient que la

vitesse est plus lente. Pour Its quantitatifs, les points plus proches signifient tine vitesse plus

grande. Comment interpreter ces representations?

Nous croyons que pour les qualitatifs It tcmps est un Clement important etant donne le

metronome is la Partie I. Ainsi, pour eux chaque nouveau point indique qu'un meme intervalle

de temps s'est ecoule et la distance enue les points represente la distance parcourue pendant cet

intervalle.

Pour Its quantitatifs l'element frappant de la Panic I etait la distance constante. Plusieurs

ont remarque avec Its bechers que ea "montait igal". II est done possible que pour eux,

chaque nouveau point indique qu'une meme distance a etc parcourue et la distance entre les

Note 1 Notons que pour la tige I, 3 groupes ont percu une vitesse lente puis rapide alors
qu'il s'agissait dune vitesse constante.
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points indique le temps pris pour parcourir cette distance. Nous ne pritendons pas que Its

enfants soicnt conscients de ce theorems en acte, mais it est tout de meme possible qu'ils

Un changtreent d' angle
indique un changement
dio viten*.

Les lignes indiquent tau
vitesse km, les points
une plus midi,.

Un autre graphique interessant obtenu a l'epreuve des tiges est celui o6 un changement

dangle dans la courbe indique un changement de vitesse. Dans un cas comme celui-ci it

temps et Is distance n'interviennent plus du tout en aucune maniere. On ne considere que la

vitesse. On retrouve encore ce phenomene dans un autre graphique ob la vitesse lente est

illustree par des traits et la plus rapide par des points. Dans ce demier cas, it s'agit presque

d'une photo, dune reproduction de ce qui est vu a l'icran. En effet, la tige a l'ordinateur etait

formes de petites lignes semblables a celles dessinees par Its eleves.

Toutes ces strategies se retrouvent a l'epreuve des populations, soil telles quelles, soit sous

d'autres formes.

Populations I et II

On observe pour Its populations, en plus des types de reponses decrits pour les tiges I et

un nouveau graphique pour la population I. Il s'agit de la reponse dite de Fechner.

Fechner
Consideration de l'augmen-
Eon par rapport au but at
non pour elle-mime. o

Photo
Reproduction du
phenomena plutat que sa
reprisentatkm.

Cette reponse reflete une conception du mouvement presents o6 cheque nouvelle
augmentation de population est consideree par rapport a ce qui est déjà rempli plutet que pour

elle-rneme. Ainsi, an depart, its premiers carres qui apparaissent font augmenter de beaucoup

la population, puis, plus it y a de carres, moins cheque nouveau cane a d'importance par

rapport I ce qui est deja la. Cest de cettc strategic quc provient ce graphique dit de Fechner.

On ne retrouve plus cette reponse a la population II, elle a eta remplacee par D-V-T,
probablement I cause de la verification qui presentait une droite. Les enfants ont essays de

produire un graphique se rapprochant plus de ce qui etait "bon".

Trois Equipes ont repondu aux deux populations par une photo ou une reproduction du

phinomene. Dans ce cas, ni le temps, ni la distance, ni la vitesse ne sont representes. On n'a

fait que reproduire cc qui itait vu a l'Ecran.

11.17
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CONCLUSION

La conception globale de la vitesse qu'ont plusieurs enfants fait obstacle a une
representation de la hauteur en fonction du temps. Les eleves concoivent souvent la vitesse

comme une qualite, une entite, et non comme tin rapport distance/temps. 14 ne peuvent donc

considerer le lien fonctionnel entre distance et temps.

De plus, certains graphiques des enfants (cf. reponse de Fechner) nous' incitent a nous

questionner sur leurs interpretations du mouvement et du changement qualitatif ou quantitatif.

Nous avons vu qu'ils consideraient parfois un accroissement par rapport a l'etat precedent de

l'objet qui vane, pint& que pour sa valeta pure.

Ces conceptions du temps et de la vitesse nous semblent tits interessantes d'un point de

vue psychologique. Plusieurs etudes ont ete realisees sur ce sujet, dans des cadres differents,

entre auu par Piaget et Crepault. Cet obstacle des relations distance-vitesse-temps s'est fait

moins sentir chez les qualitatifs que chez les quantitatifs. Bien que nous n'ayons etudie qu'un

petit nombre d'eleves, it semble que !'importance accordee au temps dans l'approche
qualitative puisse etre responsable de leur rneilleure performance.

Malgre cela, nous croyons que la conception quantitative du mouvement reste indispensable

a une bonne conception de la fonction afm de pouvoir traduire precisement, de fagon
numerique, les liens fonctionnels. En fait, c'est par une interaction entre les approches

qualitative et quantitative, qu'a notre avis, les notions de fonction et de variable peuvent etre

construites; l'approche qualitative aidant a bien saisir l'aspect de variabilite, de continuite du

phe.nomene et le quantitatif permettant de preciser la loi de dependance.
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TWO CONCEPTIONQ OF MATHEMATICAL NOTIONS:

OPERATIONAL AND STRUCTURAL

Anna Sfard

The Hebrew University of Jerusalem

An analysis of different mathematical definitions
and representations brings us to the conclusion
that abstract notions, such as function or set,
can be conceived either structurally (as static
constructs) or operationally (as processes rather
than objects). On the grounds of historical
examples and in the light of the cognitive schema
theory we claim that an operational conception is
for moL.c people the first step in acquisition of a
new mathematical idea. This supposition is

confirmed by the results of our two experimental
studies, which show significant predominance of
the operational conceptions over the structural in
secondary school students.

When a math teacher talks to her students about numbers, functions

or sets - what do all these words mean to her? And do they mean the same

to her students?

Sore people, especially professional eatheeaticians, refer to

abstract concepts as if they were real objects, existing outside the

human wind. Indeed, most mathematicians hays a kind of static liege of

sets and functions and talk about their properties in much the same way

as a scientist tales about the structures of atoms and crystals. We

shall say that these mathematicians have developed structural

conceptions of the mathematical notions.

There are however accepted mathematical definitions which reveal

another kind of conception. Function can be defined not only as a set of

ordered pairs, but also as a "method for getting from one system to

another" (Skimp, On). Symmetry can be conceived as a static property

of geometrical form, but also as a kind of transformation. The latter

type of description speaks about processes and actions rather then about

objects. We shall may therefore, that it reflects an operational

conception of a notion.

These claims about the nature of mathematical perception can have
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imoortant educational implications. Our current research deals with this

issue both from theoretical and practical points of view.

THEORETICAL ANALYSIS OF THE ROLE OF OPERATIONAL AND

STRUCTURAL CONCEPTIONS IN DEVELOPMENT OF

MATHEMATICAL NOTIONS

Of the two kinds of mathematical definitions, the structural

descriptions seem to be more abstract. Indeed, in order to speak about

mathematical objects, we must be able to deal with products of some

processes without bothering about the processes themselves. In the case

of functions and sets (in their modern sense) we are even compelled to

ignore the very question of their constructivity. According to this we

claim that the structural approach should be regarded as the most

advanced stage of concept development.

Careful analysis of several historical examples confirmed us in

this opinion. It brought us to the conclusion that most mathematical

notions had been conceived operationally long before their structural

definitions and representations were formulated. For instance, let us

consider the notion of number. The meaning of this concept has been

broadened several times in the course of the last three thousand years.

For long periods mathematicians did perform some special manipulations

with already known numbers, before they were able to accept the products

of these manipulations as a new kind of mathematical obiects. Indeed, a

ratio of two integers was first regarded as a short description of

measuring process, rather then as a number. Analogically, the term

"negative number" was initially considered nothing more than an

abbreviation for certain "meaningless" numerical operations. It came to

designate a full-fledged mathematical object only after mathematicians

got accustomed to this strange but useful kind of computation. (Cardan's

prescriptions for solving cubic equations involved subtracting positive

rationale from smaller ones and even finding roots of what is today

called negative numbers! despite the widespread use of this algorithm,

mathematicians refused to accept its by-products and for some centuries

refired to them as "absurd" or "imagipary") see Cajori, 1985).

In the light of this and many other examples we conclude that most

(if not all) of contemporary structural definitions evolved gradually

from operationally conceived notions. On the grounds of the cognitive

schema theory we conjecture, that learning processes must follow a

similar pattern. Procedures, which can be actually performed by the
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learner himself, are no doubt such sore tangible then 'distract

mathematical constructs. It seems plausible, therefore, that formation

of an operational conception is for aost people the inevitable first

step in the acquisition of a new notion. In many cases it may be also

the last.

Apparently, there is nothing wrong with the purely operational

approach to mathematics. The 'operational" knowledge, however, although

seemingly sufficient for problem solving, can not be easily processed by

the learner. This kind of knowledge can only be stored in unstructured,

sequential cognitive schesas, which arm inadequate for the rather modest

dimensions of human working memory. Consequently, the purely operational

ideas eust be processed in a piecemeal, cumbersome manner, which say

lead to a great cognitive strain and to a disturbing feeling of only

local - thus insufficient - understanding. Also, in the sequential

cognitive schemes there is hardly a place for assimilation of a new

knowledge, or for what is usually called meaningful learning.

It is the static oblect-like representation which squeezes the

operational information into a compact whole and turns the cognitive

aches' into more convenient, hierarchical structure. The structural

representations constitute the upper levels of such a hierarchy (the top

of a pyramids), while the operational information is stored at its

bottom. The deeper and narrower the hierarchy, the greater the capacity

of the schema. Thus within the structural approach there is much more

room for meaningful learning. Also, problem solving processes become

more effective, when they can be "navigated" by the help of compact, if

not detailed, overall representations. To sum up, transition from an

operational to a structural conception is a qualitative change, which

renders all the cognitive processes such more effective and thus

enhances a person's feeling of understanding eathnaatics.

OPERATIONAL VS. STRUCTURAL CONCEPTIONS IN SECONDARY SCHOOL

In the two experimental studies, that will be now described in

detail, we tried to find out which kind of conception prevails in

secondary school students. On the grounds of our theoretical assumptions

we expected to find that many pupils conceive sathematics operationally

rather then structurally.
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First study: the notion of function

Modern mathematical textbooks define function as a correspondence

between two sets - as an aggregate of ordered pairs. This structural

definition, however, is relatively new. Until the second half of the

nineteenth century function has been conceived mainly as an "analytical

expression" (Euler, 1748), representing an algorithm for computing one

changing magnitude by the help of another. Our conjecture was that

despite the intentions of modern curricula, similar operational

conception may still be found in today's schools.

To test our supposition we presented 60 secondary school pupils

(SLI age 16, 031; Si 2 age JO, Nn) with the questions given in

Box 1. At the time of the experiment all our subjects were already well

acquainted with the notion of function and with its formal structural

definition.

The results of our exploration are presented in Box 2. The response

to the first question clearly shows that the majority of the pupils

conceive function as a process rather than as a static construct. This

conclusion finds its further confirmation in the answers given to the

second question: literally every subject responded affirmatively either

to 2a or to 2b. Thus all the pupils felt that there must be certain

algorithmic process behind every function. C We were somewhat puzzled by

the answer "no" to 2a, accompanied by the answer 'yes" to 2b. This

strange inconsistency may be dun to a contradiction between the

teacher's claims and the student's own convictions.] The intresting

thing is, that according to the numbers these conclusions apply to the

older students even more than to the younger. The operational conception

may strenghten with time as a result of a long experience with only one

kind of function (the numerical functions given by equations).

Box 1: Questionnaire on function

. Which one of the following sentences is, in your opinion,
the better description of the notion of function?

a. Function is a computational process which produces
some value of one variable (y) from any given value
of another variable (x).

b. Function is a kind of a (possibly infinite) table
in which to every value of one variable (x)
corresponds certain value of another variable (y).

2. True or false?
a. Every function expresses a certain regularity (the

values of x And y can not be matched in a completly
arbitrary manner).

b. Every function can be expressed by a certain
computational formula (e.g. y=2x+l or y=3sin(n+x)).
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Box 2: Percentages of different arvawers

b Si S2
:/es yes 35 79
yes no 45 --
no yes 20 21
no no -- --

Second study: algebraic notation

Two different approaches to mathematics - operational and

structural - can be found not only in concepts' definitions but also in

various kinds of mathematical representations. The modern algebraic

notation, taught at school, supports the structural approach. Indeed, to

translate a "real life" problem into an equation the student has to

combine several changing magnitudes into one static whole. Let us remind

ourselves, that the algebraic symbolism is not much older than the

modern definition of function. Medieval Arabic and Italian scholars

described all kinds of computational processes only verbally. The

transition from "rhetorical" to "syncopated" to symbolic algebra, which

was completed in seventeenth century, was an important stage in

development of a structural approach to computational mathematics.

Everyday classroom experience (as well as some recent research,

e.g. Mayer, 1903) shows, that many pupils can handle the algebraic

symbols only with great difficulty. As has been recently shown by

Soloway et al.(1982), these students may still be able to copy with word

problems by writing short computer programs. These facts can be regarded

as the first evidence for the predominance of operational conceptions.

In our experiment, 96 seccondary school pupils (Ss: ages 14-15,

N441 SA ages 16-17, N452) were asked to translate four simple word

problems into equations. In another multi-choice questionnaire they were

required to find verbal prescriptions (algorithms) for calculating the

solutions of the seas problems (for the second questionnaire we altered

the numerical data of each problem), Each age-group was divided into

halves and the two questionnaires were administered to the sub-groups in

reverse order. Two sample problems together with their operational and

structural solutions are given in Box 3.

The table in Box 4 shows how many right answers were given to the

different questions by the two groups. Both groups succeeded in the
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BOX 3: IJample
IMINIONIONNS

Problem Operational solutions

1. In a class
the boys out-
number thy
girls by
four.

To find the number
o4 girls we have to:
a. add 4 to the

number of boys
b. subtract 4 from

the number of boys
c. none of the above

__"11MUNIMMISMOVAISIOM4191

Structural solutiont

x = number of 4ir1s
y = number r.4 ,.ovs

a. x+ 4 e y
b. N = V 4. 0

C. y > x + 4

2. The number To find y we have to:
x is 3.5 times a. multiply x by 3.5
as big .e y. b. divide x by 3.5

c. none of the above

a. 3.5A 1 y

b. 3.5x y

c. x 3.5y
asimemmemmummemeila

BOX 4: Scores in groups

Problom Si, N=44 52, N=52 Total, %

0 S 0 5 0 S

1 37 28 51 42 92 73

2 32 22 43 33 78 57

3 37 21 42 36 02 59
4 26 20 30 36 67 50

.1102=1111 15 64 70 80 62

O - number of right answers on operational task,
- number of right answers on structural task

BOX 5: Individual scores

52 Both groups

0 2 3 4

4

3

2

0
0 1 2 3 4 o

o - individual score on operational task
- Individual score on structural task

4

3

2
1

0
0 1 ... 3 4 o
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operational tasks (verbal prescriptions) ouch hotter then in the

structural (equations). According to our expectations, in each group and

in every problem the gap between the two scores was definitely

significant, even if in the second group this gap was usually such

smaller than in tho first (which is also consistent with our theoretical

claims).

The diagrams in Sox 5 present the individual scores obtained by our

subjects in the two questinnaires (p and s are, respectively, the

numbers of the right "operational" and "structural" answers given by a

subject' every square of a diagram corresponds to a certain pair (p,$))

a number in a square shows how many subjects belong to this square

according to their scores). Since almost all the data concentrate in the

lower rightside half of the diagrams, the advantage of the operational

approach becomes even sore obvious.

Conclusions

Our results may seem quite surprising, considering the fact that

the operational representations were never explicitly taught to our

subjects. If so, these findings provide all the sore convincing evidence

for our claims: they show that the operational conceptions develop at an

early stage of learning even if they are not deliberately fostered at

school.

"OPERATIONAL' APPROACH TO TEACHING MATHEMATICS

The results of our experiment invoke some important questions about

the traditional ways of teaching mathematics. The symbols and the

definitions taught at schools are clearly structural, not operational

(not surprisingly so, as the structural approach obviously predominates

in the most developed branches of contemporary mathematics). Pupils are

required to absorb the structural definitions of new notions before they

become fully aware of the processes and algorithms underlying these
notions.

In the light of our former claims, this method of teaching is not

necessarily the most effective. If an operational conception is indeed

the necessary first step in an acquisition of a new mathematical idea,

we can probably precipitate the learning by fostering the student's

understanding of processes and algorithms before translating thee into

structural definitions. This can be done by incorporating computer
progressing into mathematics courses. Indeed, many experimental studies
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(e.g. Johnson and Harding, 1979) have already shown, that in mathematics

"a computing experience can be considered highly beneficial" for the

learner.

Our own teaching experiments (which can not be presented here in

detail) confirmed the advantage of the "operational" approach. In one of

these experiments we have developed a teaching unit on mathematical

induction. According to our program, at the first stage of learning the

pupils get acquainted with many kinds of recursive processes. The

student's task is not only to understand and to execute recursive

calculations, but also to formulate recursive algorithms explicitly in a

simple formal language. The principle of mathematical induction is then

formulated in "operational" terms (we speak about equivalence of

algorithms instead of dealing with equality of infinite sets). Our

material on induction has been taught to three groups (55 students) in

the Centre for Pre-academic Studies at the Hebrew University. At final

e xiles on induction the participants of the experiment did much better

than the control group (who learned the subject from a traditional

textbook), while solving either standard or non-routine problems.

Almost every chapter of school mathematics can be taught in the

"operational" manner. This special approach is certainly promising

e nough to deserve further investigation.
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ATTRWTIVE FIXED PIINTS AND HUMANITIES STUDENTS

Anna Sierpinska

Institute of Mathematics, Polish Ac. of Science

Abstract. The research reported in the paper aims at elabora-,
ting didactical situations favouring the overcoming of epis -
temological obstacles relative to functions in 16-17 y.o. hu-
manities students. It concerns a series of situations in the
context of iterations of functions and fixed points. It is
conjectured that the visual presentation of the idea of an a-
ttractive fixed point deepened the "geometrical" obstacle in
students and weighed heavily on their disposition to discour-
sive thinking. The topic, although rather difficult for huma-
nities students had the advantage to reveal all their obsta-
cles. It also offered them an opportunity to get involved in
a genuine mathematical activity.

This is a part of a wider research aiming at exploring the possibi-

lity of elaborating didactical situations favouring the overcoming of e-

pistemological obstacles relative to limits in 15-17 years old students.

It concerns two groups of 16 and 17 years old humanities students (ZII

and ZIII, resp.) and a series of situations in the context of iterations

of functions and fixed points. This context was meant to help the stu-

dents to overcome e.o. relative to functions which are at the source of

e.o. relative to limits. The students of these groups had previously par-

ticipated in a series of sessions on infinite sums and decimal expansions

of real numbers (partly described in Sierpinska, 1986). It was observed

at the end of these sessions that, in the students' conceptions of limit

the nation of function is either absent or hidden in the idea of time ne-

cessary to make a construction (e.g. to caakoute the terms of an infinite

sequence). Same students preferred to think in terms of sets rather than

function, and thus speak about e.g. the number 0.999... as "an infinity

bounded by 0 and 1" rather than an infinite sequence approaching 1.

Therefore the important problem seemed to make the notion of function ap-

pear in the students' conceptions of limit.

1.- Uescription of sessions (fragments)

Session 11. A computer-aided lecture by A.S.. A question is formulated:
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given snapping f: B, what happens with an mak if we iterate the

mapping f infinitely many times: x -4 x -4 X'' . Examples of

iterations of several mappings are given. The fixed point is introduced

as an argument that does not change under the mapping. The names of

"attractive" and "repulsive" fixed points are suggested without defini-

tions being exp]icitely given. Students are asked to deecribe the behar

viour of sequences with their own words. Examples of plane mappings were

not included in the lecture for the group ZII (more details in the Appear

dix).

Session 12. A problem to solve in subgroups. Both in ZII and ZIII there

were two subgroups of three persons: Mbnika, Derek, Konrad and Aga, Gar

tek, Lakes in ZII,and Anita, Ewa, Agnes and Thomas, Przemek, Jacek in

ZIII. The problem: find a real function such that x=2 gives rise to the

sequence 2 -+ 3 --P 2 -4.3 --O...., and have an attractive fixed point in

the interval (2,3). Hew many such functions are there?

In both groups, the name "fixed point" stood for the intersection

point of the graph of the function and the line y=x. Moreover, in my dis-

course, the "attractiveness" and "repulsiveness" were properties of the

fixed point. But the students would say either "it attracts" (just as

one would say "it rains") or "she is attractive", the "she" standing for

"the function" which is feminine in Polish ("point" is masculine). In

the group ZIII the first expression was prevalent, in ZII - the second.

In the first case, the "attractiveness" is perceived as dynamic pheno-

menon, in the second - it is the property of the function (cf. Grans,

1983).

ZII: the first idea in both subgroups is to "draw any function" and

experiment on it by imitating the movement on the screen. If it "closes

over itself" or "turns around" then it is O.K.. Consecutive trials in

both subgroups are Shown in Figures 6,7 &8 .

ZIII: the plane transformations must have impressed very much the

students. The first idea in both subgroups was to find a homothety or an

axial symmetry or some combination of the two to transform 2 into 3 and

vice versa. The "2" and "3" appeared in the students' discourse to de-

note points rather than numbers. The problem that Agnes wanted finally

to discuss was to find a ratio of a homothety that would send the point

distant by two from the centre onto a point distant by 3 from the centre.

It turns out to be difficult to find such a ratio but she feels satis-

fied with two: 0/2(2)=3, H2/3(3)=2. There are two ratios but the map-

ping is the same; it is a homothety, so everything is O.K.. Ewa is not

1128



-172-

happy with this solution, and she looks for a mapping that would send the

point (2,2) onto (2,3), (2,3) onto (3,3), (3,3) onto (3,2), (3,2) onto

(2,2) in order to obtain a square like those shown on the computer. The

problem was never read to the end in the group of girls.

Segeinn 14. Mich linear functions have an attractive fixed point? A

problem to be solved in groups.

ZII found a correct solution in a quarter of an hour.

ZIII; Anita, Agnes, Ewa: they start by considering a homothety,

find a sequence convergent to zero: (-1/2)n , and then leek for a func-

tion (not necessarily linear) that would give such a seqence. They

come to yee1/2 x. I suggest to find conditions on the coefficients a and

b of the general formula of the linear function Imaxelb that would gua-

rantee that the function have an attractive fixed point. The girls con-

jecture that a be negative and be.-01. They verify the conjectures and

find out that, indeed, a cannot be positive (in one of the further

sessions, EWa made it explicit that she considers the "spiral" repre

sentation as a necessary condition for a fixed point to be attractive),

and b may be different from zero - this changes only the position of

the fixed paint.

Themes, Przemek and Jaoek: the boys experiment with f(x)=2x+1, 4e4
44. Thanes says it does not make sense in the last case, and fi-

nally Przemek tries a constant function. The bays say that re it gets

inexaiLately into the point. They laugh because they find the example

trivial. So Przemek proposes to incline the line a little, then perhaps

it will not hit the point so quickly. They experiment with one position

of x
.0

and conclude that it is all right now. The/y came to the conclu-

sion that the attractiveness of the fixed point depends on the incli-

nation of the line. New Thames starts asking questions that nay lead

his to the understanding of tne linear function, of the role of coeffi-

cients in the formula, and of its graph. He asks about the inclination:

relatively to what should this inclination be considered.

Session 15. ZIII only. A regular lesson by A.S.: recapitulation of the

previous sessions, exchange of criticisms, development and justifica-

tion of conjectures concerning attractiveness in linear functions.

Session 18. Problem: ocummicate in written form, without using draw-

ings, the idea of the attractive and repulsive fixed points to someone

who was absent from the last sessions. The problem was given to the

group of girls in ZIII. In ZIT too groups were working: Derek and Mbnika,

and Aga, Gutek. There were two kinds of attitudes towards the task: one
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(ZIII, Derek, Gutek) tending to formulate a general definition of an at-

tractive fixed point; and a second (Mbnika, Aga) aiming at giving a

practical method of checking whether a particular fixed point is attrac-

tive. Gutek's first attempt of formulation: "The fixed point is contrac-

tive if, by consecutive transformations, any point of OX,except the va-

lue of the fixed point, gets closer and closer ... until infinity ...

And we should get the fixed point". Derek and Mbnika's final text: "If

on the plane there exists a rectangular coordinate system and an arbi-

trary function has been traced in it / Tb find the fixed points, the

function given by the formula y=x has also to be traced. The common po-

ints of the function y=x and the given one are the fixed points / All

fixed points axe divided into two groups : the attractive fixed points

and the repulsive fixed points. Tb check what group does the determined

fixed point belong to, it is necessary / I° to choose an arbitrary point

G on OX and execute the transformations: / xo x1 =f(x0) / x2=f(x1)=

ff(xo) / x3=f(x2)=fff(xj etc. / That is to say, / draw a road from the

dhosen point G parallel to the axis CY until the point on the graph of

the functic. From this point draw a road parallel to OX until the graph

of the function y=x / Go on further analoguously / 'Remark that the

road of this sequence may run away or come closer and closer to the

fixed point. If it is running away then the fixed point is called a

repulsive fixed point, and if it is ccming closer and closer to it then

it is an attractive fixed point". Final text in ZIII: "00-45° - attrac-

tive point / 45° -135° - repulsive point / 135°180° - attractive point/

forget it / Attractive point - the point of intersection of the graph

of the function with the auxiliary line y=x to which tend the values

of the function trying to reach it. In our opinion, they will never

reach it because they run to infinity. Repulsive point - the point of

intersection (...) from which the values run away to infinity / Would

you wish to make a graph, then, in the formula of the function, if the

sign of the coefficient of the function is negative then the values

reached by this function are alternatively negative and positive / The

distance of the points on the graph of the function from the attractive

point tends to zero".

Session 19. Confrontation

ZII. Confrontation with trans. Irene and the group ZII are sit-

ting opposite one another separated by a curtain. After Irene has read

and discussed the communications with the group, she is given several
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functions to examine. The first is: f:R R, x 1-4 -2x+1. She transmits

the function to the group and solves it by herself. On the other side

of the curtain, Derek comes to the conclusion that the solution depends

upon where you go from the starting point: "You say it is repulsive

because you have started by going down. If, at the beginning you go up

then the point is attractive. Go up now, Irena!".But Irene KNOWS BETTER

now: "No, listen, you are wrong! Your reasoning is wrong because we have

a graph of a concrete function ... -2x+1. If you take a point xo ... it

is some real number ... and you put it in place of x in the formula

and you compute! And if you take x0=1 then you don't get +1 but -1! And

you are bound to go down!". Derek: "AAAAaaal"

Session 20. The magnifying glass criterion

ZIII. A regular lesson by A.S.. I suggest the following criterion

which, I say, might describe the idea of the attractive fixed point:

Take a magnifying glass and keep its centre over the fixed point. If

the fixed point is attractive then whatever the radius of the magnifying

glagri and whatever the initial point of the sequence, you Should see

through it almost all terms of that sequence. An example is given to

stress that "almost all" does not mean "infinitely many". But Themes,

who, all this time, with his colleagues, was trying hard to rebuild

(or, rather, to build by himself) the criterion for a linear function

to have an attractive fixed point, says: "What's the use of such a cri-

terion!? With it I can only prove what I know already! What I need is

a criterion that would tell me what are the functions that have an at-

tractive fixed point and what not!"

2.- Same rmarks

RI. At the example Bb. in Session 11 the formula of the function was

neither shown on the screen nor told to the students. It was done inten-

tionally to stress the graphic method of "finding values of the func-

tion". But, as I understood only much later, this last expression might

have had no meaning for the students in this context. When talking to

each other, the students would rather say "put ... in place of x in

the formula and compute". Therefore they might have not associated the

operation on the graph with finding the value of the function. It is

possible that the graph is for them not a set of points (x,f(x)) but

a Line obtained by taking different x's and calculating the y's.

R2. One aspect of the notion of function seems to be missing from the

students' image of it: the function as a dependence between variables.

It is a pity, becalm,. this historically important aspect is capable of
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making the link in the students' minds between all the other aspects:

algorithmic, algehraic, geometric21

R3. Didn't the early introduction of geometrical representation deepen

the Obstacles in the students? The visual presentation made than grasp

the idea of the attractive fixed point in an immediate, intuitive, glo-

bal way which seared to block their discoursive thinking. After Irena's

brilliant performance at Session 19, one wonders whether it would not

be better to start by asking the students to find or propose their own

geometrical representations of the sequence of iterations .

3.- Same general (=elusions

Cl. The topic may seem too difficult for humanities students. But it

certainly has the advantage to surface all their misunderstandings and

obstacles relative to the notion of function, thus giving the opportu-

nity for the teacher to help his students to overcome them. Simple

exercises like sketching graphs out of a formula don't seem to have

taught then much and, worse, kept hidden all their difficulties.

C2. It is perhaps not the main goal in teaching mathematics to humani-

ties students to make than become acquainted with mathematical results:

definitions, theorems, theories, algcrithms. It is highly probable that

they will not need these in their adult lives. But they will most cer-

tainly need same intellectual training like conjecturing, verifying

hypotheses, finding rational arguments, formulating ideas The girls in

Zia have involved thareelves in such activities, and perhaps it does

not matter very much that they arrived to false conclusions. The tea -

cher may feel that it is necessary to correct the error but this may

result merely in calming down his own conscience while the student

would remain in his error: will he or she remember the conclusions

that are not his or her own? Thomas, EWa and Agnes did not.

C3. Thomas' last remark taught me one important lesson: "Never come up

with general and formal definitions when important problems still wait

to be solved. Precising definitions and axiomatising are activities of

putting into order a wealth of results, facts already discovered; they

do not make sense if there is little or nothing to order". The history

of calculus from Newton to Cauchy should have taught me that. But it

did rot. I also, learn by my own experience.
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Appendix: Session 11. Description of examples.
A. Plane mappings (ZIII only). a. Axial symmetry. It is observed, among
others, that points on the axis are not moved by the mapping (Fig.1).
b.Hamotheties with ratios greater and smaller that 1. Students are a-
sked to oonment on the behaviour of the points. The names of "attrac-
tive and "repulsive" fixed points are proposed. c. Compositions of ax-
ial symnetries and homotheties with different ratios (Fig.2).
B. Real functions. a. f(x)=2x+1. The formula is shown on the screen.
Sour iterations of f are performed mentally starting with different xo.
Also for x =-1. It is observed that -1 is not changing under the map-
ping and i? is called the fixed point of f. b. f: ( -1,4) Et, f(x) =
(1-x)x/3+3 . Only the graph is shown. It is said that given a graph of
a real function, the iteration has an interesting graphic representation.
The construoticn of it is shown slowly on the screen and explained
with x,=2 (Fig.3). The role of the line is explained, and it is said
that the intersection of this line with the graph of the function shows
us that the function has a fixed point and tells us what is its appro-
ximate value. Next, numerical values of 100 terms of the sequence with
x =2 are shown on the screen. It is observed that the sequence splitts
into two subsequences, one tending to 1, the other to 3. The fixed po-
int is not attractive In this case, it is said. c. f(x)=.75x-1, x4R
(Fig.4). A graph is drawn on the screen. Numerical sequences for dif-
ferent x, . E., axe shown. d. f(x)=-x+1, :cell. The graphic representation
of the ieration is observed and it is proved (on the blackboard) that
wherever we start, we get a sequence of a repetitive kind. e. f(x)=
2x+1, mit . It is observed graphically and numerically that sequences
run away from the fixed point. f. f(x)=-5x+8 for x49/7, and f(x)=
-1/3 x+2 for x)9/7 . Some students say: "0, but here, there are two
functions!". Discussion follows. It is observed that the function has
a periodic sequence 1 3 -4. 1 ..., and that if x is outside the i-
nterval 11,31 then the sequence runs away from the ?ixed point, and if
it is inside, then the sequence comes closer and closer to the fixed
point (Fig.5).
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CONTINUOUS FUNCTIONS - IMAGES AND REASONING

IN COLTYGE STUDENTS

Shlomo Vinner, Hebrew University Jerusalem

This study investigates the concept of continuous functions
in Science students at college level. Students were asked to
identify continuous and discontinuous functions and to

justify their answers. It turns out that although they
succeed in the identification task in the common cases they
fail very often to justify their answers. 40% use the

argument "the function is defined for every number" in

order to establish the function continuity. Their use of

the limit concept is quite fuzzy and they often rely on

nonrelevant arguments. Altogether, the level of their

mathematical reasoning is quite inadequate.

In 1976, Skemp suggested the distinction between knowing how and

knowing why. To know how means knowing how to carry out an algorithm.

To know why means knowing why the algorithm works. But knowing why can

be related to additional situations in Mathematics learning. We shall

distinguish also between knowing that this is the case and knowing why

this is the case. What we have in mind is the situation of identifying

examples and nonexamples of certain mathematical concepts. A student

may identify successfully examples or nonexamples of a given mathemati-

cal concept. After doing it, we can ask him why. Why is this an

example or a nonexample7 We can ask him to justify his answer. This

is not necessarily asking how he made up hie mind. The act of identi-

fication does not have to follow any process of mathematical reasoning

in the student's mind. It might be based entirely on mental pictures

or other non-verbal inner representations. Nevertheless, being asked

why, the respondent is forced to think mathematically. In order to

justify his answer he has to refer to some mathematical knowledge that

he (hopefully) has. He has to give some convincing arguments to support

his claim which was possibly made on a nonverbal ground. The purpose of

this study was, first, to investigate the images of continuous functions

in college students after this concept was taught to them and, second,

to characterize their mathematical reasoning in this context; namely, to

characterize the arguments they use in order to justify their answers.

This approach has already been used in some studies in geometry (Vinner

and Hershkawitz, 198J and Hershkawitz and Vinner, 1984). The concept of
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continuous functions was studied quite briefly in Tall and Vinner, 1981.

It was examined in Mathematics majors arriving at university in England.

In this study we examined 406 Science students after the concept had

been taught to them. We used a questionnaire which was supposed to un-

cover the main lasagne of continuous functions in these students and

also their mathematical reasoning associated with this concept. For

some of these Science students the calculus course, where we adminis-

tered the questionnaire, is the last Mathematics course in their entire

life. Others will take one or two additional more advanced courses.

But whether a student completes his mathematical education with the

calculus comets or not, it is important to know his level of mathemati-

cal reasoning. It may help to evaluate the outcomes of the entire

enterprise of Mathematics education of students who do not major in

Mathematics. After all they are the decisive majority of the Mathema-

tics students.

METHOD

Sample: our sample consisted of 406 Science students at the Hebrew

University, Jerusalem. All of them studied the concept of continuous

functions in calculus courses. Their mathematical background was rela-

tively strong. They took a short calculus course in high school. Most

of them were immediately after their military service (3 years for men

and 2 years for women) so that they had forgotten a lot. The concept of

continuous functions was taught to them in several ways. All the

teachers used the visual approach, speaking about the possibility of

drawing the graph without lifting the pen from the paper. Some of the

teachers used also the E., d definition, the limit definition (f(x) is
continuous at x

o
if lim f(x) = f(x ) and the intermediate value deft-

x
0

nition (f(x) is continuous in (a, 13) if for every xi, x, such that

a 5 xi < x, 5 b and for any intermediatevaluecbetweenf(xi) and f(x2)

there exists C, x1 < t < x,, such that f(C) a c.) The differences in

the formal definitions did not have any impact on the students' responses,

therefore we do not distinguish between subgroups in our sample.

The Questionnaire: our questionnaire had 2 parts. In the first part we

presented to the students the following seven graphs:
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A6.

A4.

We asked the students to determine whether the corresponding functions

are continuous or discontinuous and to explain their answers. In the

second part of the questionnaire we presented to the students 5 func-

tions by means of their defining formulae (no graphs). They were:

81. y = 1/x2. 82.y = 'xi/x.83. y =

sin(1/x) for x A 0 sin(1/x) for x A 0

y=
fP6. y_

0 for x= 0 0 for, x = 0

Procedure: The questionnaire was administered in the students' regular

classes a few weeks after the concept of continuous functions was

taught to them. It took 20 to 25 minutes to complete. The explanations

were classified into 10 different categories. In this paper we will

relate statistically only to the major categories. The small cate-

gories did not get more than 3% and we will describe them very briefly.

RESULTS

First, we would like to bring the distribution of the correct and

the incorrect answers in our sample. This is shown in Tables 1 and 2.
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Table 1

Distributions of Answers to Questions Al -A7.
(The numbers indicate percents.) N.406

Al A2 A3 A4 AS Ab A7

Correct 89.9 66.5 89.7 95.6 86.5 80.3 78.6

Incorrect 8.1 10.8 7.9 2.7 10.6 17.0 17.7

No Answer 2.0 2.7 2.5 1.7 2.7 2.7 3.7

Note that in Questions AS and A7 the functions are not defined for

x O. This point is usually considered as a discontinuity point.

There is, however, another approach which associate neither continuity

nor discontinuity to points at which the function is not defined. No

student in our sample took this approach.

Table 2

Distributions of Answers to Questions 81 -135.
(The numbers indicate percents.) N 406

81 82 B3 B4 135

Correct 79.1 74.1 83.0 28.3 50.7

Incorrect 17.0 19.7 10.1 53,2 24.4

No Answer 3.9 6.2 6.9 18.5 24.9

The reader should not be impressed with the high percentages of

success, especially in Questions Al -A7 since (as already indicated in

Tall and Vinner, 1981) many students got correct answers for wrong

reasons. In order to get the right impression one must consider the

arguments students used to justify their answers. We will relate to

the 5 following categories:

I Continuit is considered as bein defined and discontinuit is

EcanalslerstlesIztiacuned.

It is hard to tell for sure the origin of this confusion without

interviewing some students. Our guess, however, is that students con-

clude from cases where being undefined (like y = 1/x in 0) is consider-

ed as discontinuity. The "logical conclusion" from this is "derived"

as follows: If f(x) is not defined at a certain point then it is dis-

continuous. Hence, if f(x) is defined at every point then it is con-

tinuous. (This mistake, the false contraposition, is quite common in

college students as reported in O'Brien, 1973). Students in this

category claimed for instance that:

"The function is continuous because it is defined for every x".
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"The function is discontinuous because it is not defined for every x".

II Continuity or diccontinuit% a..e related to the Graph.

Students in this category referred to the graphs in their explana-

tions:

"The function is continuous because itu graph can be drawn in one stroke"

"The graph has no jumps"

"It is in one piece"

"The function is discontinuous because its graph has two parts which do

not meet"

"There is a gap in the graph".

III There is a certain reference to the concept of limit.

This category was used much more in Questions Al - A7 than in

Questions 81 -135, where it ought to be used. Our impression was that it

was not used in a meaningful way. For instance:

"The

"The

function is continuous because it tends to a limit

function is continuous because lim f(x) f(x
0
)"

X -* Xo

"The function is discontinuous because lim f(x) f(x
o

)

The last two statements

particular questions.

IV No exEl.anation.

Quite many students

We believe that this is

expect students at this

is part of mathematical

X + X
o

for every x"

were made without any specification of x o in the

gave no explanations in some of their answers.

a weakness that should be noted since ye should

level to be able to justify what they do. This

thinking that we look for so much, very often

with very little success (see for instance, Burton, 1984). This cate-

gory includes also tautological explanations like "this function is

continuous" or "this function is discontinuous".

V Other

Here we included several small categories that did not get more than

3% of the answers. Here we have references to the concept of one to one

correspondence, confusions between continuity and differentiability,

wrong applications of mathematical theorems (like " x1sin(1 /x)is continu-

ous because it is a product of two continuous functions"), the claim

that a function like in A2 or 135 is discontinuoms"because it consists of

two functions", the claim that a function is continuous "because it has

BEST COPY AVAILABLE
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no inflection points" and other irrelevant explanations. Tables 3 and

4 show the distribution of explanations to the correct answers into the

above categories. The numbers indicate percentages out of the correct

answers. (The percentages out of the entire sample can be obtained

from Tables 1 and 2 by multiplication.)

Table 3

Distribution of explanations to the correct answers to
Questions Al-Al. (The numbers indicate percentages out

of the correct answers.)

AI A2 A3 A4 AS A6 A7

I 46 44 20 32 47 22 50

II 22 22 33 21 20 35 21

III 15 15 17 13 15 13 4

IV 10 14 12 25 14 25 19

V 7 15 18 9 4 5 6

Table 4

Distribution of explanations to the correct answers to
Questions B1-135. (The numbers indicate percentages out

of the correct answers.)

81 82 83 84 BS

I 82 69 60 25 46

as 2 8 4 7 3

III 4 4 4 22 8

IV 8 13 25 30 31

V 4 6 7 16 12

Sinco the success percentages in Questions B4 and B5 were relatively

low it is interesting to see also the distribution of the explanations

to the wrong answers to these two questions. This is shown in Table 5.

Table 5

Distribution of explanations to the incorrect answers to
Questions 84 and BS. (The numbers indicate percentages

out of the incorrect answers.)

I II III IV V

114 48 4 6 36 6

85 27 10 8 41 14

The reader can see that something strange happened with Questions 84
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and 85. The percentages of the incorrect answers to 84 is about the

same as the percentage of the cc-rect answe, ,o85 (about one half).

We could expect that the fact that both funs Lons are well defined

everywhere will cause about half the sample to say "continuous" in 84

(wrong answer) and continuous in 85 (right answer). However this is

not true. Only about one quarter of the sample has an incorrect answer

to 84 which is justified by Category X and only about one quarter of

the sample has a correct answer to B5, justified by Category I. We do

not know yet whether these two quarters consist of the same people.

Anyhow, to claim about 84 or 135 that the functions there are not defin-

ed for every x shows inability to understand the formulation in B4 and

B5. Luckily enough, this is true only about 6.5%-7% out of the entire

sample as can be deduced from Tables 2, 4 and 5. Note that the in-

crease of CategoryTI/(the only relevant category) in the correct

answers to 84 is rather accidental since in the answers to B5, which is

similar to 84, it went down again.

It is worthwhile to mention that nobody tried to draw the graphs

in 84 and 85. Very few (about 2%) drew graphs in 81, B2 and B3, which

very often were incorrect.
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LES DEFINITIONS COMME OUT/LS
DANS LA RESOLUTION DE PROSLEME

Nicolas BALACHEFF
Equipe do didactlque des mathematIquas of do rinformatIque

Universal 1 do Grenoble of CNRS

We give account in this communication of the analysis of pupils'
behaviour in a problem solving activity with respect to the problem of the
definition of some mathematical concepts. We have observed pupils 13
years old in two contexts for the same problem : In the first they had no
information available, in the second a text provided them with the
definitions and properties of the concepts concerned. Our analysis gives
evidence Of the way in which pupils consider (or not) the problem of
definition and the basis of the decisions they take.

INTRODUCTION

L'objet des recherches, dans le cadre desquelles se placent les resultats
que nous rapportons id, est fetude des processus de preuve et du traitement d'un
contre-exemple dans Ia resolution d'un probleme de mathematique. Nous avons
ete conduit A developper particulierement Ia question de la definition car elle est
soulevee par un des traitereents possibles d'un contre-exemple : Ia refutation
dune solution pout en effet avoir pour consequence de poser le probleme de Ia
nature des objets an jeu dans is resolution d'un probleme et donc de leur
definition. C'est par ailleurs dans cat aspect de la dialectique des preuves et des
refutations qua Lakatos (1976) voit un moteur essential de revolution et de la
construction des connaissances mathernatiques.

Nous prenons ici la notion de definition au sans naff, par opposition a une
acception formelle salon laquelle la definition est une abbreviation permettant une
economie de mots. Cette acception que nous retenons pour la notion de definition,
que Vinner (1976) appelle sa valour lexicale, est vraisemblablement la plus
*endue chez les etudiants : une definition explique un mot avec d'autres mots,
elle est un discours visant A eclairer et A fixer le sans dun mot (Vinner ibid.). Ce
point de vue et par ailleurs coherent avec celui en vigueur dans la pratique des
mathematiciens : la definition permet que deux interlocuteurs se comprennent,
c'est A dire parlent de la memo chose (Borel 1948, p.2070).

Nous avons examine comment est pose et resolu le probleme de Ia
definition par des eleves de 13 ens (8° minim de l'enseignement obligatoire en
France) A propos du problems suivant : donor un moyen qui permette des que
l'on connait le nombre des sommets d'un potygone, de calculer to nombre de ses
diagonales. L'observation a Me conduits dans deux modalites. Dans Ia premiere
le eleves ne disposaient d'aucun document, dans la seconds un texts leur donnait
la definition de ipolygone., polygone croise., .diagonale et do Ia concavite.
Dans les deux cas le dispositif experimental a consists A demander A deux eleves
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de proposer une solution commune a ce problems. De toile situations d'interaction
socials dens un contexts de communication invoquilie nous donne Passes,
roccasion des debats entre les eiives, I Ia genese des questions qu'ils se posent
et aux fondements des decisions qu'ils prennent (Mugny 1985). Dans une
premiere phase de ('observation, dont Ia duree n'est pas fixes a priori (les slaves
decident eux-mtimes quo Is problems est resolu), l'observateur n'intervient en
aucune fagon. Dans une seconds phase it soumet aux *Sieves des
contre- exemples (Balacheff 1985). Les eleves sont enregistres. Les analyses et
los rasultats quo nous prosentons ici sont tires des protocoles obtenus lors de see
observations dont la duree moyonne a Ike de 1h30.

PREMIERE MODALITE :
LES ELEVES NE DISPOSENT D'AUCUNE SOURCE DOCUMENTAIRE.

Dans cette modalite nous avons observe 14 binomes : 6 ne sent a aucun
moment entres dans une problematique de Ia definition, 2 binomes ant seulement
divoque le problems de la definition sans veritablement s'engager dans son
trOtement (nous les considerons avec les precedents), les 6 autres binOmes ont
en revanche pos6 d'emblee le problems de savoir ce qu'est un polygons, une
diagonals.

Les binomes qui n'entrent a aucun moment dans une problematique de Ia
definition ont en commun le fait de soutenir une solution correcte au problems
propose. Ces binernes partagent une conception classique de polygons et de
diagonals, lorsqu'll s'agit de polygones convexes. Lorsqu'un polygone concave se
presents, certains d'entre eux ecartent la diagonals exterieure, amendant leur
solution d'une condition de convexite (Gee -Oli, Lau-Lio, Nad-Eli). Dans certains
binomes un &change a eu lieu I propos de diagonales «exterieures., mais cat
(change n'a jamais conduit au probleme de ('expression dune definition. Tout se
passe comme si les (sieves disposaient de conceptions assez robustes et
pertagees pour qua leur explicitation ne soit pas nocessaire.

Pour les six binomes qui ont pose, des les premiers instants de Ia resolution
du problems, Ia question de savoir ce qu'est un polygons, ou ce qu'est une
diagonale,ie probleme de is definition a ensuite joue un role essentiel I Ia fois
dans la resolution du problems et dans lour demarche de validation. De plus, ces
six binemes, au terms de lour activite, soutiennent la conjecture qua Is nombre
des diagonales dun polygons est Ia moitie du nombre de ses sommets, pour les
polygones ayant un nombre pair de sommets, amendee eventuellement dune
solution specifique pour les polygones ayant un nombre impair de sommets.

Pour ces binornes Is probleme de Ia definition est entretenu par des conflits
qua les slaves ne parviennent pas a depasser : (i) conflit entre les
conceptions mobilisees de 'polygons' et de "diagonals' ; pour certains
binOmes Is retour I l'othymologie du mot 'polygons' conduit I une conception
classique en conflit avec une conception de 'diagonals' issue de l'exemple
prototypique du parallelogramme (Ant-Dam, Pie-Mat, Bla -Isa) ; (ii) contlit de
conception entre les Sieves (Lyd-Mar, Pie-Mat) ; (ill) contlit suscit6 par
une Mutation : pour sauver lour conjecture los elves se placent sur Is terrain
de Ia definition. cherchant a ne retenir we les souls objets pour lesquels sUe est
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velicle (Eve-Chr, Naf-Val).

Le caractere dominant do cette problematique est parfois renforce par une
conception globale du role de la definition clans une activite riathematique, ou par
la lecture du contrat experimental par les eleves : (i) Ia definition fixe des
bases communes pour Ia resolution d'un probleme ; ainsi par exemple : taut
qu'on lour explique c'que c'est pour nous un polygons 1...) parce qua dans c'cas
la pour eux un polygone pour eux ga pout Jtre ca... heu... j'sais pas quoi (Dam
275-277) ; (ii) Ia situation est lue comme un jeu de is definition ; par exempla :
in regle du feu dit que c'est nous le professeur. C'est eux pobservateur et une
snare persona presente duranf l'obsewationl on leur dit un polygons c'est
c'qu'on a donne et lui (l'observateud dolt trouver si notre definition est 'eatable
(Dam 509).

Dans les binomes ou elles sont explicitees, les definitions sant une forme
d'institutionalisation. Elles fixent le statut des conceptions relativement a la
resolution du probleme. Mais Ia recherche du contenu de la definition peut avoir
deux types fondements : (i) des fondements endogenes : les stoves
cherchent a expliciter une conception de polygons et de diagonale en reference
assentiellement a des exigences de fondements de Ia conjecture ; (ii) les
fondements exogenes : les Aleves cherchent a reconstituer des references
reconnues culturellement ou par rapport au savoir scolaire. En quelque some, Ia
definition qui' « faudrait connaitre.

Les marques principales de fondements exogenes sont le recours
l'ethymologie (Ant-Dam 21, Eve-Chr P4, Pie-Mat 2) at le recours a l'exemple
prototypique (Ant-Dam 65 et 70, Bla-Isa 67, Eve-Chr 706, Naf-Val 10, Pie-Mat
15). Dans ce dernier cas it s'agit d'asseoir la conception de diagonale. L'exemple
prototypique le plus souvent utilise est celui du parallelogramme. Notons qua le
recours a l'ethymologie devrait conduire a une conception classique de polygone,
en fait, dans Ia situation que nous avons observee it n'en est rien. Le prototype du
parallelogramme conduit, pour la diagonale, au respect de la contrainte : taut
qu'elles passant toutes par le milieu. Par to memo milieu (Ant 70) qui ramene a la
conception de polygone quasi-regulier at eventuellement regulier : on croyait qua
pa f'sait une espece de roue, avec simplemont des sommets 'Eve 847). Quant aux
fondements endogenes, its confirment la pregnance du modele prototypique du
parallelogramme : en general ga coupe en un point au milieu (Val 65), it Taut
qua passe toujours au memo endroit [les diagonales] (Mat 15).

De meme que leurs conceptions, les definitions qu'elaborent les Neves ne
restent pas figees acres leur premiere formulation. Elles peuvent evoluer dans le
cours de la resolution du probleme, notamment sous la presson de conflits de
conceptions entre partenaires, ou sous cello de refutations rencontrees dans Tune
ou l'autre des deux phases.

SECONDE MODALITE :
LES ELEVES DISPOSENT D'UN TEXTE DE REFERENCE

Tous les binOmes observes, dans cette seconde modalite, ont aborde la
resolution du problems par une lecture prealable du Texte qui our *keit fourni.
Mais ce comportement peut tits bien etre interprets comma un effet du contrat
experimental. L'usage qui en est fait ensuite, dans le court, de Ia resolution, a deux
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types d'origine, (motions ou endogene, de fawn analogue avec ce qua nous
avons releve pour l'entree dans une problematique do la definition darts Ia
premiere modalite.

Les origines endogenes correspondent a un recours au Texts a la suite de
questions soulevees par Ia resolution du probleme, notamment pour ce qui
concerns la definition de diagonals, ou par des conflits d'interpretation entre les
eleves, mais cola est beaucoup plus rare.

La principals origin° dun retour au texts sur un probleme de definition est le
traitement du cas du triangle. Dans Ia premiere modalite is fait que le triangle soit
un polygons a ete plusieurs fois remis en question parce qu'il n'avait pas de
diagonales (il Malt alors soit rejete, soit traits comma une exception). Dans Ia
seconds modalite, !'absence de diagonales est expliquee par Ia definition fc.urnie
par to Texts : quand y a un triangle...y a pas de diagonales parce quo les cdtes
sent taus consacutifs (Rem 500). Una tell" explication est proposes par Ia moitif
des binornes (Rem-Chr, LoT-Mar, Ann-Lau, Chr -OIi, Mab-Sih) Ceci kart° Wen stir
le traitement du cas du triangle par son rejet comma polygons, it s'en suivra sa
miss a l'ecart comma exception ou par l'introduction dune condition.

Les origines exogenes participant du contrat experimental, elles attribuent
au Tote une fin relativement a la resolution du problem°.

Certains eleves ont cherche les marques d'une intention des auteurs
ciiretiement lice a Ia resolution du problems : le Texts doit bien servir a queleue
chose. Ainsi Ia miss en page, l'usage des italiques, de caracteres gras ou d'autres
procedes, Ia typographic', peuvent etre pris par les Neves comma autant d'indices.
Les examples donnas dans Is Torte prennent tine valour prototypique tondant it
limiter le niveau des procedures de validation des solutions envisagees.
Una figure (un polygons a 7 cotes concave) donne() «en exempla» par le Texts
pour emontrer les ditterents elements dun polygone : sommet, cote, diagonals,
oat utilise° par Ia majorite des binames comma un polygone quelconque
Par ailleurs, le recours a la catte figure a pu inciter certains Neves a ne pas
ciistInguer le cas des polygones convexes de celui des concaves, au moms parce
qua les diagonales exterieures sont explicitement admises : le segment AF est ma
diagonale, AD aussi. Ah ouais, donc ga pout aussi Otte exterieur (Rem' 15).

La distinction convexe /concave est cepondant faite plusieurs fois comme
une consequence des distinctions apportees par leTexte au niveau des
definitions. Ainsi Stephanie at Julie se posent d'emblee la question awes la
lecture du Texts :"11 est convex's ou non convex° Is polygons 1 ' (Jul 13-15), pour
s'en tenir d'abord aux convexes : "d'abord vaut mieux deja assayer d'trouver avec
convexe (Syl 342) at lorsque leur solution sera refutee :

- it est pour tous les convexes, mais pas celui-la, celui-la, regards, c'est la
figure 3. (Jul 646)
ah ben voila I (Ste 647)
cast un polygons croisa 1 (Jul 648)

- Ah ouais, II est pas pour les polygones croisas ... hen voila (Ste 649).

Relativement a Ia definition, Ia fonction essentielle du Texts est d'avoir
lourni un point de depart a Ia resolution du problems. La resolution a ensuite eu
lieu sou; le controle de la definition pour la plupart des binomes (Rem -Chr, Leo et
Marc, Chr-01i, Ben-San, Cec-Emm, Isa-Jul, AnnLau, Bia-Syl). Elle conduit
essentiellement les Moves a analyser ce qui se passe do un sommet d'un
polygons. Le cas asabelle at Juliette en est un bon exempla :

- slots on ye fa;r6, ;3.5 diagonales [...] donc taut procader par sommet, ou
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prendre un sommet ... (Jul 11-15)
Puls des reviennent A Ia definition :

- regarde, on appall° diagonale un segment joignant deux sommets non
consecutifs (Jul 55)
Elias recherchent alors les diagonales sous Is controls de cette definition :

- bon d'apres la recta (Jul 113)
on appelle diagonale un segment joignant deux sommets non consecutifs

(Ise 114)
alors, definition d'une diagonale...donc AE, AD, AC, soot des diagonales

(Jul 115)
donc it y a 3 diagonales issues d'un sommet (Jul 117)
A cheque fois y en aura pare!! (Ise 118)

Cette orientation de la resolution explique qua la moitie des solutions
observees soient du type is nornbre de diagonales en un sommet multiplie par le
nombre des sommets". Plusieurs binomes s'ecartent de cette vole parce qu'ils sent
confrontes au problems de ne compter qu'une fois cheque diagonale. Ce
problem° apparait le plus souvent sous Ia forme du probleme des « diagonales
confondues sur lequel, comme le dit Olivier : "lls (les auteursj disent pas *. En
)'absence d'elements du Texta permettant de decider, certains binomes
accepteront de compter deux fols les diagonales (Mab-Sih, Ann-Lau), d'autres ne
traricheront pas (Chr -OIl, Cec-Emm).

CONCLUSION

Le probleme de la definition se pose de fawn trios differente dans les deux
modalites de notre experience.

Dans la premiere modalite une problematique de Ia definition apparait
nettement chez plusieurs binomes. Ce phenomene est moins 116 A la nature des
fondements rationels de Ia resolution du problems, qua la robustesse des
conceptions des Coves. C'est ainsi qua Ia moitie d'entre eux, s'appuyant sur des
conceptions reputees classiques de polygons et diagonale, n'abordera pas Ia
question de la definition. En revanche tous ceux qui s'appuient sur la conception
fragile type de diagonale-diametre associee ou non A polygone-regulier,
souleveront le problems de la definition sous )'impulsion soit d'un conflit de
conception entre les Caves, soit de refutations soveres (par exempla de la
conjecture "le nombre des diagonales est la male du nombre des sommets" par
des polygones impairs). La problematique de la definition, et sa resolution
eventuelle, se developpent alors dans un systeme de contraintes qua sent : les
conceptions des eleves, la conjecture en question, )'existence d'un savair ou de
pratiques mathernatiques de reference.

Dans la seconds modalite, les definitions qui ont 6t6 donnees jouent un role
determinant puisque nous voyons disparaitre touts trace des conceptions
errorless de polygons et diagonale si frequentes dans la premiere modalite. Des
conflits de conception surgissent encore, par example A propos de ce qu'est un
polygons quelconque, sur Ia nature du croisement on dehors de lours eAremites
de deux cotes dun polygons croise, etc. , mais ils ne conduisent plus A un
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problime de definition en tant quo tel : Ia definition est donnee, ells nest pas
remise en question. En revanche se posent des problemes d'interpretatIon du
Texte qui peuvent opposer les deux Caves d'un bintime, at memo faire apparaitre
un tiers : l'auteur du Texte . En effet dans un premiere phase, pour resoudre un
conflit de conception ou un question d'interpretation issue de la resolution du
problems, les eleves paraissent s'en tenir a ce qua nous pourrions appeler « Ia
lettre du texte e. Las eleves cherchent a comprendre le texte, ou encore a ajuster
lours conceptions a un sans du texts qui exiterait en soi at qu'ils s'efforcent de
reconstruire. Si la pression se fait importante, par exemple parce clue les eleven
ne debouchent pas sur une accord sur Is sons du texte, alors sont prises en
compte les intentions de l'auteur qui seront invoquees pour ou contre une
interpretation donnee.

En conclusion, nous pensons qua le fait de fournir une information de
reference, s'il modifie sensiblement les e performances » eventuelles au regard de
In justesse des solutions fournies, en revanche ii ne modifie pas sensiblement
(dans Is cadre de notre experience) les processus de preuve engages dans la
resolution du problems ; nous aliens memo remarque ici Is renforcement des
preuves empiriquas principalement a cause de la presence du Texts at du
c,arectere prototypique des examples qu'iI fournit.

Une recherche a venir sur ce theme devrait prendre en compta deux types
de phenomenes dont nous avons ici observe des indices trop faibles pour une
conclusion ayant une portee generale :

l'evolution des eleves dune lecture du texte comma porteur d'une
signification e objective vers le texts comma reflet des conceptions de son
auteur. Ou encore une evolution dune problematique qua pout traduire la
question « qu'est-ce qua cola veut diro ? vers une problematique
qu'exprimerait Ia question « qu'est-ce que l'auteur veut dire ?

- Ia prise en compte du texte comma porteur d'indications sur les intentions
de l'auteur, ou pout etre de celui qui a fourni le texte, relativement au problems
soumis ou a la situation dans 'squall° prend place sa resolution.

L'hypothese, que nous parait soutenir notre experience, est que Ia
construction du sans d'un texte (Ia lecture) depend do la finality de cette
elaboration. II n'y aurait donc pas un sens a priori d'un texte mathematique
engage dans une relation didactique, mais un sens specifique a Ia fois des
conceptions du lectour at des caracteristiques de Ia situation de lecture
(notamment au sens du contrat didactique).
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LECTURE DE TEXTES MATHEMATIC:WES
PAR DES ELEVES (14-15 ANS) : UNE EXPERIMENTATION

PUPILS READING MATHEMATICS : AN EXPERIMENTATION

Colette Laborde

Reading or listening are fundamental activities in learning mathematics
The object of the present paper is to study how pupils construct a
meaning of mathematical notions from written texts and to investigate the
influence of the linguistic features of these texts on the pupils'
understanding. Pupils of the grade 9 were placed in an experimental
situation where they were confronted with the task of reading four
teaching texts introducing operations on squares roots. They were
instructed to write a new text presenting the same content meant for
other pupils who have to be introduced to this content. Pupils were
working in pairs and observed.The analysis of the observation and of the
of the written texts produced by the pupils gives inz,,ght on the pupils'
understanding of these texts.

L'etude presents a 'Re menet) par un groups de didacticiens (M. Dupraz,
M. Guillerault, C. Laborde) et linguistes (R. Bouchart, J. Lachcar)
grenoblois.

Les recherches sur l'apprentissage des mathematiques ont

essentiellement porte sur les processus de construction de connaissances

ou d'utilisation de connaissances déjà disponibles chez les eleves. Mals

elles n'ont pour ainsi dire pas aborde la question de la prise d'information

par les Moves comma si elle allait de soi. Or depuis une vingtalne

d'annees, Is caractere naturel, evident de la lecture ou de l'acoute est remis

on question, ces activites ne sont plus considerees comme un simple

transport d'informations du texte ou du discours ('ensemble des

connaissances (160 disponibles du sujet lecteur ou auditeur. El les sont

maintenant analysees comme des activites complexes au cours desquelles

le lecteur ou l'auditeur s'engage avec ses connaissances.

La prise d'information est pourtant fondamentaie dans l'enseignement qui

sollicite fortement dos activites d'ecoute ou do lecture de la part de l'eleve
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ecoute du discours de l'enseignant en classe, lecture de textes de

problemes, de passages du manual, d'enonces Ocrits au tableau par

l'enseignant.

Cette etude concerns la lecture de textes mathematiques par des Moves de

fin de scolarite obligatoire (14-15 ans). A ce niveau d'enseignement, la

prise d'informatlons a partir d'un texts dont est consideree comma devant

faire partle des competences des eleves. Solon un constat devenu banal

cella competence n'est outages qua par un nombre restreint d'eleves.

Nous avons donc cherche a connaitre les interpretations construites par les

Caves lors de la lecture de textes mathematiques, et a degager ('incidence

des caracidristiques linguistiques des manuals de mathematiques sur ces

interpretations. Notre approche est experimental° mais ells se situe au sein

d'un cadre theorique at elle est fondee sur les hypotheses qua nous

procisons ci- dessous.

I. Cadre theorique
L'analyse de l'activite de comprehension d'un texte a pu etre centree sur

('apprehension par Is lecteur du contenu mathematique sous-jacent at

negliger les aspects linguistiques. !nversement d'autres recherches n'ont

pris en compte qua les aspects de surface du texte cherchant a definir des

criteres de lisibilite independents du contenu at du lecteur. II nous parait au

contraire important de prendre en compte a la fois la complexite cognitive

des contenus en jeu dans le texte of sa complexite redectionnelle. Cola

signifie quo notre analyse des conduitos de lecture prend en compte et de

fawn interdependent° les elements suivants:

I. content, mathernatIque sous-jacent

-le sulet lecteur, icl l'eleve, en tant quo sujet cognitif avec sos

conceptions tant des objets mathematiques qua de la langue dans laquelle

est redige Is texte a lire

-le modele langagler en vigueur dans I'enseignement mathematique of

les caracterlstlques redactIonnolles du texte a lire

-la situation de lecture le statut du texte pour Is lecteur, et surtout la
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linallte de la lecture : A quoi sort la lecture, quelle activite ulterieure lui

est-elle subordennee?

Dans ce schema, to sons voulu par l'auteur du texts n'est pas
automatiquement apprehend() par le lecteur mais est reconstruit par ce

dernier en fonction de ses conceptions des objets mathematiques sous-

jacents, de ses connaissances linguistiques, de ses representations do la

situation de lecture et de sa finalito et des caracteristiques linguistiques du

texts.

II. Mithodes d'analyse des conduit de lecture
Comment savoirce quo le lecteur compris, ou n'a pas compris ? Une

observation direct° d'un sujet on train de lire ne fournit guere de donnees

dans Ia mosure 01.1 la lecture est une activite individuelle destines a soi-

moms. Un autre point quo nous tenons a souligner concerns le caractere

illusoire d'une analyse de ces interpretations indopendamment d'une prise

en compte de Ia finalite de Ia lecture.

Pour obtenir des observables Has A l'activite de lecture nous avons donc

cholsi de Ia finaliser au sons oir l'activite do lecture a conditionne une

activite utterieure de formulation smite de l'eleve lecteur. Nous avons donc

en fait &slue la lecture en evaluant Ia production Omit() fournie par l'eleve

qui nous a permis do degager des informations sur ('interpretation et la

comprehension du texts par ce dernier.

III. DIsposItlf experimental

On a donne quatre extraits de manuels en vigueur actuellement en France

(pour is classe de 36mo, slaves do 14-15ans) portant sur les operations sur

los racines cantos a deux eleves qui devaient dans une premiere phase

les lire attentivement pour dans une deuxieme phase ecrire ensemble un

toxte commun pour d'autres slaves du memo age ne connaissant pas les

operations sur les racines carrees et destine A our pormettre de les

apprendre. Les eleves travaillant a deux ont ate observes et enregistres. Le

travail durait environ deux houres. L'experimentation s'est deroulee avec

douze paires d'eleves qui avaient rev un enseignement sur les racines
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carrees six mois auparavant.

IV. Choix des extralts de manuels a lire
II repond a notre objectif de reperer l'effet des variables de presentation

d'un memo contenu mathernatique sur Ia comprehension des Cleves

lecteurs.En effet les quatre textes retenus ont ate choisis parcequ'ils

different essentiellement sur les six aspects suivants :

-utilisation de dlagrammes, schemes, tableaux : un soul manuel en

utilise

-choix du code dans 'equal sont formules les &lances recapitulatifs des

proprieteu sur les racines carrees langue naturelle, ecriture symbolique,

usage conjoint et plus ou moins imbrique des deux codes. Ainsi un manuel

formule-t-il systernatiquement une memo propriet6, une premiere fois en

langue naturelle, une set;onde lois en Ocriture symbolique :

"La racine carree d'un produit de reels positifs est egale au produit des

racines carrees de cos reels : x 46-, a E R+, b 6 R+ "

La meats propriote est ainsi formulae par un sutra des 4 textes :

"Duels quo soient les reels positifs a et b, Nraii = . AY"

Le premier manuel &once volontairement deux formulations redondantes

macs chacune homogene du point de vue du code utilise; la second manuel

a recours aux deux codes au seen d'un enonce unique heterogone.

- existence de demonstrations des proprietes des racines cantos : un

soul manual ne fait aucune demonstration

- le type d'objets sur lesquels porte la demonstration nombres fixes cu

nombres indeterrnines desIgnes par des lettres ou les deux types a la lois.

- Importance en nombre et place des exemples

- existence d'exercIces soit d'application, soit introductifs a une propriete.

V. Analyse de Ia Mho a laquelle sont conlrontes les Cleves

Dans cette ache Ia lecture est finalises par l'activite de production qui la

suivra; puisque dans cette derniere les Moves ont a s'exprimer pour des

pairs, on pout parser qu'ils vont retonir les informations qu'ils jugent

importantes et qu'ils vont les transmettre sous la forme qu'ils pensent Ia
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plus accessible pour eux memos. On pourra aussi avoir accbs a lours

interpretations des textes a lire, dans Ia mesure ou ils vont developper a

('intention des ()loves lecteurs de lour production des explications

susceptibles d'aider a la comprehension du contenu.

Le travail a deux permet ('exteriorisation des demarches de pensee de

chacun des partenaires grace aux Ochanges verbaux; la confrontation des

points de vue des deux partenaires est aussi un element qui contribue a la

dynamique de l'activito.

Le choix de donner a lire quatre textes rend Ia tache particulierement

complex°, II a Me congu pour nous permettre do reperer l'effet des

variables de presentation dun memo contenu en particulier au niveau des

choix faits par les Caves pour la presentation gulls adoptent dans our

texte.La lecture de plusieurs textes exige une plus grand° activito de

construction de la part des Moves et evite une recopie possible s'ils

n'avaient eu qu'un texts a lire.

VI. Analyse de quelques donnees de l'experlmentatIon

. tReprosentatIon globale des textes
La comprehension dun texts ne consiste pas seulement en ('extraction

d'informations mais en la construction dune representation generale du

texte et de son articulation globale entre ses differents elements

- identification d'un contenu commun aux quatre tortes

11 semble quo la majorite des eleves aient reconnu quo tons les textes

portaient sur les memos proprietes des racines carrees : seules trois paires

d'eloves sur les 12 observees n'ont pas toujours reconnu le memo contenu

dans ces textes

Deux paires d'eleves ont repete deux tots, dans le texte qu'ils ont ecrit, les relates do catcul

du produit et du quotient, prises a chaquo tots A partir d'un texte different car ils ne los

avaient pas interpretees comma Ia memo ale.

Une autre pairs d'eleves a tire deux informations contradicloires du memo texts at los a

consignees dans son texte daft :

45-4 ..16; acco mpagneo de Ia mention on omploio la memo methodo pour les 4
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fonctions" el plus bas "4248 x'12+8 ".

On pout penser qua Ia coexistence des deux propositions

45;4 . 4-t+4-4-ret 114-Nlifo ne revel pas pour cos eleves to caractere contradictoire

quelle presente pour nous. Chacune de ces propositions est interpretee par les eleves

comma valide dans son contexts d'erweclation, les °loves n'ayant pas reconnu

ractuallsation dans chacun de ces contextes dune regle generals sur la somme de racines

carrees.

- structuratlon du texts et contrat

II est apparu qua la struciuration du texts a une incidence sur le statut

accorde par ['Cove lecteur a ce qu'il lit. II semblerait qu'un contrat se noue

entre auteur et lecteur en particulier au niveau des titres de paragraphs ou

de la place dans la page et de Ia typographie. Par exempts, les anonces en

plus petits caracteres ou en merge du texte memo pouvent etre considores

comme opisodiques at n'ayant pas d'incidence sur le contenu du texts

central.

Le titre d'un paragraphe annonce le contenu du paragraphe et coriditionne

déjà 'Interpretation qua le lecteur va faire de ce contenu. Une rupture non

explicitee du cont at annonce par Is titre de paragraphe d'un manuel a

conduit ainsi a plusieurs interpretations erronees.

Un texte annonce en titre de paragraphe :"Transformer des ecritures contenant des

radicaux" of commence immediatement par un averlissement vague sur les sommes de

radicaux puts continue par une remarque de notation sur la suppression possible du signe

de multiplication clans une eatture algObrique et termine enfin par les regles de calcul sur

produit et quotient de radicaux. Certains elr)ves ont alors interprets la remarque de notation

comme une transformation decriture of ont alors attribue aux regles de calcul sur les radicaux

!a memo statut de notation. II suit it de deplacer les signes dans les acritures de produits et

de quotients.

l'homogerunto du texts

L'homogeneite d'un texts pone a ptusieurs niveaux; elle pout etre relative

au decoupage du contenu en parties d'organisation interne semblables.

Le texte pout titre decoupe en paragraphes, cheque paragraphe Otant

relatif a une operation sur les racines carrOes, ['organisation de chacun
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d'entre eux restant du memo type comma par example, demonstration,

enonce de propriete, examples, exercices.L'homogeneite pout descendre a

un niveau plus piofond, par example sur le deroulement des

demonstrations at to type d'objets utilises.

En particulier une demonstration faits par un des manuals ponalt d'abord sur un exemple

numinous puts sur le cas general A raids de norntxes dosIgnes par des lettres. Elle a en

general tittl trips mal comprise, les Caves n'ayant pas reconnu qu'il s'aglssalt de la memo

demonstration conduisant au memo risultat.

Deux des textes proposes presentent une plus forte homogeneite : ils ont

davantage ete utilises par les Caves pour produire lour propre texte at les

Moves ont a Tissue de lour travail clairen.ent exprime lour preference pour

cos deux taxies.

2.Usage des deux codes longue neturelle et gicrIture

symbolique
Les &tondos des proprietes des racines cantos presents dans les textes

des Mayes font plus fortement appal 6 l'ecriture symbolique quo ceux dos

manuals. Certains (Ayes re retiennent quo les *les de calcul sans les

conditions de validite dont ('expression nOcessite soit un ()nonce en langue

naturelle, soil un enonce heterogene dans les deux codes. Par example, its

ont seulement ecrit : "ga Nib Jab"

Le faible usage de Ia langue naturelle est du aussi dans les productions

des eleves a la relative absence de meta-discours explicatif ou introductif

malgre Ia consigne d'Ocrire un texte qui permette 6 d'autres (Wives de

comprendre les proprietes des racines carrees. De ('ensemble du contenu

present() dans les textes les eleves ont retenu les regles de calcul sous

forme symbolique at 446 important de los transmettre.

. 3.F161e des exercices

Le type de presentation par exercices n'a pas 6t6 retenu par les eleves. On

percoit tits nettement au contraire le choix par les eleves d'exposition

institutionnalisant clairement Ia propriete a retenir sur la somme des racines

carrees. Soul un manuel indique la propriete +Nib les autres ne

dormant quo des exercices ou des exernples numeriques. C'est ce texte qui

a inspire massivement les productions des eleves.
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A YEAR IN THE LIFE OF A SECOND GRADE CLASS: COGNITIVE PERSPECTIVE

Paul Cobb, Purdue University

The paper first outlines the organization of a

conatructivist second grade research and development
project that focuses on a) individual children's cognitive
development in the context of classroom instruction, b)

small group interaction patterns, and c) whole class
interaction patterns. The cognitive goals of the

experimental curriculum are then discussed. Finally,
attention is given to the ways that models of children's
conceptual development are applied to instruction. These
include a) guiding the development of instructional
activities, b) assessing the pedagogical value of
particular activities, and c) accounting for the children's
mathematical learning.

I and my colleagues Erna Yackel, Terry Wood, and Grayson Wheatley

are in the second year of a three year research and development

project. The conatructivist theory of knowledge in general and the

theory of children's counting types (Steffe, von Glasersfeld, Richards,

& Cobb, 1983) and its extension to thinking strategies and child-

generated algorithms (Steffe, Cobb, & von Glaserefeld, in press)

constitute the theoretical framework of the project. As constructivism

appears to mean a variety of different things to different people

(Kilpatrick, 1986), it is as well to stress that the variant to which

we subscribe rejects the notion that cognitive reorganizations occur

when students somehow apprehend or intuit the structures said to be

found in problems. Consequently, the curriculum activities we are

field-testing are not designed to present mathematical relationships in

an implicit or 'transparent' form (cf. Resnick, 1983, for an

alternative view). For us, the process of substantive mathematical

learning and of constructing a mathematical reality are one and the

same (Piaget, 1980; von Glasersfeld, 1984). They are but different

aspects of the reflective abstractions students that make as they

reorganize their sensory-motor and conceptual activity. From the

researcher's point of view, the result is new, more powerful conceptual

structure. For the child, it is a mathematical object that is

experienced as though It were there all along. In short, mathematical

structures are given to rather than extracted from problematic

situations.

VIZproject discussed in this paper was supported by the National
Science Foundation under grant No. MDR 8470400. All opinions expressed
are, of course solely those of the author.
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Current Activities

We are currently developing, implementing, and refining

prototypical instructional activities in a second grade classroom for

the entire school year. Although the implemented curriculum consists

of both whole class and small group problem solving activities, lessons

do not fit the typical review-development-seatwork format (Good,

Grouws, & Ebmeier, 1983). Instead, the children attempt to solve

problems and than the teacher leads a discussion of their solutions.

No attempt is made to evaluate student,' contributions or to "steer"

them to a desired official solution. The general instruction format of

activity-discussion is used in all curriculum areas including

arithmetical computation.

All lessons are video-taped and eight children have been selected

for intensive study as they interact in small groups. The project

staff's individual recponsibilities are:

Cobb: document and account for the target children's construction

of arithmetical knowledge.

Yackel: document and account for a) the target children's beliefs

about, attitudes towards, and motivations for doing mathematics and b)

the changing nature of the small group interaction patterns they

establish.

Wood: document and account for a) the nature of the total class

interaction patterns, focusing particularly on how a "problem solving

atmosphere" is created, and b) the dynamic relationship between the

teacher's knowledge and her practice.

Teacher: a) develop and teach lessons, and b) keep diary of

classroom life from the practitioner's perspective.

Cognitive Goals

To put it simply but vaguely, the cognitive goal of the curriculum

is to encourage the construction of powerful conceptual operation.

When we negotiated with the cooperating school corporation, we agreed

to address all their stated second grade mathematics objectiv 1. As an

example, one of these is to add and subtract two-digit numbers with

regrouping. Interviews conducted during the first year of the project

indicated that only children who have constructed a system of

conceptual operations that we call the part-whole system can construct

their own efficient algorithms of this type (Cobb, 1987). These
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conceptual operations are also crucial to activities that are treated

as separate topics in traditional intended curricula (e.g., elementary

multiplication and division, money, estimation). Consequently, the

construction of this system of operations is a central goal of the

curriculum. We are attempting to achieve this and other cognitive

goals by implementing curriculum activities that give rise to genuine

mathematical problems for the children. Just as scientific progress is

precipitated by the perception of anomalous phenomena, we expect the

children to make progress by reflecting in either problematic

situations or situations in which two solution activities are "seen" to

give rise to the same conceptual result. in both cases, the crucial

element is that of surprise--surprise at encountering an unanticipated

difficulty or at two apparently different ways of operating leading to

the same result. Both situations give the children opportunities to

reflect and reorganize the conceptual base of their mathematical

actions. The instructional activities can be solved in a variety of

different ways by children at different conceptual levels and thus

attempt to take account of individual differences. Their design and

implementation is guided by models of early number learning that

specify the sensory-motor and conceptual activities that young children

might be able to reflect upon and by the on-going initial analysis of

the video-recordings. Thus, the cognitive aspect of the project is, in

part, a process of formative assessment that attempts to judge the

pedagogical value of specific instructional activities. Criteria

include a) the reflectiveness of the children's mathematical activity,

b) opportunities for dialogue about mathematics that arise within

groups and during whole class discussion from the construction of

alternative and, at times, conflicting solution methods, c) the

acceptance of a difficulty as personally challenging problem (i.e.,

persistence), and d) personal satisfaction achieved by resolving a

difficulty or accounting for an unanticipated convergence of results.

In short, the value of instructional activities is assessed in terms of

the quality of individual children's problem solving activity and the

quality of dialogue. (Clearly, these qualities depend on far more than

just the instructional activities and, as Voigt (1985) noted, attention

must also be given to the social context within which the children give

meaning to the activities.)
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The Role rf Cognitive Models

As Romberg and Carpenter (1985) obverved, "we currently know a

great deal more about how children learn mathematics that we know about

how to apply this knowledge to instruction" (p. 859). Although we are

far from achieving a satisfactory resolution of this issue, some

initial reflections on the role that cognitive models play in our

current work can be offered.

We had anticipated that the teacher would construct an

understanding of the models of children's counting types, thinking

strategies, and self-generated algorithms as she interacted with other

members of the project staff and use this knowledge to guide her

interactions in the classroom. During the induction process, she

viewed video-recordings of children solving problems using a variety of

self-generated Methods and disclosed the various conceptual levels at

which they were operating. Further, the teacher frequently asks about

the levels at which the tight target children are operating and asks

clarifying questions during weekly project meetings. Knowledge of

these levels is, however, completely irrelevant to her as she interacts

with children. There is no indication that she uses the constructs of

the theory in an attempt to build models of individual children's

mathematical thinking. This, we believe, tells us more about the

proposal that teachers should develop such models in the classroom than

it does about the project teacher. A conviction that children can

construct mnthematical knowledge for themselves combined with a desire

to find out how they are attempting to solve problems seem sufficient

for her to make appropriate interventions.

Nonetheless, the models are proving invaluable in a) guiding the

development of instructional activities, b) assessing the pedagogical

value of particular instructional activities, and c) accounting for the

children's mathematical learning. In contrast to most recommendations,

we are not attempting to explicitly teach children methods or

strategies associated with more sophisticated conceptual levels (e.g.,

Case, 1983). Although children's problem solving activities do express

their current understandings, the relationship between concepts and

solution methods is many-to-many. Consequently, children who have been

successfully taught to use a particular method to solve a certain range

of tasks have not necessarily constructed the intended concepts.

As an example, consider again the case of constructing efficient

algorithms for adding and subtracting two-digit numbers. Typically,
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textbook instruction first attempts to teach place value concepts and

then introduces the standard algorithms. Unfortunately, this approach

assumes that the construction of a place value numeration system is a

matter of empirical abstraction and figural representation rather than

reflective abstraction from and reorganization of problem solving

activity (Remit, 1986; Steffe, 1983). As a consequence, most children

construct ten as an abstract singleton, if that is not a contradiction

in terms (Cobb, 1987; Ross, 1986). In other words, 54, say, is

composed of five singletons of one type called "tens" and 4 unrelated

singletons of another type called "ones." The so-called "tens" are

distinguished from the "ones" in terms of figural imagery--they are not

composite structures composed of units of one.

Mapping instruction in which children are taught standard

algorithms by manipulating blocks in parallel with writing symbols has

also been of limited success (Mosher, 1987). Once again, the emphasis

in on figural representation and children are somehow expected to "take

in" place value knowledge from physical objects that the adult can

"see" as expressions of his or her own understanding. This and other

evidence leads Masher (1987) to conclude that "no one has succeeded in

demonstrating that understanding improves algorithmic performance" (p.

6). The question that immediately comes to mind is whether researchers

who believe they have taught children to understand have in fact done

so. From the perspective of Piagetian constructivism, there in no

reason to assume that they have.

The one exception to the finding that algorithmic performance does

not necessarily depend on understanding is that of counting.

Researchers operating within a variety of different paradigms have all

argued that the construction of counting methods is related to

conceptual development. Further, none has suggested that this is

merely a matter of empirical abstraction and figural representation.

It appeara that conceptual development and the construction of

increasingly sophisticated counting methods go hand in hand and the

opportunities for children to solve problems by using their current

counting methods are essential to these developments. From this, we

derive the general contention that the relationship between conceptual

understanding and observable problem solving behavior is analogous to

that between theory and experimentation in science--it is dialectical.

Problem solving activity le an expression of and is constrained by

current concepts. On the other hand, the activity, as an instantiation

of understanding, makes possible unanticipated surprises and
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constitutes material upon which to reflect. The activity La therefore

essential for and constrains subsequent conceptual developments. The

value of the models of counting types, thinking strategies, and self-

generated algorithms resides in the unique emphasis they place on

sensory-motor and conceptual activity (Cobb, in press). The models

trace the eventual objectification of particular arithmetical concepts

from their sources in activity. Colloquially, these initial beginnings

might be called concepts-in-action. in Searle's (1980) terms, the

child's intentions are in and cannot be separated from his or her

activity and the child acts in order to create meaning. This in no way

implies that the child's activity is meaningless or that the child is

merely performing a rote procedure. Instead, the meaning is an

integral part of and can only be analyzed in conjunction with the

activity. Meanings of this sort era rarely captured by cognitive

models, particularly those produced by researchers who strive for the

stamp of scientific respectability by limiting themselves to the

formalisms of currently available computer languages.

Meanings-in-action should not he confused with performing an

activity that one has been taught to use. Activities of the latter

type can be mathematically meaningless (Hebert & Weerne, 1985). It is

a matter of trying to remember what an authority told the students they

are supposed to do rather than acting with meaning. It might well be

that the failures to demonstrate that understanding improves

algorithmic performance tell us more about instruction that ignores

students' reflections on their meanings-in-action than it does about

the process of constructing algorithms.

Our approach to helping children invent algorithms for adding and

subtracting two-digit numbers has been to try and build on the

children's meanings-in-action. The models we are using specify both

the activities from which children might abstract and the activities

that might be objects of reflection for children at particular

conceptual levels. We have simply developed instructional materials

that the children typically attempt to solve by engaging in these types

of activities. At the same time, we have tried to ensure that the

construction of undesirable concepts such as ten as an abstract

singleton lead to contradictions. The activities we are currently

interested in are a) counting by once, which can be segmented into

modules and, eventually, units of ten, b) making finger patterns such

as two open hands as embodiments of the result of counting ten one's or

one ten, and c) recognizing and visualizing spatial patterns as
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embodiments of counting ton ones or one ten. Materials such as

hundreds boards and multilinks arranged in bars of ten are always

available if a child chooses to use them. However, the children

reflect on and abstract from their activity of counting with these

materials to solve problems, not from the materials themselves.

The next phase of the cognitive aspect of the project is to

construct detailed models of the target children's learning in the

classroom.
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A YEAR IN THE LIFE OF A SECOND GRADE CLASS: A SMALL GROUP PERSPECTIVE

Erna Yackel, Purdue University

Preliminary indications are that use of a problem-centered
mathematics curriculum in a second grade class results in
development of moral and intellectual autonomy. Children
have developed relational rather than instrumental beliefs
about mathematice, arc task- rather than ego-involved, view
problems as challenges, persist in problem solving and are
aware of their cognitive capabilities. Further, they are
able to establish productive cooperative working
relationships with each other, taking others' viewpoints
into consideration and are successful in resolving
conflicts.

Recently mathematics educators have posited that students'

mathematical performance and learning are influenced by their attitudes

toward and beliefs about mathematics (Cobb, 1985; McLeod, 1986; Maar,

1985; Wheatley, 1984). Closely related factors include motivation for

engaging in activity, the nature of the learning environment and the

social context in which learning takes place. The purpose of thin

paper is to discuss observations about the Attitudes toward and beliefs

about mathematics and the nature of small group Interactions from a

second grade classroom using Is problem-centered eathomutico curriculum.

The study discussed here is part of the Purdue Mathematics Pr,blsm-

Centered Curriculum Project for second grade, a comprehensive ;Toject

which includes investigation of individual children's construction of

mathematical knowledge, investigation of the total clang interaction

patterns including establishment of a non-evaluative, risk-free,

problem oolving environment, and investigation of non-cognitive growth

that restate from use of a problem-centered curriculum, in addition to

development of the curriculum activities. The constructivist theory of

knowledge and recent studies in achievement motivation, cooperative

learning and students' mathematical beliefs and attitudes form the

theoretical basis for this study.

Classroom learning occurs within the context of on-going social

interactions, Consequently, children do much more than learn

mathematics as they attempt to make sense of the instruction they

receive. They develop general beliefs, attitudes, and affective

feelings about mathematics and themselves an students and construct

expectations for their own and the teacher's role. Traditional

'ins project discussed in this paper was auppei.ted by the National
Science Foundation under grant No. MDR 8470400. All opinions express
are, of course, solely those of the author.
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curriculum designers' failure to consider these developments has

resulted In the unanticipated and usually undesirable side-effecto of

instruction that Are documented in the literature (e.g., instrumental

beliefu, mathematics anxiety, negative attitudes towards mathematics,

learned helpleuaneso). Simply stated, the non - cognitive goals of thin

project are intellectual and moral autonomy. Autonomy means governing

oneself. Theo moral autonomy means "the ability to make moral

judgments and decisions for oneself, independently of the reward

system, by taking into account the points of view of the other people

concerned" (Kamil, 1985, p. 40). Intellectual autonomy refers to

making judgments for oneself in the intellectual realm, These

constructs Subsume ouch notions an relational beliefs (Skemp, 157e),

task- rather than egoinvolvement (Nicholls, 1963), viewing problems as

challenges, gaining personal eatialaction by solving a problem for

oneself, persisting on challenging problems, taking others' viewpoints

into consideration, and being aware of one's cognitive capabilities.

The implications for the curriculum of these non-cognitive goals

concern the proceno of implementing the instructional activities as

well as the activities per so. Specifically, the instructional

strategy must entablish conditions which encourage construction of

knowledge and result in creation of a non - evaluative, risk-free setting

in which children's Ideas and solution attempts are valued over correct

answers and numbers of problems aolved. Small group problem solving

has the potential for establishing these conditions. In a recent

review of the literature on email group (cooperative learning)

instructional methods, Slavin (1966) has identified two general

instructional techniques that express differing perspectives, the

developmental perspective and the motivational pernpective. The

developmental perspective, based on Piagetian and Vygotskian theories,

holds that "tank- focused interaction among students enhances learning

by creating cognitive conflicts which they must resolve and by exposing

students to higher quality thinking that is within their proximal zone

of development" (p. i). Our approach to small group instruction falls

within this category. The motivationalist approach, which Is based on

reward structures which emphasize extrinsic rewards, is incompatible

with our non-cognitive goals. . Slavin reported that the motivational

approach has been more successful in field experiments than the

developmental approach. However, the curricula that were used in those

studies follow the traditional pattern of presenting knowledge as

isolated facts and sets of rules and procedures that emanate from an
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authority and are to be acquired by repetitive practice. The

curriculum activities in this project are not of this traditional

nature. Instead they are designed to present students with problematic

situations. As students work in groups to solve the problems,

cognitive conflicts arise both because of the problematic situations

themselves and also when partners use different solution methods or

arrive at different answers. Resolution of conflicts between partners

has the potential of resulting in significant learning as partners

roilect on their own and other solution methods.

ORGANIZATION OF THE PROJECT

This project involves development and field-testing of a complete

second grade mathematics curriculum. The curriculum is field-tested in

a classroom with 20 students. Project staff observe and video-tape

every mathematics lesson. Video-tapes are analyzed from three

different perspectives, a) cognitive growth and conceptual development

of the students, b) the nature of t..eacher-student interaction patterns

and the implementation of the curriculum by the teacher, and c) non-

cognitive growth which includes the nature of small group interactions

and students' attitudes and beliefs. The classroom teacher

participates in weekly meetings in which activities are designed and

sequenced and the previous weeks' activities are discussed.

The primary instructional strategy used in the project is small

group problem solving followed by class discussion. Students work in

teacher-assigned groups of two or three. 'typically students work with

the same partner for several months at a time. Four pairs, identified

for in-depth study, kept their same partners for the majority of the

school year.

STUDENTS' ATTITUDES AND BELIEFS

Preliminary Lesulis indicate that students attitudes towards

mathematics have become much mare positive, as assessed by a

questionnaire. Students' attitudes towards mathematics reflect their

beliefs. Consequently, observations concerning children's attitudes

lead to consideration of their beliefs.

The impact of the problem-centered mathematics instruction on

students' beliefs about what mathematics is, what it means to "do"

mathematics, and how mathematics is learned are being investigated.
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Observations to date indicate a number of changes in the children's

beliefs. First, the children ars less dependent on the teacher. At

the beginning of the year children expected the teacher to tell them

what to do in order to complete tasks. Such behaviors reflect the

childrens' beliefs, based on their first grade experiences, of how

mathematics is to be taught and learned. This expectation is

illustrated by Amy when she and her partner encountered the problem of

deciding that number goes in the e.ipty box in the example below.

Amy: "I'm going to ask Mrs. M if were supposed to add or subtract."

Now it is common to hear students say, "We don't need help. We can

figure it out ourselves" or "It won't help to ask Mrs. M. She won't

tell us. We're going to have to figure it out for ourselves."

Persistence has increased greatly. Recently almost all of the

children spent two class periods of one nour each working on one

particularly challenging problem. There are numerous other examples in

which one member of a pair tenaciously insists that they not go on to

another problem until a/he has a solution method that makes sense to

her/him. Their growing persistence and self-reliance indicates

progress toward the goals of intellectual and moral autonomy. These

appear to be a direct consequence of the instructional setting that has

been created in the classroom.

Competition between groups and between children within groups

which was common at the beginning of the year has almost disappeared.

At the beginning of the year many students put up large folders on

their desks as screens to prevent others from seeing their work or

finding out which problem they were on. Students were concerned with

how many problems or activity sheets they had completed in comparison

with others. In one extreme case, one member of a pair spent all of

his time finding out how many problems other groups had completed and

telling his partner to "Hurry up." He spent no time on the mathematics

tasks themselves. In fact, he did not even read them. Now the norm is

that students are relatively unconcerned with how many problems they

have completed in comparison to others. It is not uncommon for

children to report in the group discussion, "We didn't get to that

problem. We got only problems done."
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Competition due to ego-involvement is illustrated by the following
example. At the beginning of the year one child was difficult to work

with for any partner because she insisted on dominating the group work.

Frequently she would not even let her partner see or touch the paper

that described activities and on which solutions were to be e.itten.

Her dominance resulted from extreme ego-involvement that required that

she expend maximum effort to insure that a large number of problems

were completed with a high probability of success. She would not take

time to consider her partner's views or to engage in reflective

activity. Further evidence of this student's extreme ego-involvement

at the beginning of the year is shown by a video-taping episode. When

the camera was directed on her group as they were engaged in a problem

solving task she suggested that they trade in the problem for one they

had previously solved "because we did that one the best." This student

now freely admits in the total class discussion, "I did it wrong at

first" or "My partner and I disagreed but after she explained it to me

I found out that I was wrong." This decrease in competition indicates

that the children are becoming more task-involved. Further evidence of

task-involvement is the fact that pairs often continue working on the

activities after the class discussion has begun. In some cases they

quietly continue their discussions and collaboration, pausing now and

then to participate in the clams discussion.

Virtually all competition within groups has disappeared. For the

most part pairs view themselves as a single unit. When one member of a

pair is called on to provide an explanation the partner frequently

assists either by directly joining in the discussion or by prompting

the partner. Students often go to the front of the room to explain

their solutions. When one member of a pair is called on the partner

usually follows along to the front of the class. Unity is usually

demonstrated in such solution explanations even when there was

considerable disagreement between partners while they were completing

the teak.

Further evidence of changes in student beliefs indicate that, in

comparison with the beginning of the school year, now mathematics has

leas to do with getting done or generating correct answers than it does

with thinking things through for oneself. Initially children made

excuses when they came up with wrong answers, such as, "I couldn't see

the picture from where I was sitting" or "I said it wrong." Having the

answer correct was very important. This is in contrast to a recent

episode in which one student told another pair the answer to a problem.
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The pair was very disappointed because they had been deprived of the

opportunity to figure it out fur themselves. In a traditional

classroom students are happy to get answers from one another because

their goal is to get finished. In this case the disappointment of the

pair was so great that they reported it to the teacher.

SMALL GROUP INTERACTIONS

Initially, the children typically divided up assigned activities

and then worked separately on particular problems. For example, some

children agreed that they would solve alternate problems. Most of the

conflicts observed resulted from one child giving an answer to a

problem they previously agreed would be solved by the other child. Now

this division of problems is rare. Children either assume

complementary roles, for example one child physically operates with

manipulatives while the other child observes and checks the solution,

the children solve the same problem using their own methods and compare

answers and solution methods, or they work cooperatively to solve the

problem.

Conflicts arise primarily when one child dominates the activity

either by not allowing the other child to see and handle the activity

sheets, when one child does not wait for a partner who is using an

alternative solution method, or when partners disagree on a solution

method or an answer. In the four pairs being studied in depth,

domination of the activity sheet occurs when one child perceives that

the partner does not want to work or when one child thinks that he/she

is "smarter" than the other. The experience of this project is that in

most cases the child that does not have access to the activity sheet

protests to the partner and they mutually resolve the conflict. Only

in the case of one pair are protests frequently made to the teacher.

The teacher's typical response to a protest is, "What are you going to

do about it?" This response is consistent with the goal of development

of moral autonomy. Conflicts that arise when one child does not wait

for the partner who may be using a different solution method are

usually resolved in a similar fashion.

The third type of conflict is commonly observed in the project

classroom. Such opportunities for peer challenge typically elicit

extensive dialogue, sometimes with very determined exchanges of ideas.

Our experience is that almost invariably the partners achieve a mutual

understanding of the problem and agree on a solution.

1168



CONCLUSION

Preliminary evidence is that students who participated in the

second grade problem-centered mathematics curriculum project believe
that mathematics makes sense, it consists of ideas and relationships

that can be figured out, mathematics is learned by solving problems,
and that they are capable of constructing mathematical knowledge for
themselves. As early as second grade, children are able to form
productive cooperative working relationships which facilitate their
learning. The non-cognitive goals of development of moral and

intellectual autonomy are attainable with appropriate curriculum
activities and instructional strategies.
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MEANWG CONSTRUCTION IN MATHEMATICAL PROBLEM SOLVING
Lauren B. Resnick and Sharon Nelson-Le Gall

University of Pittsburgh

ABSTRACT
This paper reports early results .sf a program of research that alms to improve
children's mathematics learning by developing attitudes and strategies that
support processes of Interpretation and meaning construction In mathematics.
We are examining processes of socially shared problem solving, In which an
adult and other children provide scaffolding for individuals' early problem
solving efforts. Different ways of scaffolding problem solving efforts and
building self-monitoring strategies are explored In early studies. These studies
also show that the intimate relationship between conceptual knowledge and
problem-solving In mathematics sets special constraints for instruction and
learning.

Considerable research now shows that many children learn mathematics as symbol
manipulation rules. They do not adequately link formal rules to mathematical concepts- -

often Informally acquired--that give symbols meaning, constrain permissible

manipulations, and link mathematical formalisms to real-world situations (Resnick, in
press a). Widespread indications of this problem Include buggy arithmetic algorithms,
algebra minks, and a general inability to use mathematical knowledge for problem
solving. However, hints exist that strong mathematics students are less likely than other

students to detach mathematical symbols from their referents. These students seem to

use implicit mathematical principles and knowledge of situations Involving quantities to

construct explanations and justifications for mathematics ruleseven when such
explanations and Justifications are not required by teachers.

This conjecture is supported by research In other fields of learning. For example, it has

been shown that good readers are more aware of their own level of comprehension than
poor ones; good readers also do more elaboration and questioning to arrive at sensible
Interpretations of what they read (e.g., Brown, Bransford, Ferrara, & Camp Ione, 1983).

Good writers (e.g, Flower & Hayes, 1980). good reasoners In political science and

economics (e.g., Vass, Greene, Post, & Penner, 1983), and good science problem solvers

(e.g., Chl, Glaser, & Rees, 1982) all tend to treat learning as a process of interpretation,

Justification and meaning construction. In a few Instances intervention programs have
Improved both the tendency and the ability of students to engage in meaning

construction. The best developed line of such research Is in the field of reading. Palincsar

and Brown (1984), broadly following a Vygotakian analysis of the development of
thinking, proposed that extended practice In communally constructing meanings for texts

should eventually Internalize the meaning construction processes within each individual.

Their Instructional experiments, in which small groups of children worked cooperatively to

Interpret a text, showed broad and long-lasting effects on reading comprehension.

We report here on a program of research that is aiming to improve children's
mathematics learning by developing attitudes and strategies that support processes of

1170



- 216 -

Interpretation and meaning construction In mathematics. Our choice of collaborative
problem-solving as a means for meeting this goal reflects an analysis of the nature of
cognition that we share with a small, but growing number of psychologists,

anthropologists, linguists and sociologists who have been analysing socially distributed

cognition in various applied and school settings (see Resnick, in press c, for a review and
interpretation of some of this research).

Socially shared problem-solving sets up several conditions that may be Important In the
development of mathematical competence. The social setting provides occasions for
modeling effective thinking strategies. Thinkers with more skill (often the instructor, but
sometimes more advanced fellow students) can demonstrate desirable ways of attacking

problems and constructing arguments. It also permits critiquing and shaping of thinking
because processes of thought as well as results become visible. The social setting is also
motivating; through encouragement to try new, more active approaches, and social
support even for partially successful efforts, students come to think of themselves as
capable of engaging In Interpretation and meaning construction. Finally, collaborative
problem solving can provide a kind of scaffolding for an individual learner's Initially
limited performance. Instead of practicing small bits of thinking in Isolation, so that the
significance of each bit is not visible, a group solves a problem together. In this way,
extreme novices can participate in actually solving the problem and can, If things go well,
eventually take over all or most of the work themselves.

INITIAL STUDIES: SPECIFIC KNOWLEDGE AND
GENERAL STRATEGIES

Our Initial efforts were aimed at examining the extent to which the method of reciprocal
teaching, developed by Pallticsar and Brown to teach reading comprehension skills, could
be applied to mathematics learning. Palincsar and Brown use - highly organized small-
group teaching situation, In which children took turns playing the role of teacher, a role In
which they pose questions about texts, summarise them, offer clarifications and make
predictions. These four activities are thought to Induce the kinds of self-monitoring of
comprehension that are characteristic of good readers. The adult's role In these sessions,
In addition to keeping the general process flowing smoothly, Is to model problem-solving
processes (including encountering and overcoming difficulties); to provide careful
reinforcement for successively better approximations to good meaning construction
behaviors on the part of the children; and, above all, to provide scaffolding for the
children's problem-solving efforts.

Knowledge-dependence of Mathematical Problem-solving
We began with a series of four sessions with a group of five fifth grade children. In these

sessions, word problems Involving some aspect of rational numbers were to be solved
collaboratively, with children taking turns serving as leader of the discussion. Sessions

were tape recorded and full transcriptions prepared. Study of the protocols revealed two

fundamental problems that would have to be met In adapting the principles of reciprocal
teaching to mathematics. Both are rooted in the fact that mathematics problem-solving Is
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more strictly knowledge-dependent than is reading.

Firel,, In our problem-solving sessions, children frequently foundered on sheer lack of
knowledge of relevant mathematical content--despite our having chosen rational number

problems In order to match our sessions' content to what children were studying In their
regular mathematics class. This contrasts sharply with conditions In reciprocal teaching
groups In reading, where children are rarely outright wrong in their summaries and
questions; their responses may not enchance comprehension very much, but they do not

drive it off course, either. An example of the dramatic ways in which insecure bas!c
mathematics/ knowledge blocked successful problem solving is a situation in which the
children had drawn a "pizza" and divided it Into six parts, each called "a sixth "; they
then shaded three parts, after which they asserted that each shaded part was "a third."

in situations like this, the adult must choose between interrupting attention to problem-
solving processes to teach basic mathematics concepts and attempting to continue
problem-solving with fundamental errors of Interpretation. Neither choice seems likely to

foster the development of appropriate meaning construction abilities.

Second, part of what makes reciprocal teaching work smoothly In reading Is that the same

limited set or activities (summarizing, questioning, predicting, clarifying) is carried out
again and again. It Is not as easy to find repeatable activities of this kind for mathematics,

because specIfic knowledge plays such an important role in solving each problem. We
used some very general repeated questionsIntroduced and repeated by the adult leading

the sessions such as "What Is the question we are working on?" "Would a diagram
help?" "Does that [answer] make sense?" or "What other problem Is like this one?"

However, as is also often the case for more mathematically sophisticated Polya-like
heuristics, these appeared too general to adequately constrain the children's efforts. For
example, they did not know what diagram to draw (or drew it incorrectly), or could not
decide whether an answer was sensible because they had misunderstood basic concepts.

Using Strategies Venus Talking About Them
is a second effort, we attempted to respond to each of these problems In a systematic
way. The children were fourth graders; they worked in a group of five for 13 sessions,

each led by the same adult. To control for children's lack of specific relevant

mathematical knowledge, we chose problems that Invoked concepts from the previous year

of mathematics Instruction rather than the current year. This control for unmastered

mathematical content was successful. We encountered very few occasions In which

fundamental mathematical errors or lack of knowledge Impeded problem solving.

On the basis of cognitive theories of problem solving, we identified four key processes that

should be repeated In each new problem-solving attempt. These functions are (1)

planning- -i.e., analyzing the problem to determine what kinds of procedures are

appropriate; (2) organizing the steps for a chosen procedure; (3) carrying out the steps of

the procedure; and (4) monitoring each of the above processes to detect errors of sense

and of procedure. For each problem to be solved, the four functions were assigned to four

different children. The Planner was to take responsibility for leading a discussion of the

problem, In order to decide what particular strategies and procedures should be applied.

Once a procedure was ctrisen by the group, the Director's task was to explicitly state the
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steps in the procedure. These steps were to be carried out by the Doer at a publicly visible

board. The Critic was to intervene whenever an unreasonable plan or an error In
procedure was detected.

The tactic of dividing mental problem - solving processes into overt social roles was not

Initially a success. The research community has shared meaning for terms such as
planning, directing and critiquing/monitoring. But, with the exception of the Doer role,
these meanings were not conveyed to children by the labels, and we were not successful in

verbally explaining them to the children. As a result, the roles became instruments for
controlling turn-taking and certain other social aspects of the sessions, but they did not
successfully give substantive direction to problem-solving. Children discussed the roles a
great deal, but they did not become adept at performing them. This points to a,
fundamental problem with certain metacognItive training efforts that focus attention on
knowledge aloof problem solving rather than on guided and constrained practice in doing
problem-solving. Such efforts are more likely to produce abilities to talk about processes
and functions than to actually perform them.

In session 6, we attempted a modification of one of the roles, the Critic, in order to deal
with this problem. The critic's function was distributed to two children, who were each
given "cue cards" that they were to use to communicate their criticisms. The cue cards
read:

1. "Why should we do that?" [request for Justification for a procedure]

2. "Are you sure we should be adding (subtracting, multiplying, dividing)?"
[request for Justification of a particular calculation]

3. "What are we trying to do right now?" [request for clarification of a goal]

4. "What do the numbers mean?" [insistence that attention focus on meanings
rather than calculation and symbol manipulation]

The cue cards served to scaffold the critic function by providing language for a limited set

of possible critiques. At first the children used the cue cards more or less randomly and In
a rather Intrusive fashion. However, during the course of the succeeding seven sessions,

children's use of the cue cards became more and more refined, so that they used them on

appropriate occasions and in ways that enhanced rather than disrupted the group's work.

CURRENT AND PLANNED STUDIES

In studies currently underway and planned, we are examining more restricted forms of
shared problem-solving, in order to gain greater experimental and analytical control. We
will study groups engaged In collaborative solution of various classes of mathematics
problems. We will also study groups whose task Is to construct story situations that could

generate particular arithmetic expressions or equations (cf. Resnick, Cauzinille & Mathieu,
,n press; Putnam. Len° Id, Resnick, and Sterret, this volume). Finally, we will study
grct.p3 whose task is to instruct new (to them) mathematical procedures and algorithms.
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Planning and Means -Ends Analysis
A study currently underway examines pairs of children solving problems that are
particularly suited to classical "means-ends" problem-solving strategies (cf. Newell ,

Simon, 1972). Participants In the study were 12 pairs of children, 3 pairs each in grades

4, 5, 5 and 7. Each pair of children met three times for 40 minutes and solved two to six

problems.

To scaffold the means-end problem-solving strategy, children were given a Planning Board
to work with. The board provides spaces for recording what is known (either given In the
problem statement or generated by the children) and what knowledge Is needed (goals and

subgoals of the problem). Using the board, children can work both "bottom-up"
(generating "what we know" entries) or "top-down" (generating "what we need to know"
entries). A space at the bottom Is provided for calculation. Each child writes with a
different color pen, so that we can track who In responsible for each entry. Full verbal
transcripts of each session are also prepared.

At each grade level, one pair of children was assigned to each of three conditions. The
conditions were:

1. Planning Board With Maximum Instruction. The children solved problems
using the planning board. During the first session, the adult demonstrated use
of the planning board, and then participated In the first two sessions as a
provider of hints and prompts to further scaffold the problem solving process
and the use of the board.

2. Planning Board With Minimum Instruction. The children solved problems
using the planning board. The adult demonstrated the boar(' and provided
hints and prompts during the first session only.

3. Control. The children solved problems without the planning board during all
three sessions.

Preliminary Inspection of the data suggest that older children and children with more
training come to use the board more efficiently. They also generated more goals and
Inferences on the board. However, in three sessions, there was no effect on accuracy of

solutions.

Protocols of the sessions are now being coded in a form that allows us to plot the logical
structure of the joint problem-solving effort-I.e., what goals are generated and In what
order, what Inferences are made from data that is given In the problem statement, how
what Is known is mapped to goals. Our coding will also permit us to examine the nature
of the social sharing of the problem-solving effort. For example, we will be able to
determine whether the two children work together on a particular goal or whether they
work in parallel; and whether role specializations arise, such as one child working "bottom

up" and the other "top down."
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GENERAL DISCUSSION

The use of a social setting for practicing problem solving Is shared by a number of other
Investigators, Including some In the field of mathematics (see Resnick, In press b).
Lampert (1986) conducts full -class discussTon in which children Invent and Justify solutions

to muthematIcal problems. Lampert's discussions are like those of reciprocal teaching In
that they are carefully orchestrated by the teacher, and Include considerable modeling of
interpretive problem-solving by the teacher. Schoenfeld's (1985) work with college
students shares many features of the Lampert elms lessons, but with considerably more
focus on overt discussion of general strategies for problem solving than Lampert uses, Lesh

(1982), by contrast, shares reciprocal teaching's small-group format for collaborative
problem solving, but has no teacher present. This means that Lesh's problem solving
groups benefit from the debate and mutual critiquing that children give each other, but
do not have the opportunity to observe expert models engage in the process and are not
taught any specific techniques for problem analysis or solution. Scaffolding will also be
limited to what children are able to provide spontaneously for one another. The kinds of
s'alyses that we are developing for our data could also be applied to problem-solving
groups functioning In these alternative modes. Eventually, comparative studies should
help us understand more how these alternative approaches to collaborative problem-
solving actually function In supporting and developing mathematical competence.
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L'INGENIE.RIE DIDACTIAUs,UN INSTRUMENT PRIVILLGIL POUR UNE PRISE
EN COMPTE DE LA COMPLEXITE DE LA CLASSE

REEtilDNApv, M.ARTIGUE C.COMITI
IREM Universitb Paris 7 I,F.M Univers' to de Grenoble I

Abstract: Didactical engineering Is one of the components of
a methodology which takes the classroom as an object of
study. For this it is necessary to define the possible moons
of action of the teachers and to determine the contreints to
which they are subject. The problem Is to delimit e small but
significant part of a venj complex system. We propose a
methodology in three stages. First, there is an e-priori
analysis. As an exempla tfArtigue presents a study of the
role of the differential equations in scientific knowledge,
its teaching until now, and the gap between the two. In the
second stage didactical hypotheses are mode, and a teaching
process based on these Is conceived. This process is then
realized in the classroom. The final stage consists of an
analysis and critique of the results of stage two. C.Comiti
will present on example illustrating some didactical
problems which aro encountered when teachers attempt to
construct and interpret a didactical sequence.

I - Introduction

L'un des objectlfs de lo recherche en didactique est de produlre des
connaissonces sur le systeme didectique d tous les niveoux de

l'enseignement, qu'il sett obligetoire ou postobligeteire. Le classe est un
lieu de vie ou se nouent des relations complexes entre le mitre et les
eleves dont l'enjeu est le savoir quo l'un a le charge de transmettre et quo
les autres doivent s'epproprier. Des fecteurs d'ordres differents influent
sur ces relations perfois tie Macon contredictoire. On y distingue des
contreintes expilcites -programme, horeira, nombre d'eleves- des facteurs
dont l'enseignent dolt tenir compte -l'ottente des parents, des inspecteurs.
des eleves eux-memes, les coutumes didectiques de l'environnement
professionnel- mots aussi ties merges de manoeuvre quent au decoupage des
sevoirs, a lour forme de presentation (transposition didectique), quent fl le
repertition des responsebilites entre l'enseignent et los eleves et eussi aux
regles qui vont regir les interactions maitre- eleves ou eleves-eleves au
sein de le classe o propms des contenus de sevoirs selectionnes (contra
didectique), quent a to prise en compte des diversites cognitives et plus
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lorgement de rhoterogenelte dos bi6ves (point do vue socio-cognit if).
Situer les merges de manoeuvre d'un maitre dons se classe compte tenu

de l'ensemble des contraintes euquelles il est soumis, determiner
l'exploitation qui pout en etre loge pour obtenir un resultat desire au
niveau de l'epprentissoge des eleves, voile des questions qua le chercheur
en didactique vo pouvoir aborder par tine rnethodelogie d'ingenierie
didactique, Pour cola, 11 dolt preciser ses questions, les transformer on
hypotheses se situant dons un cadre theorique eprcuve do maniere 6 pouvoir
construire une experience les prenant en compte et confronter les resultats
de l'experience aux previsions.

2 - Problemetique

2- i 1'.nakellatka121.W.Q11Q

Avant de presenter noire cadre theorique, nous foisons Vhypothese
proolable, qu'au-dell des diversitos des Cleves et des situations, 11 8,ViSt6
des regularites dens les processus da,oprentissage scolaire ( y compris
universitaire, male les regularites no sont pas necessoirement les memos)
quit est possible de construire des onsoignaments les prenant on cornpto at
quo ces enseignements ameliorent refficacite des acquisitions pour
beaucoup d'eleves. F'or ailleurs, pour des raisons epistemolegiques issues do
Vhistoire possee, rbcente ou de la vie scientifique actuelle, nous adoptons
to point de vue salon leque) /act/vile matheinativie a essenliellement pow
hut de r6soudre o'es prabMmes et de poser de nouvelles questions Masi
dirons-nous qu'un 0/dye e, &cons des connaissonces en mothematioues
est capable den provoquor le fonctionnetnent dans des problernes(point de
vue MTh, QUO 1.6nonce y Mere explicitement ou non, pourvu quit s'agisse
d'outils adoptes de resolution. Nous retenons aussi quo des periodos
fondamenteles de la vie mathematique ant ate consurees 6 reorganiser les
connaissances, d construire des theories et, a assurer les fondements (point
de vue olVet).

2-2 ZEILLItike.aqui

Nous nous situons dans le cadre de In theorie constructiv1ste de Piaget.
Nos references theoriques sont les suiventes: transposition didactique

(Y.Chevallard 1955), contra?' didactique, carecteristiQues - action,

formulation, validation et aussi institutionnalisation- des situations, les
concepts de parittNe didactique, soul informationnel (G.Drousseau 1980,
organisation de l'ensei,gooinent , 8 partir de problbines de rnathematiques
repondant o certaines exigences, par dielectioue otitil-olyet dont la phase
"recherche' est activee par des jeux de cadres (R.Douady 1985), effet
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producteur des confilts cog/Wits , en situation de communication
(A.N.Perret-Clermont 1979, A.Robert et I.Teneud 1987, R.Douedy et
M.J.Perrin 1987).

2-3 Exemikes de oroblemes dldactlaues

Les problemes didectiques qu'un chercheur est amens a etudier ne
relevent pas tous dune methodologie d'ingenierie didectique, tent s'en feut.
Nous ellons donner des examples d'etudes didectiques qui relevent de cette
methodologie et plus precisement dune macro-Ingemerlt; c'est 6 dire dune
ingenterie portent sur beaucoup de seances car le duree est un parametre
significatif pour ce qu'on veut observer.

Une categorie concerne l'etude des processus d'opprentissage d'un
concept donne. Mons per exemple le numeration en debut d'ecole primeire
(A.Bassot, C.Comiti 1965 p.305-345), les etres de surfaces planes en fin
d'ecole primeire et debut du college (R.Douedy et M.J.Perrin 1987), les
equations differentielles en debut d'universite (M.Artigue PME11,1987).
D'autres etudes sont transverses aux contenus: apprentissage de mothotles
portent sur un domain° comme ie geometrie (en terminals C section
mothematique ou en 4eme armee d'universite preparation 6 un concours de
recrutement de l'enseignement secondeire) ou d'un mode de travail en
situation scoleire ou universiteire comme le travail en groups (qui' va blen
felloir etudier 6 travers l'apprentissage de quelquechose: c'est ce qu'etudie
A.Robert en collaboration avec I.Teneud 6 l'occesion d'un enseignement de le
geometrie). Dens cette derniere recherche, A.Robert et I.Teneud mettent en
evidence qu'un chengement du contrat de class° entre l'enseignant et les
eleves change de facon qualitative les comportements et per suite les
productions. Precisons per un de leurs exemples. Une des hypotheses keit:
le travail en petits groupes sur des problemes de geometrie choisis pour
etre resolubles de multiples menieres permet de faire fructifier les
differentes conceptions des eleves en presence et fevorise le
developpement de preuves pour comaincre lautro . Premier contret: au
cours du travail, l'enseignente circule dens les rengs et demande aux eleves
obits en sont. Les eleves 6 l'approche du professeur s'erretent de traveler.
Elle decide de changer de contra et l'annonce. Deuxieme contret:
l'enseignante ne vient que si le groupe l'appelle en ces de conflit. Elle
constete elors que checun reste sur ses positions en comptent sur le
professeur pour apporter le verite. Troisieme contret: l'enseignente
demande qu'on ne l'appelle qu'epres evoir resolu et prouve quelque chose.
C'est seulement 6 ce moment que les preuves et demonstrations sont
epperues dons leur fonctionnallte. Neanmoins nous estimons qua ces
contrets loceux prennent leur sans au sein d'un contret plus global attache 6
to classe, ce qui rend, entre autres elements, incontournable le
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developpement de recherches experimenteles sur le terrain.
Le probleme auquel s'est attaque tl.Artigue et qu'elle va vous presenter

dans sa communication, est celui de l'adaptation d'un enseignement
obsolete, en debut d'universite de la theorie des equations differentielles, 6
revolution scientifique at technique. Generalement, le point de vue adopts
est celui d'un apprentissage dans is cadre elgebrique, lequel permet de
resoudre certaines equations differentielles en exhibant des formules. Or
le cadre qualitatif, qui offre des methodes qualitatives d'etude, enrichit
considerablement le champ des equations differentielles susceptibles
d'être treitees. L'ingenierie construite par tl.Artigue a permi ses objectits
de cerner le contribution qua cheque cadre algebrique, informatique
qualitatif - pout apporter 6 l'etude des equations differentielles non
resolubles et de preciser to gestion didactique qui peut etre tette des
changements de cadres pour qu'ils soient un instrument producteur
d'information .entre les mains des etudiants. Qu'est ce que les etudiants
doivent savoir ou savoir faire dans cheque cadre, pour que la mobilite
puisse devenir une habitude at qu'ils n'aient plus qu'a se soucier de
refficacite qu'elle peut produire? Quels contreles peuvent-ils avoir sur
leurs conjectures et convictions? Pour d'autres problemes, une

micro-ingenierie (portent sur une ou un petit nombre de seances) plus
legere de mise on oeuvre et plus aisement contrelable peut etre la
methodologie adaptee .

3 - methodologie

La methodologie se decompose en trots temps. D'abord, une analyse e
priori qui dolt perrnettre de formuler des hypotheses cognitives et

didectiques. Ensuite, la conception d'un enseignement qui les mettent en
oeuvre, puts le reolisetion et l'oPservation des sequences construites.
Enfin enelyse et la critique des productions par rapport 6 le

problematique de depart.

3-1 Analyse Q-DrIorl

Elle est un point cle de la methodologie pour eloborer des sequences
d'opprentissage pertinentes visa vis 6 la fois des eleves et du problem°
didectique pose. Cette analyse comporte plusieurs composantes:

o) une etude Opistemo/ogique.caracteriser la place du concept dens se
genese historique, sa place actuelle dens la diversite des problemes ou it
intervient comma outil adapts, reperer les autres concepts avec lesquels 11
entre en interaction dens les problemes retenus et qui contribuent 6 lui
dormer de la signification, les cadre: utilises et to facon dont Us sont
expl oites.
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b) le signification mothematique: point de vue objet.
c) une etude du point de yuegeneralement adopte dens lenseignement,

voire de son evolution 6 trovers les changements de programme.
d) un releve des conduites des ilevescompte tenu de Venseignement

habitue': reperage des erreurs, lien eventuel avec l'enseignement recu au
mains au niveau dune hypothese, reperege des procedures, des conceptions,
des performances.

3-2 Ing§nierie diclactigue o[oorement date

a) elaboration de sequences les etudes precedentes ( dont it s'agit
d'evaluer pour cheque recherche la pertinence compte tenu du coat)
permettent de corner des variables potentielles sur lesquelles l'enseignent
peut agir (variables didactiques). Elles fournissent les moyens de poser des
hypotheses 6 partir desquelles se font des choix didactiques (contreintes et
valeurs de variables didectiques, cadres de travail...) qui debouchent sur le
conception de sequences d'apprentissage les mettent en oeuvre et
satisfdisent les contreintes de le closse, notomment en ce qui concerns le
temps et l'heterogeneite des eleves. Elles permettent de faire des
previsions sur les comportements des eleves.

b) realisation des sequences et oPservotion ties eleves, de ce qua dit ou
felt Venseignont et quond. Est ce bien le seance prevue? sinon en quoi
differe-t-ells? pourquoi? Quel contret *le les echanges entre les
differents ecteurs de to closse? Peut-on reperer des regles stables
(coutumes) at des regles variables at elors en fonction de quoi?

On se rend compte qua les representations des enseignents sur les
mathematiques, sur ce qu'est l'activite mothematique, sur recces au sevoir
perfois module salon le profit quits concoivent de leurs eleves, comme
d'ailleurs les representations des eleves eux-memes sur cos memos
focteurs, interferent fortement avec les conditions de deroulement prevues
pour to situation. D'ou de nouvelles hypotheses 6 tester dens de nouvelles
recherches salon une methodologie d determiner. Je lois 16 reference el des
recherches recentes d'A. Robert sur les representations.

c) evaluation des Neves confrontation des comportements initioux
avec ceux en cours d'apprentissage et 6 le fin, per epreuves ecrites et/ou
per entretiens individuels ou 6 deux salon qu'on envisage to possibilite de
conflits cognitifs et qu'on veut les observer at en analyser les effets.

3-3 AnalyiejksaraLiluttleakritia

Le materiel experimental soumls d l'analyse est constitue de le
description des sequences telles qu'elles ont ate prevues en fonction de
Vomitus° o-priori, des chroniques de closse redigees per des observeteurs,
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des transcripts d'enregistrements audio ou video, des productions des
eleves en cours d'apprentissage et en epreuves devaluation. 11 se peut quo
pour un corpus donne une methodologie particuliere d'exploitotion soft 8
definir: par exempla, grille de depouillement de copies, decoupage du texte
des transcripts en reference aux concepts didactiques du cadre

theorique...l'onalyse dolt prendre en compte 8 la fols l'onalyse a-priori et
les conditions reelles de realisation de l'experience.

3-4 Interorkationjesrisigtaaparsaauguin" ie didactique.

II se peut qu'apparaissent des phenomenes qul obligent 8 modifier la
premiere elaboration at peut-etre de focon fondomentale, Citons 6 ce
propos l'importance des situations d'institutionnalisation, cello du contrat
didactique. II se pout que les observations confirment les hypotheses. On
pout alors esperer tenir de bonnes conditions de reproductibilite .

4 Evaluation et limites de cette methodologio

Elle est Vas lourde at ne peut etre que le travail d'une equipe. Elle est
donc 6 economiser en l'associont 8 d'autres methodes telles que entretiens,
questionnaires, etudes statistiques, mats aussi simulation de classes par
ordinoteur. Par ailleurs, elle ne permet de tester que des hypotheses
composees avec des facteurs dont certains ne peuvent etre controles tors
de la realisation. Toutefols, si les resultats analyses de l'observation
grossissent durablement les effets attendus, on peut estimer que les
hypotheses sent volidees. Par ailleurs, on peut trouver des elements de
conviction dans la convergence de resultats exporimentaux varies, dans la
coherence entre des resultats nouveaux et des resultats plus anciens, mats
surtout dons la reproductibilite quand c'est possible.

5 - Application

Les outils forges pour les besolns de l'ingenlerie didactique ou issus des

resultats des differentes recherches y recourant, sent des instruments
precieux pour expliquer des comportements d'eleves dons une situation
mise en place par un enseignent dans sa classe on dehors de tout contexte

experimental. C.Comiti dons son intervention, va vous presenter une

analyse des comportements d'un enseignant et des eleves dune classe de

grade 10 (classe de seconde on France) dons une situation d'etude de la

pertinence mothernattque dune representation graphique de phenomenes

economiques. On reconnoitre au dkroulement de la sequence les differentes

phases de la dialectique outil-objet s'appuyant sur une situation-probleme

repondont aux conditions qu'elle demande. On reconnoitre dons les
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problemes qui ont opparu nu cours du deroulement ceux poses par la
transposition didactique at to temps didactique , par le contrat didactique,
devolution du probleme, representations des Moves at de l'enseignant sur ce
qu'est roctivite mothimatique...

6 - Conclusion

Si lourd at ombitieux quo snit l'instrument, c'est to seul qui prenne en
charge l'ensemble des composantes du systeme educatif. II est
indispensable pour etudier ce qui est propre 6 to closse, 6 savoir le felt
collect/ f, et ce, d deux niveaux: entre pairs at entre maitre at Metres. Nous
reperons un point sensible de to responstibilite du maitre at pourtont
crucial par ses consequences: c'est l'artIculatton entre les activites des
eleves at to cours du maitre, i.e, ce qua Is maitre 1nstitutionnalise at is
moment quit choisit pour cola. Un sutra point sensible, mats de to
responsabilite des sieves est l'articulation entre savoir de la closse dans
son ensemble et appropriation individuelle. Un probleme peu (Audio jusqu'ict
est la construction du savoir de chocun dons to ternps reel de to clone.
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ANALYSIS OP A CLASS-SESSION FOCUSING
ON THE MATHEMATICAL RELEVANCE OP A

CHART ILLUSTRATING ECONOMIC DATA

Claude COMITI, Institut de Formation des Maltres, UNIVERSITE GRENOBLE 1

Starting with the analysis of a class-session (15 years-old) focusing
on the mathematical relevance of a chart concerning the distri-
bution of local taxes (see the last page), a demonstration will
be made of how didactic research tools developed within the
framework of "didactic engineering" can provide valuable support
In
. explaining learner behaviour on a normal classroom situation
. facilitating teacher awareness of the different learner appro-
priation levels of a given mathematical concept and at the
same time of the different cognitive paths to be taken in consi-
deration in the collective elaboration of a new knowledge.

ANALYSE D'UNE SITUATION DR CLASSE PORTANT SUR
L'BTUDB DE LA PERTINENCE MATHEMATIQUB DUNE

REPRESENTATION GRAPHIQUE D'UN PHENOMENE ECONOMIQUI3

A partir de l'analyse d'une situation de classe, portant sur l'etude,
par des eleves de 15 ans, de la pertinence mathematique d'une
representation graphlque presentant la repartitlon de l'impot local
(volr derntere page), on montrera comment les outils forges pour
les besoins de la recherche en diclactique sous le nom d'ingenierie
didactique peuvent titre des instruments precieux pour
expliquer des corn portements d'eleves dans une situation de

classe mise en place hors de tout contexte de recherche
permettre a l'enseignant une meilleure prise de conscience

des differents niveaux d'appropriation par les eleves d'un concept
mathematique donne et par la mettle de la diversite des chemins
cognitifs des eleves a ptendre en compte lors de In construction
collective de la connaissance.

LA DEMANDB DES ENSEIGNANTS

Le travail qui est present& ici est le resultat dune collaboration entre

enseignants de lycee et chercheur en didactlque, collaboration qui West

instauree a Is suite d'une demande de deux enseignants de mathernatiques

de classe de Seconde (Grade 10). Ces enseignants avalent essaye, lee annees

precedentes, de mettre en place, en liaison avec un professeur d'histoire-

geographie et un professeur d'economie, une innovation dont les objectify

etalent les suivants :
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" decloisonner l'enseignement des mathematiques par une prise en
compte de l'environnement des eleves,

diversifier les cheminements possibles de l'apprentissage afin de
mleux prendre en compte l'heterogeneite des classes,

favoriser l'appropriation par les eleves des concepts de croissance,
de proportionnalite,

lee rendre capables de comprendre, construire et utiliser comme
base d'argumentation des tableaux ou graphiques.

La demande des enseignants de mathematiques repondalt a un besoln

de prise de recut par rapport aux pratiques mises en place en liaison avec
cette Innovation ; elle mettalt l'accent sur une volonte de recherche d'outils
methodologiques permettant d'objectiver leurs pratiques, de mettre en
evidence lee modes d'apprehension par les eleves des situations proposees,

de mesurer les apprentissages effectues au cours de cos situations.

Au dela de cette demande precise, se profilait un questionnement
sur le role atrial que la place des problemes ouverts et des travaux en petite

groupes dans une construction et une structuration du savoir par lee eleves

qui prennent en compte la diversite des chemins cognitifs de chacun,

- sur Is meilleure fawn pour le maitre de gerer lee rapports entre
constructions lndividuelles et construction collective des connaissances.

LB PROBLEMS POSE AU CHERCHEUR

11 s'agissait, pour le chercheur, de mettre a is disposition des enseignants

les concepts et outils, forges pour les besoins de la recherche en didactique

sous le nom d'ingenierie didactique, de (icon a permettre aux enseignants
d'Claborer eux-memes des reponaes I leurs propres questions en lee amenant a

une explicitation des choix theoriques sous- Jacents

une analyse des situations-problemes retenues par eux, en ce qui
concerne les contenus mathematiques en jeu, lee conduitec et procedures
attendues chez les eleves, leur propre role...

une mice en place d'outils d'enregistrement et d'observation des
conduites d'action, de formulation et de validation de eleves au sein de chaque

groupe de travail

une confrontation du deroulement effectif des seances avec lee
previsions effectuees avant la realisation de in sequence
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LBS CHOIX THEORIQUBS SOUS- JACBNTS

Un travail prealable a permis une clarification des hypotheses retenues

en ce qui concerne la construction de la connaissance mathematIques chez

les eleves :
1) accord sur les hypotheses constructivistes et sur la theorie des reequi-

librations : la connaissance se constrult dans Faction qui se tradult
essentlellement en mathernatiques par la resolution de problemes ou

les interactions entre suJet et situations-problemes Jouent un role fonda-

mental ;

2) existence de diversites de cheminements cognitifs des eleves dans
l'acqulsitlon d'un concept mathCmatique donne et role fondamental, dans

l'appropriation des connaissances par l'eleve, des interactions et des

conflits socio-cognitifs entre pairs.

PRESENTATION DE LA SITUATION DE CLASSE RBTENUE

La classe concernee etant une classe de 36 eleves, l'emplot du temps

prevoyait une séance hebdomadaire dedoublee. C'est cette seance de lh

en demi-classe qui a ete utilisee pour l'experimentation. Au sein de chaque

demi-classe, les eleves ont ete repartis par groupes de trots ou quatre.
La situation-probleme retenue consiste en ('etude dune page, issue

du Journal Municipal de Grenoble, presentant, sous le titre "06 va l'impOt"

une representation graphique de la repartition de l'Impot local (voir derniere

page).
La consigne donnee &sit la suivante :

"vous allez lire une page du Journal de la ville de Grenoble, Grenoble Actualite.

II s`agit, non pas de discuter comme le ferait le professeur d'economie,

pourquoi at peu a la culture... ? Male, les chlffres etant ce gulls sont, 11

s'agit de reflechir sur le dessin, c'est-a-dire cur I'lllustration graphique qui

a ete false de ces chiff res. Si vous n'etes pas d'accord avec ceux qui ont

fait ce Journal, vous cherchez tous les defauts ! A vous de proposer, si vous

le souhaitez, une autre illustration. Je vous laisse you debrouiller vous

etes des critiques de Journaux".

ANALYSE DE LA SITUATION-PROBLEME

Cette situation a ete choisie car 11 s'agit dune sequence d'enseignement

ou l'enceignant n'apporte pas de connaissances directement, math prend en
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charge la construction et la structuration d'un certain savoir par lea eleves
eux-

Du point de vue cogaltlt, it stagft de mobillaer les coonaissanCell
anterieures des eaves en ce qui camerae les notions de pourcentage, de
crolasance et de proportionnalite pour engager une procedure de resolution
de probleme dans un cadre different de celul dans lequel cos notions
foncttonnaient Jusque la : celul des representations graphiques de phenomenes

economiques. Sont de plus en jeu dans cette situation-probleme des notions
de geometric (carte, triangle, quadrilatere), la mesure des angles, le calcul
d'aires. finfin is situation se prate a In trase en place de demonstration par
contre exemple.

Du polat de 'Ise des rapport. des eleves i la situation- probleme. lc
probleme propose eat an probleme ouvert par Is diversite des questions et
des 'Measles possible* et par (Incertitude qui en resulte pour lieleve, un

probleme suffisamment riche pour que tous les concepts enumeres ci-dessus

puissent y etre lmpltques mats pas trop pour que les eleves puissant en gerer

la complexite. La resolution de ce probleme dolt amener les Mayes a produire

des actions dans leur recherche de solution, a creer dec signifiants, un langage,

pour assurer l'echange avec leurs camarades, avec le maitre, enf in a prouver

leurs affirmations pour convaincre leurs pairs as le maitre de leur Justesse
(phases d'action, de formulation et de validation).

Du point de rue de contrat dldactlque, le deroulemeut de Is seance
depend essentiellement de l'activite que deploient les group°s d'eleves et
des connalasances anterleures mobillsent. Le travail est propose avant
tout cours as sans rappel anterieur sur les notions mathematiques en Jeu.

Cheque Wye travaille a eon propre rythme. Le maitre eat dans une position
d'assistant, it passe de groupe en groupe, pose des questions, demande des

explications, debloque par des interrogations certaines situations...

Ceci cree des modifications importantes en cc qui concerne le contrat didac-
tique :

pour les eleves : it nest plus question pour eux d'appliquer des resultats
du cours ou de repondre a des questions posses par le maitre, 11 leur faut
ici trouver eux-mernes les questions auxquelles Its doivent repondre pour

decider de la correction mathernatique du graphique.
- pour le maitre : 11 ne connait pas a l'avance les directions de travail que
prendront lea eleves, ce qui cree chez lui une incertitude en ce qui concerne

le deroulement de la seance et les activites produites par les eleves ; ceci
modifie profondement le contrat habituel ou c'est lui en general qui guide
les Moves en Imposant un rythme commun a tous.
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Ce choir de situation necessite par la suite une seance collective
d'insticutionnalisation aont les objets dependront du deroulement effectif
de la lore séance et des divers cheminements mis en place au sein de chaque

groupe de travail.

LBS INTERROGATIONS DES ENSEIGNANTS

Blies peuvent etre regroupees en trois grandes categories, qul concernent

. la phase d'entrie dans le probleme :

Combien de temps faudra-t-il aux ileves pour faire le tour du probleme
et entrer dans l'action ? Les eleves s'arreteront-ils a des remarques &attire

general (sur le centre du carne, la somme de pourcentages...) ou s'interesse-

ront-ils a la proportionnalite de la figure aux pourcentages ? Porteront-ils

alors leur attention aux angles ou aux surfaces ?

. le travail de groupe lui-meme :
Aidera-t-il lee eleves lea plus feibles a comprendre et a resoudre le probleme

pose ? Permettra-t-il au maitre de decouvrir des difficultes insoupconnees

chez un sieve donne ? SuscItera-t-11 l'emergence de questionnements nouveaux

chez certaine eleves ?

. In mobilisation des notions mathematiques en jets :

Comment les eleves maltriseront-ils lee notions geometriquec en Jeu, les

problemes de mesure dangles, de calcul d'aires ? Utiliseront-ils lc mot

"proportionnel" N'y aura-t-il pas confusion entre proportionnalite et

croissance ? Y aura-t-11 recherche de contre exemple ?

LES PRINCIPAUX APPORTS D13 L'EXPER1MENTATION

L'analyse du deroulement du travail de chaque groupe a ere bases

sur etude des protocoles obtenus par depouillement des feuilles d'observation

et des cassettes enregistrees (un magnetophone par groupe d'eleves avalt

ete utilise tors du deroulement de is seance). Le deroulement reel a sins(

pu etre confronts aux previsions effectuees anterieurement par les ensei-

gnants ainsi qu'a leurs interrogations de depart. Nous en donnerons des exem-

pies precis lore de l'expose oral. Nous nous contenterons id de lister lee

principaux apports reperes par les enseignants eux-memes, a la suite des

analyses effectuees :

- remise en question de leurs representations individuelles des eleves, du

degre d'attention de ces dernlers, du rens qu'lls accordent aux paroles du

maitre, de leur interet pour une activite mathematique...
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prise de conscience :

. du fait que les Olives deploient une activite effective et soutenue tout
au long de la séance, n'hesItent pas a demander aux autres membres du

groupe les explications qui leur sont necessaires et qu'lls n'oseratent Jamais

demander au maitre en situation de clause habituelle, ce qui favorise leur

appropriation individuelle des notions en jeu,

. du role de cette activite des Olives dans le travail de transposition, la
Niche proposee par l'enseignant &ant en fait transform& par les connais-
sances effectives qu'y investissent les Cleves,

. de l'lllusion qui cat celle de la plupart des enseignants en cc qui concerne

la transparence de certaines formules ou encore l'Avidence de certaines
proprietes...,

. du decalage entre le projet didactique de depart et ce qui est effective-
ment realise.

RN GUISE DR CONCLUSION

Six mole apres La fin de l'experimentation, lea enseignants precisent
comme suit Its principeux changements qu'ils estiment observer dans leur
propre pratique

- &mite nouvelle par l'enseignant de ses propres discours

- ecoute differente des interventions et questions des Cleves, dans le but
de deceler cc qui fait, chez cheque olive, obstacle a la construction du
savoir en Jeu,

- prise en consideration des erreurs des Cleves non plus comme signe d'in-

comprehension ou de travail insuffisant mats comme Clement a utiliser
dans la construction mime de In connaissance

- mise en memoire des difficultes de cheque Cleve dormant lieu a un easel

de suivi individuel parallele a la conduite collective de la clause.

Comment Cvoluera dans l'avenir in pratiquc professionnelle de ces
enseignants t Parylendront-its a ghee d'une maniere pins satisfaisante a
leurs yeux la construction collective du savoir tout en prenant davantage
en compte in construction individuelie de ce savoir par cheque Cleve t

Ne peut-on esperer qu'apras s'etre trouves, pour repondre 0 leurs propres

questions, utilisateurs actif de la didactique, Its seront motives pour une for-

mation plus approfondle en didactique et pourraient alors devenir un relai
privilegie entre In recherche en didactique et leurs collegues enseignants
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INGENIERIE DIDACTIQUE A PROPOS D'EQUATIONS DIFFERENT IELLES

M.ARTIGUE UNIVERSITE PARIS 7 - IREM PARIS 7

DIDACTICAL ENGINERY ABOUT DIFFERENTIAL EQUATIONS

The report will be given in English

Abstract In France, teaching about differential equations for
undergraduate s+udents has not been influenced by
mathematical and technological developments. As a result,
this teaching is, at the present time, obsolete. The research
reported here is concerned in its renewal, specially in the
viability of a qualitative approach at this level. After an
epistemological study, the research v led devising and
experimenting a didactical enginery in this conceptual -field,
using microcomputers. We present this methodology in a fairly
detailed way and analyse the first experimental results. Theyshow partial viability but, at the same time, strong
difficulties related to qualitative proofs. The conclusions
given then concern both this specific didactical engtnery and
the whole methodology.

I INTRODUCTION

1:11aynglanstu civinassaait I M.
La theorie des equations dif ferentiel les s'est developpee depuis le I %erne
siècle dans plusleurs cadres, au sens Mini par R. Douady : le cadre
-algebrique' de la resolution exacte, le cadre "numerique" de la resolution
approchee, le cadre qualitat enf in qui vise l'etude globale, geometrique
du Plot des equations.
II est Bien connu que le cadre algebrique a doming pendant plusleurs
siec les ce champ scient if ique et que le cadre qualitatif ne s'est developpe
qu'a partir du debut de ce siecle avec les travaux de H. Poincare. Mats li

est clair que la theorie des systemes dynamiques (du point de vue
mathematique), le developpement des moyens informatiques ;dun point de
vue technologlque) ont remodele profondement, ces vingt dernieres
annees, le paysage de ce champ scientifique au profit des cadres
qua' itatif s et numeriques.
izziaziatthipaiusignmat

L'enseignement superleur elementaire ( I eres annoes d'unlversite.), en
France, n'a pas suivi cette evolution. II reste centre sur le cadre
algebrigue : integration des cas classiques integrables, developpement en
serie de solutions a l'occasion de retude des series entieres ou des series
de Fourier. Le probleme didactigue auquel nous nous sommes attaguee
dans cette recherche est done celui de l'adaptation d'un enseignement
obsolete a revolution scientif ique et technologlque.
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Llillanaosialltsimatataut
Notre problematique reievait en premier lieu du processus de

transposition didactique (Y. Chevallard (21) : identification, dans le savoir
constitue et les pratiques mathematiciennes, des objets et outils au
coeur du champ conceptuel consider& et mist en forme de ces objets et
outils pour l'enseignement, en fonction du public vise. Cette phase
episternologique rut menee au debut des annees 1980 avec le concours
d'experts mathematiciens (M. Artigue, V, Gautheron DD.

Cette premiere phase fut suivle d'experimentat ions empiriques ayant pour
t.)tjectif d'explorer la viabilite dun tel enseignement. Les difficultes
rencontrees dans cette seconde phase nous convainquirent dune telle
viabilite n'etalt pas evidente, du fait de rinteraction de differentes
contraintes : contraintes d'ordre cognitif mais aussi contraintes liees a
Ia gestion du temps, aux coutOmes didactiques et aux representations des

enseignants. Mats 11 nous apparQt aussi qu'une utilisation adequate de

l'outll informatique pouvalt modifier sufflsamment certaines de ces
contraintes pour autoriser un autre point d'equilibre que celul de

l'enseignement tradit tonne].
C'est cette hypothese que nous avons cherche a tester dans la troisierne

phase de la recherche que nous presentons Ici. Ceci necessitait un cadre
experimental qui n'evacue par Ia complexite du system° didactique ; d'ou

it choix effectue dune methodologie d'Ingenierie didactique, se situant
dans le cadre theorique presente ici meme par R. Douady

III L'INGENIERIE DIDACTIOUE

111 )Les choix aldact tows,
Vue notre problematique : adaptation dun objet denseignement obsolete

au developpement scientifique et technologique, deur, points nous ont

semble fondamentaux :
a) concevoir des le premier contact avec 18 notion on enseignement dam

les differents cadres rePertories et organiser entre ces cadres on reseac

relationnel
b) se silver dans une problematidue generale deproduction, prevision et

contrele de traces de solutions sur micro-ordinateurs
* Pour prendre en compte le point a) nous av' is elabore un enchainement

de situations didactiques favorisant les jeux de cadres, notamment

rinteraction algebrique/qualitatif.
* Pour prendre en compte it point b), nous avons eu recours a une

utilisation interactive et une utilisation differee de l'outil informatique,
('utilisation differee, c'est a dire le travail sur des traces fournis, etant

privilegiee, dans les phases de justification et de contrele, compte-tenu
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des contraintes de temps et de materiel.
II Taut souligner que l'outil informatique a ett aussi utilise pour decouper
et reduire la complexite des Caches. En effet, une etude qualitative
d'equation differentielle 'a la main' suppose le trace d'isoclines, le
regionement du plan sulvant le signe de y'....Les experimentations de la
phase 2 avalent montre que les capacites limitees des etudiants
debutants dans le domaine graphique constituaient un obstacle a la
vial:Ante deS approches qualitatives a ce niveau. L'utilisation de l'outil
informatique nous a permis de dissocier les differentes &tapes de
rapproche, donc de modifier sensiblement ce type de contrainte.
111-2 L'interaction oualitatif/algebriaue dans ringenierie
Les etudes preliminaires lalssaient prevoir que le point sensible de
l'ingenierie didactique concernerait l'approche qualitative et ses
relations avec l'approche alqebrique. C'est donc cette partie que nous
avons choisi de presenter ici. Elle est organisee en quatre phases :

phase introduction a la problematique de l'approche qualitative ;
mise en place d'outils qualitatlfs elementaires (isoclines, regionement
associe au sens de variation des solutions, invariances par symetries,
translations); interpretation dans le cadre algebrIque.
Situation support : trace de champs de tangentes pour des equations tres
simples ; exploitation pour le trace de solutions ; association entre des
traces de champs fournis et des equations donnees.

phase 2 exploitation des notions et relations introduites ;

Institutionnal isation.
Situation support : association de traces de families de solutions fournis
et des equations donnees.
- phase .7 comparalson des moyens d'action respectifs des approches
qualitatives et algebriques.
Situation support . prevision de l'allure des solutions de requation
Integrable y'-(x-2)(ey- 1 ).

phase 4:notions et theoremes fondamentaux de l'approche qualitative
elementaire (barrieres, zones pieges, entonnoirs et anti-entonnoirs ).
Situations support : justifications puis previsions de traces.
Du point de vue de la gestion, les phases de recherche sont prevues sous
forme de travail en petits groupes, et ce pour prendre er,compte au niveau
experimental les hypotheses theoriques concernant le fait col lectif.
111-3 Un exemole d'analyse a priori de situation didactique
Nous voudrions, a la suite de cette presentation d'ensemble, illustrer par
('analyse a priori dune situation la methodologie didactique de
ringenierie. En effet, un element clef de cette methodologie est l'analyse
a priori des situations didactiques, precisant et hierarchisant le champ
des possibles. C'est par rapport a cette analyse que sont ensuite
analysees et interpretees les observations, dans un processus qui vise, a
travers la validation de l'analyse a priori, la validation indirecte des
hypotheses qui la fondent.
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Nous avons cholsi la phase 2 du processus.
La situation probleme support de cette situation didactique est la

suivante : on fournit aux groupes detudiants n traces de families de
solutions d'equations differentielles et une liste de p equations II s'agit
pour eux d'associer equations et traces en justifiant par kilt les choix
realises. Apres une phase de recherche par groupes, les productions sont
regroupees et analysees et utilisees pour l'institutionnalisation prevue.
L 'analyse a priori de la situation pnivolt

Ia determination des variables didactiques de /a situation (nombre de
traces, dequations, comp/exiles respectives, caracteristiques...), les

choix effectues et leur motivation ;
- la determination des procedures de resolution possibles, une estimation
ar /airs touts respectits, /es procedures attendees, correctes oe
erronees
- des previsions sur /es dynatniques de classe possibles, sur /e role del
interactions eleves/d/eves et enseignant/eleves dans /tour evolution.
Pour is situation etudiee 1ci, resumons en brievement les donnees.
Le nombre de traces est de 8, celui d'equations de 7, deux traces
correspondant a la merne equation, avec deux cadrages differents (cf.
figure 1 ci-dessous). Ce nombre est un compromis entre des contraintes
diverses : rendre la situation dassociation reellement problematique,
fournir un eventail suffisamment large de traces et equations pour que
les criteres d'association vises alent chacun une occasion d'emploi de
coot faible, permettre d'autre part aux groupes d'aboutir en un temps
ralsonnable.
Les caracteristiques de l'ensembie des traces sont choisies pour rendre
difficile des associations par simple analogie de formes (deux cadrages
pour une des equations, trois equations presentant des expressions
trigonometriques, deux presentant des singularites pour x-1 et x--1 par
exemple) et favoriser des argumentations mathematiques variees.
Enfin Ia complexite, autorisee par l'utilisation de l'outil informatique,
joue aux niveaux precedemment decrits macs aussi au niveau

psychologique : interet esthetique, satisfaction retiree de la maitrise
dune situation d'apparence complexe.

LizaLacarlassamonglatAliguatonl
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Les principaux criteres d'association retenus dams l'analySe sont les
suivants :

cadre qualitatit
invariance par translation
Invariance par symetrie
tangentes verticales
Isoclines horizontales
trace ondulant
solutions particulieres
sens de variation des solutions

cadre aigedrique
y' ne depend pas de x ou de y
y' fonct ion impaire de x ou de y...

nest pas clef inie pour
y'.0 pour
presence de sinus ou de cosinus
la fonction .... est solution
signe de y'

On fait l'hypothese de l'apparition spontanee de ces differents criteres,
vu les traces et equations retenus, chacun etant d'un tout raisonnable
pour au moins deux equations.
Du point de vue de la gestion, on fait l'hypothese qu'une gestion
quasi-isolee de l'enseignant est possible pendant la phase de recherche.

IV LES PREMIERS RESULTATS EXPERIMENTAUX

Cette ingenierie didactique a ete experimentee, en Janvier 1987, dans le
cadre dun enselgnernent de premiere annee a l'Universite de Lille I, avec
90 etudiants repartis en trots groupes pour les travaux diriges. Elle a
occupe quatre semaines d'enseignement c'est a dire 32 heures. Elle avast

preparee par un travail sur les representations graphiques de
fonctions. Pour ce qui concerne l'approche qualitative decrite en 111-2, les
conditions experimentales ont ete globalement respectees, la phase 4
Rant toutefois limitee pour des raisons de temps.
iy:LIE,512zialtigna
L'observation des sequences didactiques confirme dans ses grandes lignes
('analyse a priori menee pour les phases I et 2, en particulier la viabi lite
des sequences dans les cadres de gestion decrits. Les criteres
d'association repertories apparaissent, avec une dominante de
formulation geometrique. On note egalement l'utilisation de criteres plus
locaux comme la valeur ou le signe de y' en des points particuliers,
souvent lies a des strategies consistant a operer une premiere
classification grossiere, puis a trier a l'interieur des classes ainsi
creees. Les solutions particulieres sont peu utilisees.
En revanche, des difficultes sous-estimees apparaissent des la phase 3.
Le jeu coliectif ne suffit pas a garantir la viabil quasi-isolee de la
phase de prevision et l'enseignant dolt d'autre part prendre en charge
toutes les justifications concernant le comportement asymptotique des
solutions. Au cours de is phase 4, la situation s'ameliore concernant les
previsions mais demeure critique au niveau des justifications. Ceci est
confirm* par les resultats des etudiants a l'examen passé a la fin de cet
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enseignement.
IV-2 : Les resullats de l'examea
Cet examen comportait notamment une resolution algebrique d'equation

dl f recent lel le 1 Inealre et l'etude qualitative de requation

Y =0 A ; y2. On demandait : I' de regioner le plan suivant le sens de
variation des solutions et de tracer l'isocline horizontal ; 2' de tracer
sans justification les solutions CO,CI,C2, passant par les points (0,0),
(-2,1) et (0,2) (cf.f igure 2) ; 3' de montrer que si une solution f definie
sur la,+00( verifie : lim f.(x)=-1 en o avec 1>0, alors lira f(x)=-00 en +400 ;

4' de justifier le trace de CI sur 1-2,4.04 ; 5' de determiner s'il existalt
une transformation geometrique simple conservant la famille de

solutions. Les resultats (cf. tableau 1) sont eloquents.

Figure 2 : Prevision associee a reauation de I'examen

Groupe 1(29) roupe 2(30) roupe 3(30) otal (89)

esolution equation 18 23 21 62

egionement 26 25 24 75

socline horizontale 28 27 27 82

u mains deux traces 22 25 18 65

revision correcte 13 17 9 39

imite de f(x) 3 6 0 9

ustifications partielles 1 4 4 9

omportement en +co 0 6 0 6

ymetrie famine 14 16 17 47

Tableau 1 : Reussites a rexamen final

Par prevision correcte nous designons un trace equivalent a celui de la

figure 1. 11 faut noter que 27 etudiants seulernent ne respectent pas le

sens de variation des solutions ou les font se croiser. Par justification
partielle nous entendons les justifications concernant les positions

respectives de Cl et de l'isocline horizontale. Sant comptes ici les

etudiants ayant a peu pros reussi deux justifications sur les 4 attendues.
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V- CONCLUSION

LuipAguAgsatigaggngri ri li'r
L'experimentation menee nous a permis de mieux cerner les problemes
initialement poses, notamment les possibilites offertes par le jeu
collectif et leurs limites. Les resultats obtenus tendent a prouver que,
sous des contraintes comparables, le point critique concerne non pas
toute Ia phase qualitative, mats la composante justification de cette
phase. Elle nous aide egalement, a travers l'analyse du comportement des
itudiants, des enseignants et de leurs relations, a comprendre la nature
des difficultes rencontrees. Dans les phases 1,2 et meme dans is
prevision des traces, les traces de fonct ions sont gores suivant les regles
usuelles : le trace est toujours le plus simple possible repondant a un
ensemble de contraintes. La problematique de la justification est
opposee: it s'agit de prevoir toutes les possibilites compatibles avec les
contraintes initlales et donc de mettre en doute les previsions faites
suivant les regles usuelles. Comment instaurer une conf iance suffisante
dans les traces pour rendre l'approche qualitative operationelle et en
merne temps ne pas sacrifier la rigueur ?
Au niveau _general de la methodologie
Dans la problematique qui keit la notre ici et au point 00 nous en etions
de la recherche, l'ingenierie didactique nous est apparue comme une
methodologie incontournable pour prendre en compte la complexite du
systeme didactique, notamment au niveau du jeu collectif et de la gestion
du temps. Mais i1 faut souligner que c'est une methodologie, difficile
mettre en place et a gerer. Elle veut, par exemple, prendre en compte la
complexite de Ia classe de facon controlable. Elle contraint de ce fait son
fonctionnement dans un cadre qui, par le biais de l'analyse a priori,
permette ce contrale. Mais ce faisant, ne court-elle pas le risque de tuer
Ia vie complexe qu'elle pretend etudier ? Nous pensons que ce sera le cas
si l'ingenierie ne menage pas un espace de liberte suf fisant a l'enseignant.
Comment alors gerer cette liberte ? 11 s'agit enfin dune methodologie
lourde qui dolt pouvoir, pour etre rentable, s'appuyer sur et etre relayee
par d'autres approches notamment epistemologlques et cognitives.
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MATH A AND ITS ACHIEVEMENT TESTING

J. de Lange Jzn and H.B. Verhage
OW & OC Research Group, Utrecht University

Summary

In 1985 a new curriculum in the Netherlands for upper secondary education was
introduced aiming at non-mathematical majors.
In this article we analyze this curriculum, discuss its consequences for achievement
testing and present results on an explorative study to 'other ways' of achievement
testing.

1. Introduction

In August 1985 a new curriculum was introduced in the Netherlands at upper secon-
dary level by means of the Hewet-project: Mathematics A. This curriculum was aim-
ing at students that were preparing for a study at university in psychological, social
and economical sciences. A curriculum that was considered by many as a revolution
because it broke away from traditions in math-instruction. (See these proceedings
Verhage; De Lange; [ID.

"The most important subjects from an applied point of view are: calculus, linear
algebra and geometry, probability and statistics, computers. These topics should be
treated extensively. They must be integrated into one coherent course."

This was pronounced by Engel in 1967 and shared by Pollak. [2]
It is remarkable how closely the Hewet report approached what after years of
research came out to be that kind and level of mathematics as used as a tool in the
'soft' disciplines.

The Hewet-report recognizes that at first sight the broad program may look confus-
ing, but it argues that the unity of this curriculum is routed in its applications.
In an even stronger way Klamldn [3] claims that one of the reasons why students
have difficulty in applications is that most of mathematics is learned 'vertically', that
is that its various subjects are taught separately, neglecting the cross-connections.
Usually in applications one needs more than just algebra alone or geometry alone.
Consequently, courses should be designed 'horizontally' cutting across several dif-
ferent mathematical branches.
Or, as Hilton stated:

"We must break down artificial barriers between mathematical topics throughout
the student's mathematical education." [4]

According to the Hewet report the unity in the mathematics A program should be
aspired at via its applications.

2. Analysis of Math A

Analyzing the experimental material is a very complex task, but one can delineate a
rough schema that represents the main aspects of the Math A curriculum as opera-
tionalized in the experimental material.

One thing is clear in all materials: the large role played by the context.
The role of the context is two-fold: the start of any sub curriculum takes place in
some real world situation. This real world is not restricted to the physical and social
world.
Also the 'inner' reality of mathematics or the real world of the students imagination

1198



- 2114 -

provides sources for developing mathematical concepts.
The second role for the context is in the applications: they uncover reality as source
and domain of application.

The real world situation or problem is explored intuitively in the first place, with the
view on mathematizing it. This means organizing and structuring the problem, trying
to identify the mathematical aspects of the problem, to discover regularities.
This initial exploration with a strong intuitive component should lead to the develop-
ment, discovery or (re)invention of mathematical concepts.

As our classroom observations made clear depending on such factors as interaction
between students, between students and teachers, the social environment of the stu-
dent, the ability to formalize and to abstract, the students will sooner or later extract
the mathematical concepts from the real situation. This phase we like to refer as con-
ceptual mathentatization.
At the same time teflexion on the process of mathematization is essential.
The next phase recognizable in the material is the description of the desired and
resulting mathematical concepts, followed by a more strict and formal definition.

We can put it another way:
In the first stage of mathematization we develop our tools, and after formalization we
use them in the second stage. And by applying the concepts to new problems one of
the main results is reinforcement of the concepts and developing mathematization
skills.
Finally, at the other hand problems solved will influence the student's view on the
real world.

3. Mathematization in Math A

Mathematizing is an organizing and structuring activity according to which acquired
knowledge and skills are used to discover unknown regularities, relations and struc-
tures.
We may distinguish two components in mathematization, according to Treffers and
Goffree [5): the horizontal and vertical components.
First we can identify that part of mathematization that is aiming at transferring the
problem to a mathematically stated problem. Via schematizing and visualizing we try
to discover regularities and relations, for which it is necessary to identify the specific
mathematics in a general context.
Activities with a strong horizontal component are:
- identifying the specific mathematics in a general context;
- schematizing;
- formulating and visualizing a problem in different ways;
- discovering relations;
- discovering regularities;
- recognizing isornowhic aspects in different problems;
- transferring a real world problem to a mathematical problem;
- transferring a seal world problem to a known mathematical model.

As soon as the ;;;-,blem ha's been transferred to a more or less mathematical problem
this problem cal: Et attacked and treated with mathematical tools: the mathematical
processing and refurbishing of the real world problem, transformed into mathematics.
Some activities that have a strong vertical component as:
- representing a relation in a formula;
- proving regularities;
- refining and adjusting models;
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- using different models;
- combining and integrating models;
- formulating a new mathematical concept;
- generalizing.

Generalizing may be seen as the top level of vertical mathematization. We mean,

with Hilton, that when we are reasoning within the mathematical model we may feel
compelled to construct a new mathematical model which embeds our original model

in a more abstract conceptual way. [6]
Mathematization always goes together with reflexion. This reflexion has to take place

in all phases of mathematization. The student has to reflect on his personal process of
mathematization, discuss his activities with other students, has to evaluate the product

of his mathematization, and to interpret the result.
Horizontal and vertical mathematizing comes about by students actions and their

ref exions on their actions.

4. The learning cycle

The learning cycle for Mathematics A may be described in the following way:

Real Worlds

Conceptual

Mathematizing in Mathematizing

Applications Ref lesions

Abstraction &
Formalization

In this way the learning cycle shows a remarkable similarity with the Experiental

Learning Model of Lewin. [7]

Concrete Experience

Testing implications Observations &

of concepts in Rd lesions

new situation

Formation of abstract 1
concepts and generalization

Two aspects of this learning model are particularly noteworthy:
First its emphasis on concrete experience to validate and test abstract concepts:

in mathematics A this is the phase of applied mathematization in the problem solving

process.
Second, the feedback principle in the process. Lewin used the concept of feedback to

describe a social learning and problem solving process that generates valid informa-

tion to assess deviations from desired goals.
It is clear that we can find similar abilities in mathematics A. The weakest link in

the cycle seems to be the active experimentation. Students do work with real world

problems. But it seems worthwhile to consider measures to improve this link. One

way to achieve this see= to have students make more productions - not only mental

contributions. As we will point out later, when describing the results and products of

alternative tasks, this production seems to have a very beneficial aspect on the learn-

ing process. This point is also stressed by Treffers. [8]
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He stresses the fact that by producing simple, moderate, complex problems the stu-
dent reflects on the path he himself has taken in his learning process, and the same
time anticipates its continuation.
We conclude this part of our framework with Kolb's definition of learning:

Learning is the process whereby knowledge is created through the transformation
of experience,.

For a description of a framework for instruction theory we refer to the contribution of
Graverneijer. (These proceedings [9]).

S. Achievement Testint

During the teacher training courses it became clear that testing Math A involved
many problems.
Typical questions from teachers:

How to prepare students properly for the exam?
How to know what to test?
(What goals should I try to operationalize ?)
Should the role of the test differ from the traditional one?

This last question arose when teachers found out that they needed the test as an
integral part of the learning process. Rather than 'sampling' marks to give a judge-
ment at year's end, the teachers should see to it that the students learned through the
tests as did the teacher. Achievement testing should be a learning aid, as formulated
by Gronlund. [10]
On the other hand the Hewet team posed themselves the question:

Are our goals for Math A manifest in the experimental textbooks?
Knowing the limitations of the restricted-time written tests like those at the exam
how do we prevent this exam from dictating the program (and the intermediate
tests)?

A good answer on this last question is essential for the survival of Math A if the ori-
ginal intentions of the curriculum are to be met.
Our research shows that from the tests designed by teachers (restricted-time written
tests) roughly 80% of the exercises looks more or less alike the exercises in the
student-booklets. That means that only 20% of the exercises try to test higher
(process-oriented) goals of Math A.
From our analysis of tests of twelve schools it is clear that testing tends to emphasize
the 'lower' behaviour levels, such as computation and comprehension. This is not a
specific Math A problem. As Wilson states:

"Mathematics teachers often state their goals of instruction to include all cognitive
levels. They want their students to be able to solve problems creatively. ',Jut too
much of their testing consists only of recall of definition, facts and symbolism?'
(11]

But in Math A the problem is even more serious because of its quite specific goals.
Mathemarization, Reflexion, Inventivity and Creativity are essential activities in Math
A which are hard to be tested in the restricted-time written test.

The teachers in the experimental schools were hindered in several ways. In the first
place the goals of Math A had not been clearly stated, which made teachers rely
heavily on the textbook materials.
In the second place no good exercises outside the booklets were available and only
few teachers created 'new' exercises as we noticed.
In the third place the teachers were under heavy time pressure as there were hardly
any provisions for teachers' participation in the experiment: preparations for teaching
Math A took much time, compared with the old program.
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In the fourth place the tradition of testing mathematical skills in Dutch schools did
not inspire teachers to get involved in tests other than those similar to the textbooks.

During the experiment the goals of Math A showed up more clearly, as did the prob-
lem of assessment testing. The demand of the Cockcroft report that assessment (at
te) is to reflect as many aspects as possible, including those which need other means
of assessment than restricted-time written tests, was taken seriously by, the Hewet

team as well as by some teachers. {121

The team that carried out the experiments, aided by teachers, tried to counter the
problems as follows.

In the first place an attempt was made to clarify the goals of Math A.
Secondly, and of more direct help to the teachers, exercises were sampled and distri-

buted in order to confront teachers with new exercises. The effect was positive as
well as negative: the pressure on the teachers was softened, but at the same time
teachers fell back on the new exercises rather than creating their own ones.
Thirdly a discussion with the teachers was initiated about validity and limitations of
written timed test, eventually resulting in the development of alternative tasks.

6. Alternative Tasks
The alternative tasks were developed with the following principles in mind:

1. Tests should improve learning.
2. Tests should allow the candidates to show what they know (positive testing).
3. Tests should operationalize thin goals of the Math A curriculum
4. Test-quality is not in the first place measured by the accessibility to objective scor-

ing.
5. Tests should fit into the usual school practice.

Alternative tasks that were developed were:
- take home task;
- two-stage task;
- oral task;
- essay task.

Our research led to the following conclusions:
1. Girls perform less than boys in restricted-time written tests.
2. Girls perform more or less the same as boys on oral tasks or take-home tasks,

3. From the above one is tempted to advise more oral and take-home tasks in order to

offer girls fairer chances.
4. Oral tests results have a somewhat higher correlation with restricted-time written

test results titan take-home tasks.
5. Students perform best with take-home tasks. The constructive and productive

aspect seems to offer students a fair chance to show their abilities (creativity,

reflexion, etc.). Positive testing is at its maximum in this way.

As we have pointed out we started our explorative study to alternative tasks because

of the fact that restricted -time, written tests as carried out by the teachers did not meet

the intentions and goals of Math A, Not only did the teachers stay very close to the

exercises in the book, but when they did not they ran into trouble because of time-

restrictions encountered with those timed tests.

Mathematics A is strongly process-oriented; the mathematization process needs time

to develop, time to reflect, time to generate creative and constructive thoughts.

Those 'higher' goals are not easily operationalized with timed-tests.
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OA the other hand it is our opinion that the tests or tasks should play a more coit-
us ictive and productive role in the learning process. Especially formative tests are
well suited to improve the learning process.
Furthermore we should try to offer the students ample opportunities to show their
abilities. In timed tests we usually notice negative testing.

In our efforts to find other ways of assessment testing we should not be hindered by
the strict rules of objective or even mechanic scoring. Too often the influence of
those rules has a very negative effect on the way of testing.

Finally teachers should be given the opportunity to carry out those task without dis-
rupting schoolpractice too much; such tasks should be developed by a central institu-
tion with help of teachers.
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THE HEWET PROJECT

The psychological aspects of a large scale innovation project.

H.B. Verhage and J. de Lange Jzn,
OW & OC Research Group, State University of Utrecht.

In the Netherlands recently a new math curriculum based on the philosophy of realis-
tic mails education has been introduced at upper secondary level. Real life situations
are not only used for doing applications, but also for developping new mathematical
concepts.

One of the main problems of the implementation of the new syllabus was how to
change the attitude of the teachers, because the teachers had to change their image
of mathematics.

Recently the mathematics curriculum of upper secondary level (age group 16-18, fifth
and sixth grade) in the Netherlands has been changed in a radical way. At this level
math is optional and the students can choose between two different courses: math A
and math B. There was a growing need for a math course for non-science students at
pre-university level. For this reason the new math A course has been developed.
The math A curriculum is based on the philosophy of the so called Realistic Math
Education. Some characteristics of math A are:

Modelling and applications;
Introduction of new math concepts by real-life situations;

-- Horizontal structure, unified approach;
Integrated use of computers;
Collaboration and interactivity;
No unique right answers.

The new syllabus has been developed and tried out in an experimental setting during
five years: the Hewct project. The innovation started in 1981, when two schools
started experiments with the new materials. These materials were developed by a
small team of math educators of the research group OW & OC of Utrecht University.
During the next five years step by step the implementation of the new course took
place. During the experiments all lessons were observed by the team members. Dis-
cussions with students and teachers led to adjustment of the materials. After two
years the experiment spread to another ten schools; these were joined by another 40
the next year. In 1985 all schools started with the new math curriculum and in 1987
the first final examinations will take place all over the country.
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Basically we have the following schema of the project:

Realistic math education.

In the Netherlands math education is developping in the direction of realistic math
education. Real life situations are used both for developping new concepts and for
doing applications.
The relation between the world around us and math education according to the philo-
sophy of realistic math education can be schematized as follows:

d.veloPPL.,
neM Co. eepto

Cott

Ts le

4pplications

A

A

There is an important difference between realistiv. math and applied math. In the
latter case math is used to do some (real life) applications in the final stage of the
learning process, but it is not an aim to use real world situations while developping
new concepts. The sophisticated use of real life situations (contexts) is one of the
characteristics of a realistic math curriculum. An other aspect can be found in the
way in which the students are involved in their learning process. They make large
contributions to the course by their own productions and constructions.

The content of the math A syllabus.

Very few among the students who take the math A course will become professional
mathematicians. Many of them, however, will specialize in economics, social sci-
ences, medicine and will use mathematics as a tool. This means that at any time the
usefulness of mathematics should be preponderant.
The three main streams of the syllabus arc:

-- applied calculus
matrix algebra and linear programming
probability and statistics
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The use of the computer has been integrated in this subjects.

Example 1
Very important within math A is the activity of mathernatising and modelling. This is
a complex and difficult matter and offers lots of discussions.
The following example of this process has been taken from the subject periodic junc-
tions, part of the applied calculus.

The yearly average tide-graph of a coastal town in the Netherlands (Vlissingen) is given by this

Val*:

Gemidekkie kesikrarnnur se Via:token

The question: Find a simple (gottiometric) model to describe the tidal movement.
Initially throe rather different models were found by the students (17 years of ego):

1
f (s)411n-2 x

1
g(x)=190sin

2
x+8

h (x ).190sin-1-1-x62

Of course a lively discussion was the result:

f(x), that was clear was a very rough model: the amplitude was 'more or less equal to two
meters' and the period was 4x or 12,56 which is not 'far away' from 12 hours 25 minutes.

g(s), as the girl explained. was better in respect to the amplitude: the amplitude of 190 cm,

together with a vertical translation of 8 cm gave exactly the proper high and low tides,
which was very relevant to her.

h(x), was more precise about the period. This boy considered the period more relevant 'because

you have to kTIOW when it is high tide.' fhe period proposed by this model was 12 hours

and 24 minutes, which really is very close.

Alter a long discussion it was agreed that:
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k (x .190sin-2 x +8

was nice model although some students still wanted to make the period more precise.

The goniomettic functions are embedded in the more general periodic functions and
used to model real life situations. prom the experiments we got the impression that
this makes the subject much more motivating to the students.

Example 2
As mentioned before, new math concepts are introduced by real-life situations. This
can be illustrated by the following example, taken from the booklet 'Matrices'. The
mathematical concept of the multiplication of two matrices is introduced by means of
the context of a jeansshop.

MULTIPLICATION (2)

In the previews chapter we multiplied in tweltill way by semen of the

joemeasp A e S matrix by a S a I marls:

his cam an asemeriand 44 follans

L Cf Be 8, 'cancelled out' profit

&

L 3S

CF 40 =)
Bo 75

Ea 40

Y1' I .3 0 I t
30' St 4 I t
3t t S S 6 0

54" 0 I I 0 5

4

profit

2333 (

4.11

This way of multiplying cog be *amok& to 64. A a 5 eatrie by

5 n 3 metric I. the following way'

CF .. ... 'cancelled ant' coot salting eons gulling
14 L

. price price'''' "---8 profit price price
V JO 45 75

21' 1 3 0 1 /1' .. ..

50' 5 0 4 I

(

L 55 40 75

I X CF 40 44 80) .. SO"

:::
(Sr f 5 5 8 0

tki 24 40 45
.14" 0 1 I 0

SA 40 IS 85
..

14. 1

In 77. Compute the total matrix: profit.coetprice sod selling price per

size.

78. On whet condition for the order, can you multiply matrices in thin

may?

The result of the multiplication is a matrix with the profit, costprice and selling price
per size. Within the context of the jeansshop this way of multiplying matrices is
very natural and meaningful.
A context meant to introduce a new concept, has to be chosen very carefully. Finally
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the mathematical concepts and the formal methods have to be clear without the con-
texts, but a well chosen context makes it possible to the students to reconstruct the

concept again themselves if necessary.

The innovation strategy.

Text-books is a variable that we - as math educators - can influence easily. This is
supported by the fact that the commercially developed text books are very close to
the materials developed during the experiments.
But a new curriculum cannot be implemented by new text books only. A very
important but less easy to influence variable is the attitude of the math teacher. For

many teachers the new math A course did not fit in with their image of mathematics,

at least in the beginning. Math A appears to be intuitive, realistic and subjective
instead of axiomatic, formal and objective.
So how to overcome the resistance the teachers will probably have? The teachers
have to be convinced that although math A is different, it is still mathematics. It

appeared to be very important to keep the distance between the Hewet-team and the
teachers as small as possible, so it was a matter of great concern how to keep in
touch with them. At the 2-school level this was no problem: all lessons were
observed. For the 10 schools the distance was close as well: the teachers of this
schools followed an inservice teacher training course organised by the team
members. The teachers of the remaining schools (40 + 430) followed a course
organised by the regular teacher trainers. Generally spoken, during this courses the
attitude of the teachers changed from waiting to positive.
A lot of articles about the progress of the project and the classroom experiences were
published. It appeared that written information only was not enough to inform the
teachers well, it was necessary to have personal contact with as many teachers as
possible. For this reason a number of activities like hearings, conferences and
workshops were organised by the team. Because we have a small country, it was
possible indeed to have personal contact with teachers of most of the schools.

Student reactions.

Another variable of importance is the student. How did they react on the new curri-
culum? In the beginning they had partly the same problems as the teachers, for
example with the characteristic 'no unique right answer'. But very soon they were
used to these changes.
During an inservice teacher training in the second year of the experiments teachers
interviewed a panel of students of the first two schools. This discussion was video-
taped.
The following was said about the use of contexts and mathematization:

Teacher: "Math A contains many more of those story-sums, compared with how it used to be.
With story-sums you often get a long text to read, and than you have to do something with it. We
often hear the complaint that. although it's fun, you have to read lots of those stories before you

get enough practice. I've noticed that none of you have mentioned that have you had enough of

that to be able to say 'I understand that section' ?"

Marius: "Well, a's not true that there are pages and pages of text, there's just a short introductory
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text. It's not tonne that reading takes so much time that we don't get around to the theory."

Judith: "With normal math you fast got the theory and then the sums. Hat you usually begin
directly with a sum and a story, but the first sum is usually pretty easy. Then they build it up
without you noticing so that the difficult things =arse naturally."

Annemarie: 'The way to do it, if you know that - the method - then you can do it if you ask me."

Jan: "First of great that you don't have to do one sum after another, it's kind of relaxing if
you get a story once in a while, then you're not westing so intensively all the time. It's less thing.
When you get diode stories all the time you get practice in searching out the essential bits.'

with (the teacher of the students): "If you kook at this morning's sum, with the proceeds and
prices, do you find it difficult because it's a story or do you my that's not so bad?"

Jam "It's not no bad at all. Maybe it's kind of confuting now sod den, but I think it'sa good idea
to learn to separate das main isms from the side issues in those stories.
(..)
Lama: "It's because of time auxins that it's clear to me what the idea is, what it's about. In my
case the lack of anything being told was why I didn't undastand it. I didn't know what it was
about and had so learn it by heart. Here there's a story round it and it just happais as a manes. of
course.'

Marital: 'It's just a lot more appealing. For instance, in tenth grade we bed logarithms. You
learned it, but I couldn't follow it very well is elms because it just didn't interest me, while now it
does. Logarithm become much more clear through the examples.`

Later on it appeared that the questions of this teachers as well as the reactions of the
students were paradigmatic for nearly all teachers and all students.

Conclusion.

Altogether the Hewet project appeared to be rather successful. Due to math A the
math courses are more popular now: in the new situation about 85 to 90% of the stu-
dents chooses math, in the old situation this was 72%. Especially the percentage of
girls choosing math has risen considerably.
But two aspects of the implementation of the new curriculum has been underes-
tinsated:
- the problem of changing the attitude of the teachers;
- the problem of developping achievement tests: how can the higher goals of math A

be tested?
During the five years of the project the team members learned a lot about these two
problems.
At the moment two other large scale innovation projects are started. The arc both
based on the same philosophy of realistic math education. The experiences of the
Hewet project will be used is these new projects.

References:

Gravemeijer, K.P.E. - The implementation of realistic curricula, these proceedings.
Lange, J. de and H.B. Verhage - Math A and its achaventent testing, these proceedings.
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TR* IMPLEMENTATION OE REALISTIC MATHEMATICS CURRICULA.

Koeno P.E. Gravemeijer

Research Group on Mathematics Education and Educational

Computer Centre (OW 4 OC), State University of Utrecht.

abatract. About 50% of the Dutch primary schools is
implementing realistic mathematics curricula. This means a
far-reaching change, because the teachers were used to
mechanistic mathematics instruction. On the basis of the
characteristics of realistic mathematics instruction is shown
that the change to realistic mathematics instruction implies a
change in the role and beliefs of the teachers. A framework of
an in-service program is presented. This program takes into
account, both the development of the levels of use of the
innovation and the necessary change in teacher beliefs.

introduction

The launching of the Russian Sputnik invoked, as we all know, the New

Math-movement in the US, which spread all over the world. This New

Math-wave however never reached the Netherlands. This was mainly the

result of the dikes built against this wave by the Dutch Wiskobas- group.

This Wiskobas -group also saw the necessity of the development of an

alternative for the proposed renewal of the math curriculum.

The research and development started in the early seventies and was

carried out at the IOWO (Institute for the Developement of Mathematics

Education). This resulted in the so called Wiakobas program for the

primary school, which, a decade later, highly influenced the modern

textbooks in mathematics education. Now there are several programs of a

'realistic' signature commercially available. These new programs are

already being implemented in about 50% of the primary schools.

But these schools were used to completely different programs. Since the

start of the IOWO more than 15 years passed and the schools sticked to

their programs during this period. However, the way the traditional

textbooks were used changed over time: it went towards a so called

mechanistic approach. So there is a sharp discrepancy between the

traditional math education the teachers are used to and the new math

curriculum now implemented.

This indicates the need of an in-service training. Before discussing the

in-service training, we will first take a closer look at the innovation

to get a beter idea of the consequences.
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characteristics of realistic mathematics education

The Niskobas program is based on Freudenthal's view on mathematics and

mathematics education. Freudenthal (1970) distinguishes the idea of

mathematics as a human activity from the image of mathematics as a

complete ready-made system. For mathematicians mathematics is an

activity and the main part of it is organizing.

"This can be a matter from reality which has to be organized

according to mathematical patterns if problems from reality have to

be solved. It can also be a mathematical matter, new or of results,

of your own or of others, which have to be organized according to

new ideas, to be better understood, in a broader context, or by an

axiomatic approach.* (Freudenthal;1970;414)

Treffers (1987) shows that it is useful to distinguish horizontal and

vertical mathematisation in order to account for the difference between

transforming a problem field into a mathematical problem on one hand,

and processing within the mathematical system on the other hand. With

the help of this distinction it is possible to describe four trends in

mathematics education, according to the extent that the horizontal and

vertical aspects of mathematising are present.

trend aspects of mathemetizing
hnrix. vart.

realistic
etructuraliatic
empiricist -
merhanistir

The mechanistic approach appears to be the opposite of the realistic

approach, it is characterised by the weakness of both the horizontal and

the vertical component.

In realistic mathematics instruction both the horizontal and the

vertical component of mathematising are used to shape the process of

progressive mathematisation. How these components are combined is

described by the five tenets of the process of progressive

mathematising (Treffers; 1987, Treffers a Goffree; 1985):

1. phenomenological exploration: The real phenomena from which the

mathematical concepts and structures arise are explored to acquire a

rich collection of intuitive notions. In this way the essential aspects

of concepts and structures are constituted. This, then, is laying the

basis for concept formation.

2. bridging by vertical instruments: A variety of 'vertical' instruments
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such as models, schemes, diagrams and symbols are offered, explored and

developed. This is done to bridge level-difference between the context

bound oporatingon the first Van Hiele level and the reflective, formal

systematic one on the third Van Hiele level.

3. selfreliance: pupils' own constructions and productions: The children

make an active contribution to the course by their own productions and

constructions. The individual solutions to contextproblems, notation

patterns, short cuts etc. determine the progression in the learning

process.

4. interactivity: The pupils informal methods are used as a lever to

attain the formal ones. Such a teaching method requires a specific

didactical shaping of interactive instruction, in which individual work

is combined with consulting fellow students, etc.

5. intertwining: The contextbound introduction of mathematical concepts

and structures implies an intertwining of related learning strands,

because of the interrelatedness of different mathematical domains in

reality.

From the characteristics described above emerges a conatructivistic

conception of mathematics instruction.
Treffera (1987) shows that the

Niskobas program fits into a global framework for instruction theory,

built by the level-theory of Van Hiele (1973) and the didactical

phenomenology of Freudenthal (1983). This global theoretical framework

corroborates the impression of a constzuctivistic view. We stress this

conatructivism because it has important consequences for the role of the

teacher in the learning process.

The main point is the active contribution of the pupil to his own

learning process. The teacher has to support the developement of

mathematical concepts and structures in the above described interactive

instruction. This means that the teacher has to be able to anticipate on

the solutions and constructions
of the pupils. He has to be able to

evaluate them; to give the kind of hints etc., that will help the pupils

to elaborate their own findings.

It is impossible to embody the required teaching strategies in teacher

guides. So the role of the teacher is much more complicated and much

more important, than in mechanistic mathematics instruction.

the beliefs of math teachers

The research of Thompson (1984) under math teachers shows a remarkable

agreement between.thc teachers' views on mathematics education and their

1212



258

instructional practices. And these views appear to fit into the

classification of four tenets in mathematics instruction, which Troffers

found in textbooks.

Following tins line of thought we may expect to find a lot of teachers

with a mechanistic view on mathematics instruction, who are working with

realistic textbooks. According to the findings of Thompson we may

presume that these teachers will use the realistic textbooks in a

mechanistic way. So we meet the question of how to bring these teachers

to ways of use that will be in harmony with the ideas underlying the

textbooks.

It will be quite clear that this change will not be restricted to

external characteristics. The ideas of the teachers have to change as

well. Fullan (1983) indicates that there are at least three dimensions

at stake in implementing any new program. They involve the possible

alternation or use of new:

- materials: the use of new or revised instructional materials or

technologies;

- teaching approaches: new strategies, activities, practices, etc.

engaged in by the teacher.

- beliefs: pedagogical assumptions and theories underlying new policies

Or programs.

Fullan stresses the importance of the change in beliefs:

... a teacher could use new materials, alter some teaching

practices or behaviors without coming to grips with the conceptions

or beliefs underlying the change.' (Fullan; 1983;454)

The importance of coming to grips with the beliefs underlying the change

is supported by Leithwood's analysis of curriculum dimensions. Leithwood

(1981) indicates that the apropriatenesa of teaching strategies depends

on a number of situational factors. This means that the teacher has to

make his own decisions on the spot.

These decisions will be based on the beliefs of the teacher. Fullan is

Pomfret (1977) distinguish, among other things, the variables 'knowledge

and understanding of the renewal' and 'value internalization'. The first

variable describes a rather technical knowledge of the renewal, while

the second is connected with accepting the goals of the change. In our

opinion the concept 'beliefs' goes deeper. It includes convictions;

views on teaching and learning, views on the essence of the subject of

the course, etc. In the end it will be these beliefs that will determine

the way the teacher arranges his instruction.

It is clear that it will not be easy to change the beliefs of the

1213



- 259

teachers. It is not a simple matter of telling them what it's all about.

So we have to follow Fullan in his conclusion that

"... educational change along three dimensions - in materials,

teaching approaches, beliefs - involves changes in what people do

and think and as such, it represents a complex adult learning

experience." (Fullan;1983,455)

The next question is how to support this learning process of the teacher

in such a way that there is an optimal chance for the desired change.

In doing so we will have to consider the fundamental difference between

pre-service and in-service teachertraining. In the case of in-service

training we are dealing with experienced teachers. They want to be

aknowledged in their expertise and their responsability for their own

teaching. This implies some specific constraints for the form and

content of the in-service program.

stages in the process of implementing a new curriculum

If we want to establish the learning process indicated above, we will

have to take into account how the process of implementing a new

curriculum develops over time. Fullan (1984) takes up the position that

- in contrast with the usual idea of adoption as a solitary decision -

adoption has to be seen as a prolonged process of choosing. Tha longer

the new program is in use, the more the teacher knows and the better the

teacher can see what he is choosing for (or does not want to choose).

Now the process of implementing a new curriculum can be seen as a

process of learning and choosing. This corresponds with the findings in

research that show that there are several levels of use of a new

curriculum, which Hall & Loucks (1977) label as: non-use; orientation;

preparation; mechanical use; routine; refinement; integration; and

renewal.

Research, like the research of Hall & Loucks (1981) and from Van den

Berg i Vandenberghe (1981), shows that these levels of use can be seen

as different stages in the implementation proces.

In the first stage when the curriculum is rather unknown to the teacher,

the teacher will follow the teacher guide rather mechanical, without

understanding the meaning of activities completely. After some time the

familiarity with the curriculum grows, which gives the teacher the

possibility to change small parts of the curriculum to adjust them to

the actual situation (routine). A growing understanding of the concepts

underlying the practices of the curriculum will enable the teacher to

come to a more flexible use of the curriculum. In the end this will load
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to adaptation of the curriculum on basis of the gained insight and

experience (renewal).

This sequence is, of course, an ideal one. Not all teachers start at the

same level, and there are differences in the development towards the

higher levels of use. But, nevertheless, the research evidence still

reveals a learning process of the teacher. It also shows that this

learning process needs some support.

guiding the learning process of the teacher

The in-service training has to level out with the stage of

implementation of the new curriculum. The focus will be on the use of

the new materials in the first phase. In the following phase a change of

teaching strategies is at stake. The teachers will have to be informed

about the teaching strategies and their the.netical background. These

teaching strategic, are at last legitimated by the views on learning and

instruction.

In the case of a change from mechanistic mathematic, education to

realistic mathematics education the main piont is the opposition between

a task analytical approach and the idea of progressive mathematising,

based en the active contribution of the children. This implies a choice

with regard to the way children should learn mathematics: a choice

between learning mathematics by copying adults, or learning mathematics

on ones own legs (by 'taking responsibility'; Whitney;1985).

The position taken by the realistic trend is quite clear. It is also

obvious that it will not be sufficient to tell this to the teachers,

they have to be convinced. We think that the beat way to do so, is to

give the teachers the opportunity to find out for themselves.

We developed an in-service program that is so designed, that it will

provoke this kind of learning. We try to make the teachers aware of the

possibilities and desirability of interactive instruction. In doing so,

several ingredients are being used. We will discus the following

ingredient,:

- working on problems;

- being informed;

- becoming conscious.

Working on problems the teachers find out that they all use different

strategies to solve the same arithmetic problems. It also appears that

most of these strategies differ from the strategies that have been

learned. We hope that the teachers will get interested in solution

procedures, and especially in reference to the solution procedures of
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children.

They are being informed of the strategies of children found in research.

And they are stimulated to investigate if the children of their classes

use the same strategies.

They are also informed about the bad results of the traditional

mathematics education, that come forward in national and international

aaseasments.

And they are informed on learning theories that support the realistic

approach, based upon the own constructions of the students.

The last point concerns the question for remedial strategies, which is

elaborated in such a way that the teachers become concioua of their own

theories, or belief*.

The aim of these activities .s to give the teachers more insight in the

different views on mathematics education, in connection with the

possible teaching practices. We hope to give the teachers the

opportunity to make their own choices about the implementation of

several aspects of the innovation. We found that the learning process

which we try to set going, shows a great similarity with the learning

process of the pupil in realistic mathematics education.
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OBSTACLES CONFRONTING THE IMPLEMENTING OF CONSTRUCTIVST
INSTRUCTION AND THREE MnDELS FOR ADDRESSING THESE OBSTACLES

Thomas J. Bassarear, Keene State College

The paper has two main objectives. The first objective is to
outline some of the difficulties involved in implementing
constructivist instruction In secondary and college classrooms.
The second objective Is to bring Into the realm of mathematics
education three models which can be useful in minimizing these
obstacles. Each model offers a different perspective through
which to understand the dynamics involved in Implementing a new
method of instruction. Each model focuses on a key issue:
components of 'personal investment' in learning, teaching as a
developmental process, and significant events during the course of
a semester.

Much attention has been devoted to understanding how students
construct their understanding of mathematics and to describing
constructivist instruction. However, less attention has been devoted to
examining some of the difficulties commonly encolintered when teachers
attempt to implement this unorthodox mode of instruction in their
classrooms. This paper will first focus on various obstacles facing the
secondary or college level teacher. The paper will then focus on three
models, developed In other disciplines, which can enhance the teachers
implementation of constructivist instruction.

The challenge such a teacher faces is analogous In many ways to that of
a new baseball coach introducing a rather different system. A major goal of
the coach Is to teach new skills and strategies. However, the coach will
invariably encounter players who resist the new system and continue to run
or to bat or to field in old ways. The coach will also encounter some players
who, despite liking the new system, find it difficult to break old habits.
The underlying theme of this paper is that a thorough understanding of
constructivist principles alone does not ensure a successful classroom. In
other words, the teacher must necessarily focus on both cognitive and
affective issues.

OBSTACLES TO CONSTRUCTIVIST INSTRUCTION

Before examining various obstacles facing the teacher, let us examine
some common characteristics of constructivist instruction which differ
from traditional instruction: the teacher does less explaining and "showing"
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and more questioning, more attention is given to the processes involved in
solving problems, students do most of the talking and writing, and the
teacher challenges the usage by students of rotely-learned terms, rules or
algorithms (Confrey, 1984). Such a departure from traditional teaching
practices Is often met with varying amounts of resistance (active and/or
passive) on the part of the students. For example, some students may
insist that that they cannot explain how they got their answers and that
they should get credit as long as their answers are correct. Four kinds of
obstacles, considered together, help to explain why the implementation of
constructivist instruction can be difficult: students' attitudes toward
learning, in general; students' attitudes toward learning mathematics;
systemic constraints; and students' cognitive limitations.

Obstacles arising from students' attitudes toward learning include
(1) resistance because this represents a new way of learning (students are
often reluctant to give up old ways for a new and untested way); (2) the
perception that such a teaching approach represents more work on the part
of the student ("It's like we have to teach ourselves"); and (3) the fact that
the teacher, at first, is generally not as polished, consistent, and

authoritative as when teaching in a more traditional mode.
Obstacles arising from students' attitudes toward learning

mathematics include: (1) attitudes about the nature of mathematics ("this
Is a math class, not a problem solving class"); (2) anxieties about word
problems, especially for slower students who may see even the brighter
students struggling, at least at first, with problems requiring higher order
thinking skills; and (3) concerns about evaluation--the different format of
tests, how the grade will be determined, etc.

Systemic constraints include: (1) heavy content pressure (i.e., pressure
to cover the whole book); (2) more remedial students, anxious students, and
struggling students than at the lower grades; (3) very often little support,
or even resistance, from colleagues, administrators, and parents; and (4)
inadequate curriculum materials; in fact, conventional or required texts
often run counter to constructivist principles.

Cognitive limitations have been well-documented: the robustness of
students' algebraic misconceptions (Rosnick & Clement, 1980), poorly
developed diagram drawing skills (Simon,' 986), and poorly developed
metacognitive skills (Schoenfeld, 1985), to name but a few.

The point Is that, partly because it represents a change and partly
because it Is more work for the student, the teacher implementing such a
different method of teaching is likely, at least at first, to encounter varying
degrees of resistance. Realizing that such resistance is not. uncommon can
enable the teacher' to anticipate and act rather than react. Being aware of
the different kinds of obstacles can enable the teacher to direct his/her
energies more effectively.
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A MOTIVATIONAL MODEL

For constructivist instruction to be successful, the students mug
function at significantly higher levels of cognitive activity than are
normally found In classrooms. Therefore. a first task for the teacher Is to
convince the students that this way of learning mathematics Is more
effective, more powerful than the ways to which They are accustomed.
Although the value of constructivist Instruction may be clearly meaningful
to the teacher, this is not necessarily so for the students.

Maehr (1984) asserts that meaning Is the critical determinant of
motivation. Each student comes to the classroom with a package of
meanings derived from past experiences. Whether or not the students will
Invest themselves In a particular activity depends on what the activity
means to them. According to Maehr, the extent to which students will
Invest themselves depends on several interrelated factors: (I) judgments
about self, especially beliefs about one's competence or ability to master
the material, (2) their perceived goals, (3) the subjective cost of success,
and (4) judgments about the options or alternatives available for reaching
these goals. In Figure I, these factors have been characterized with respect
to the Issues and questions they raise.

!sag Gue,k/Jsm
I. competence Can I do it?
2. goals What will I get out of this activity?
3. cost Will it be worth the effort?
4. autonomy Will it be my learning?

Figure I. Components of personal investment.

The desire for competence has long been established as an essential
motivating element in the learning process (White, 1959). This was brought
home to me during my first year of teaching. So many of my pre-algebra and
algebra I students who plaintively asked, "Why do we have to learn this?"
stopped complaining when they were able to master the material.

The term goal refers to the motivational focus of the activity. Maehr
discusses four categories of goals: task goals (e.g., becoming competent),
ego goals (e.g., performing better than others), social solidarity goals (e.g.,
pleasing one's parents) and extrinsic goals (e.g., grades). He asserts that 'to
create the kind of spontaneous learning pattern of continuing motivation, a
task-goal orientation must be fostered. Only as one is oriented toward
doing a task, apart from the evaluation placed on it by others, will one
continue doing it when there are no others evaluating it" (Maehr, 1984, p.
130).

The cost of attaining the goals is also important. it the cost is very
low, students tend to become irred and dissatisfied; if the cost is very
high, students tend to become frustrated and discouraged. Furthermore,
those who are less sure of their competence need special encouragement if
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they are to confront the challenges presented. This is especially true at the
beg' evil of the year cr semester.

Finally, with resrect to autonomy, an the individual sees herself as the
inil.lator or cause of 7ter own behavior, she will more likely find her own
ree :ars for engaging non deeply in the activity. This Is one of the reasons
for acre attention to '-ear problems in mathematics classes nowadays.

A high degree of pars3nal investment produces a student characterized
by arlinuing motIvatI4n, as op;osed to the more common stop-start cycle
of del Nation exhiblte( by mane students. It is important that the teacher
fc us s:114rturIng and developing continuing motivation, for this kind of
m.,i IVillon is not commeely seen in traditional classrooms and is crucial in
the constructIvislt class eoom with Its higher focus on problem solving and
o':her higher order thinking skills.

Maehr s motivational model has much to offer the construct ivist
teacher first, It educates the teacher out of the commonsense notion of
mat :tvatior as a monolithic construct. Attending to motivation means more
Nan simply getting the students to see the new mode of learning as
meartingfe. It also means addressing issues of competence, goals, cost, and
atonorny. Second, the model explains the need for attending to
Motival tonal Issues: a high degree of personal investment Is essential for
m anlrigful learning to occur, especially In the constructivist classroom
where tiler is greater focus on higher order thinking skills.

A DEVELOPMENTAL MODEL

A common mistake made by teachers Implementing constructivist
instruction is to try to do it all at once, especially If the teacher had a very
positive experience In a workshop or In a summer program. The teacner
may forget that the students have not been similarly changed. Rather, the
students see the teacher behaving In unfamiliar ways. However, Just as the
construction of one's understanding of mathematics must develop, so too
construction of new ways of learning (and teaching) need time to develop.

For many students, there Is an enormous difference between their
present beliefs and attitudes toward learning and what we would term
mature beliefs and attitudes. The figure below, adapted from Argyrls'
(1957) characterization of the difference between the immature and mature
worker, Illustrates the differences.

iffiragitCe
Passive
Dependent
Behaves in few ways
Erratic shallow interests
Short time perspective
Lack of awareness of self

Mature
Active
Independent
Capable of behaving in many ways
Deeper and stronger interests
Long time perspective
Awareness and control over self

Figure 2. Differences between immature and mature students
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After eight to twelve years of schooling, many students have become
conditioned to "learning" in passive and dependent ways. They are not
flexible learners but rather have become accustomed to doing math In few
ways, mostly focusing on learning the "correct' procedures In the 'correct'
ways. For a variety of reasons (e.g., little relevance to their lives and the
greater focus on extrinsic than intrinsic goals), their interests in
mathematics have become shallow and focused on the short-term (e.g., the
next test and the final grade). In order for a constructivist teacher to be
successful, (many of) the students must make the large Jump from immature
to mature learner. In many respects, the task of such a teacher Is similar to
the task of a physical therapist working with a stroke victim. At first, the
therapist must be very directive and supportive, not only providing words of
encouragement but also providing explicit instruction on how to relearn to
use the paralyzed portion of the body.

The situational leadership model (Hersey & Blanchard, 1982), developed
for use in all types of organizations, incorporates these ideas into a
developmental framework which enhances the teachers ability to pass
through the transition from traditional to constructivist instruction more
effectively. Although, it is beyond the scope of this paper to give a thorough
treatment of this model, the basic features can be outlined and the
relevance for constructivist instruction discussed.

The model, as adapted to the classroom, consists of four teaching
styles on a continuum from most to least directive and four developmental
levels of the student, also represented on a continuum. The terms for each
teaching style in the figure below are intended to give a feeling for what
each level looks like.' As one goes from Si to S4, the amount of student
autonomy and choice increases. Another way of saying this is that the
amount of one-way communication (i.e., the teacher spelling out the
students' role and telling the students what to do) decreases and the amount
of two-way communication increases. The choice of teaching style is
determined by the students' developmental level which, in turn, is
determined by examining two factors: (1) ability--do the students have the
necessary knowledge and ;?kills to perform at the desired level, and (2)
motivation--do the students have the necessary confidence and willingness
to perform at the desired level?

leacher. 51 52 53 54
directing consulting participating facilitating
showing
telling

guiding
coordinating

coaching collaborating

Students.

Ability lower lower higher higher
Motivation lower higher lower higher

Figure 3 Teaching styles and developmental levels of the students
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A basic principle of this model is that the teaching style must be
consistent with the developmental isvel of the students. If the teacher is
too directive (as is often the case in classrooms), the students can become
bored, and motivation is likely to be low. On the other hand, if the teacher
moves too quickly in the other direction, there may be much frustration and
dissatisfaction on the part of the students. For example, the teacher might
introduce significantly more difficult problems before the students'
problem solving skills have sufficiently developed.

Like Maehrs motivational model, the Hersey-Blanchard model has much
to offer the teacher. First, the model serves to expand the teacher's focus
from cognitive issues to affective issues which can affect the amount of
time and energy which the student brings to bear on learning mathematics.
Second, the model focuses on the distance between the present
developmental levels of the students (knowledge, skills, confidence, and
willingness) and the desired levels. Such a perspective can enable both the
teacher and the students to realize that the transition from immature
learner to mature learner does not happen immediately. Finally, the model
offers both the structure and the vocabulary to assist the teacher in the
transition process. The teacher can minimize student resistance by
providing support for the students, who are learning to take more active
responsibility for their learning.

THE CRITICAL INCIDENT MODEL

The third model comes from the field of organizational development in
which the dynamic nature of groups (of all kinds) has been widely studied. A
major contribution from this field is the realization of the group as an
entity In its own right, as opposed to simply being a collection of
Individuals (I.e., the whole being greater than the sum of its parts). A

negative way ating this is that the effectiveness of the leader or
teacher who IL . sensitive to the dynamics operating In a group is often
seriously diminished.

The critical incident model (Cohen & Smith, 1976), derives from
observations that certain critical incidents (significant events) can

substantially affect the development of a group (class). The critical
Incident concept evolved with the observation that certain critical
situations emerge and repeat themselves time and again in different groups
and at different developmental stages. The manner in which the leader
(teacher) responds generally has a large influence on the direction and the
development of the group (class).

With respect to mathematics classes, there are several critical
incidents to be aware of: at the beginning of the semester--when the
teacher sets the tone for the semester; just before first test--when the
teacher can stress how to study and perhaps offer a make-up test for the
first test or two In this new way of instruction; and just after the first
test--especially for students who did poorly. A skillful teacher will make
good use of these situations to maximize the students' continuing
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motivation and to deepen the students' understanding this new way of
learning- -what is expected of the students and how the students can
develop new skills.

The main value of the critical incident model Iles In Its Interaction
with the previous models. With respect to motivational Issues, the focus
on critical incidents can enable the teacher to respond (with the class as a
whole or with individuals) to motivational issues at appropriate or `ripe"
times. With respect to developmental Issues, the focus on critical incidents
can keep the teacher sensitive to the developing skills and motivation of the
students.

SIKIIARY

Implementing constructivist instruction in our mathematics courses is
not an easy task. In this paper, a number of obstacles confronting the
teacher have been discussed. Three models from other disciplines have been
explicated and their relevance to mathematics classroom discussed. Each
model focuses on a key issue: components of "personal investment" in
learning, teaching as a developmental process, and significant events during
the course of a semester.
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INSTRUCTIONAL STRATEGIES AND ACHIEVEMENT IN GRADE 8

Gila Hanna
The Ontario Institute for Studies in Education

This study sought to identify teaching behaviours which are related to
significant gains in mathematics achievement over the grade 8 school
year. Of 23 classes studied, two were found in which the mean student
achievement gain was significantly greater than in other classes with
comparable pretest achievement. Analysis indicated that the significant
gain in mathematics achievement in these two classes could not be
attributed to differences in factors such as students' home background,
class size, number of Ictv,Icrts per week or teacher workload. From the
aspect of instructional strategies, however, analyses of teacher
questionnaires and classroom observations revealed differences between
the two effective teachers and their less effective colleagues. Approaches
which emphasized an organized presentation of new material followed by
extensive practice in its application to new situations seemed to have
contributed most to greater achievement gains.

This study builds upon previous empirical research on teacher effectiveness
(Berliner,1976; Brophy, 1979; Treiber, 1981) that hr shown consistent relationships

between certain teacher behaviours on the one hand and student involvement and

achievement on the other. Its primary objective was to identify those patterns of

behaviour in the teaching of mathematics which are associated with significant

gains in student achievement.

Data

The study examined mathematics instruction in 23 classes, using data collected in

the Ontario LEA Classroom Environment Study. The data consisted of direct

observations of teacher behaviour in the classroom, teacher responses to

questionnaires and the results of a student achievement test.

The observation component of this lEA study focussed on the direction ofclassroom

interaction (e.g., teacher to group, individual student to teacher); the context of the

interaction (e.g., small group, large group, private); the nature of the interaction

(e.g., asks high-order questions, gives directives, manages only) and the event (e.g.,

instruction, question, feedback). These observational data were collected in each
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class on eight different occasions. On each occasion, records were made of the
interactions that occurred during each of five different five-minute intervals,one at
the beginning of the class period, one at the end, and three spaced more or less evenly
over the rest of the period.

The teacher questionnaire consisted of 106 questions on such matters as classroom

organization, teacher strategies, testing procedures, use of curriculum materials, and
the proportion of time spent on various activities.

The achievement test consisted of a 40-item multiple-choice mathematics test
administered as a pretest at the beginning of the school yr,ar and as a posttest seven
months later.

Method and Results

1. Identification of Effective Teachers

Since the objective of the study was to find teaching patterns associated with
significant student achievement gains, it was first necessary to identify classes
showing such gains during the school year.

Complicating this identification were the differences among tht 23 classes with
respect to initial achievement level. To take this factor into account, the 23 classes

were separated into homogeneous groups on the basis of their mean score on the
pretest, after ascertaining through analyses of variance carried out for each group

separately that there were no differences among the classes within eachgroup. There

were three homoireneous groups: (1) low entry (5 classes), (2) average entry (7--
classes), and (3) above-average entry (6 classes). (The remaining five classes were
eliminated from further study, since they could not be added to any of the groups, nor

could they form a separate grouping with similar pretest achievement scores.)

Within each of the three groups, additional analyses of variance were carried out on
the posttest results to identify those classes for which the achievement gain was
larger than for the other classes in the same group. In each of the first two groups
there was one class with a significantly higher posttest mean. As shown in Table 1,

the students in Class 331 exhibited a gain of 15.6 at the end of the school-year, well

above the average gain of 7.2 for the other four classes of the low entry group.
Similarly, class 101 had the highest gain in the average-entry group. In the third
group there were no differences in posttest achievement among the classes.
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Table 1

Mean Pre and Posttest Mathematics Achievement Scores by Classroom

within Each of Three Groupe Identified on the Basis of
Equivalent Student Entry Performance

Mean Pretest Mean Posttest Mean

Classroom Group Class Mathematics Mathematics Achievement

['lumber Score Score Gain

Group 1: Low Entry
Performance

Mean of Means

Group 2: Average Entry
Performance

Mean of Means

Group 3: Above Average
Entry Performance

Mean of Means

201 14.1 21 8 7 7

222 14.0 17.3 3.3

301 13.5 19.5 6 0

312 14.1 18.2 4 I

331 13.6 29.2 15.6

13.8 21 1 7.2

101 16.7 26.6 9.9

111 16.8 21.3 4.5

112 16.4 22.2 5 7

151 16.5 20.6 4.0

202 15.1 23.0 8 0

302 15.0 18.5 3.5

421 16.9 22.5 5.6

16.2 22.1 5.9

121 19.7 22.5 2.8

131 18.5 25.5 7 0

141 17 3 22.9 5.6

161 18.0 23.7 5.7

311 19 8 24.8 4 9

411 19 8 24 2 4.4

18.8 23.9 5.1

2. Background Variables

To identify any differences in achievement gains from pretest to posttest which

might be attributed to factors other than teaching effectiveness, background

variables relating to student characteristics and classroom conditions were

examined.

BEST COPY tvP,MELE
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2.1. Student Characteristics

A comprehensive set of 40 student characteristics was employed, including the socio-

economic status of the parents, the father's and mother's educational level, the

language spoken at home, the student's attitude toward mathematics, the student's

perception of abilities in mathematics, and the teacher's assessment of the number of

students needing remedial help. There were no differences among the classes with
respect to these characteristics.

2.2. Classroom and Teacher Characteristics

A comprehensive set of 20 classroom and teacher characteristics was also studied,

including class size, time allocated for instruction, proportion of girls and boys in the

class, amount of homework assigned, teaching experience, teaching workload, and

number of subjects other than mathematics taught by the teacher. There were no
differences among the classes with regard to these characteristics.

3. Instructional Strategies

Both the classroom observational data and the teacher questionnaire data were then
examined for possible identification of effective teaching strategies. In particular, the

study compared the behaviour of each of the two teachers whose classes displayed

exceptional achievement gains to that of the other teachers in their respective
groups.

3.1. Time Allocated to Various Instructional Practices

On a four point scale (no time, a little, a fair amount, and a great deal) the teachers

reported the amount of time they allocated to the following six instructional and
managerial practices:

I. Questions directed to the whole class
2. Monitoring or giving help to individual students
3. Teaching the whole class
4. Teaching small groups
5. Monitoring while students work in small groups
6. Disciplining students

Teacher 331 spent much more time on activities 1, 2, 3, and 5 than did the other

teachers in Group 1. However, this was not the case for Teacher 101, who did not

differ from the other teachers in Group 2 on any of these activities.
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3.2. Planned Lesson Emphases and Lesson Intentions

The teachers were asked to state the frequency with which they made use of four

specified emphases: (a) introduction of new material, (b) extension of new material,

(c) review to refresh memory, and (d) review to correct misunderstanding. The first

two emphases were used much more frequently by the effective teachers (about 80 to

100 percent of the time) than by the others (about 50 percent). Emphases (c) and (d)

were seldom used by the successful teachers, but were used about 50 percent of the

time by the others.

Four lesson intention were investigated: (a) comprehension of a concept, (b) teaching

rules, (c) applying previous learning to new situations, ane. teaching social and

interpersonal skills. The two effective teachers reported a higher frequency of use of

(a) and (c), and a lower use of (b), than did the other teachers. None of the teachers

reported using (d).

The lesson emphases and intentions used by the effective teachers appear to reflect a

teaching model that emphasizes the presentation of new material followed by a great

deal of application of that new material to ensure that the students have grasped its

content.

4. Classroom Interaction

Data pertaining to classroom interaction had been collected through the Five Minute

Interaction (FMI) observational instrument, on eight different days or observation

occasions. To cast this large and unwieldy volume of data into a form more amenable

to display and analysis, the original interaction categories were grouped into four

major interaction types: (1) Classroom Management (4 categories); (2) Instruction (6

categories); (3) Teacher/Student Exchanges (12 categories); (4) Seatwork (2

categories).

These four interaction types were then graphed as a function of time (strictly
speaking, as a function of the ordinal number of the observation record within each

observation period). The resulting graphs proved very effective in presenting a large

amount of information in a small space (Hanna, Postl, Truab, and Wolfe, 1986).

To assess the bearing of observed classroom interaction on achievement, the two

classes with high gains (classes 331 and 101) were compared to the two corresponding

classes with the lowest gains, (classes 222 and 302).

1228



- 274 -

For both of the achieving teachers, the patterns of observation showed considerable

inconsistency from one observational occasion to another. There were in fact, more

similarities among the four teachers than there were among the various
observational occasions for any individual teacher. In sum, there was nothing in this
display of the observational data that could have predicted the differences in mean
achievement gains.

Summary

The significantly greater gains in mathematics achievement in the two classes with
the largest gains could not be attributed to factors other than teacher behaviour.

Analysis of teacher questionnaires revealed differences between the effective
teachers and their less effective counterparts. The teaching strategies that seemed to

have contributed most to greater achievement gains were (a) an extremely organized

approach to teaching, wherein material is taught until the teacher feels it is
mastered, thus reducing the need for frequent review, and (b) an approach in which

every presentation of material is followed by extensive practice in applying the
material to new situations.

Analysis of the classroom observations, on the other hand, did not yield any insight
into the influence of classroom interaction on achievement gains.
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THE USE OF EXPLICITLY INTRODUCED VOCABULARY
IN hELPING STUDENTS TO LEARN, AND TEACHERS TO TEACH

IN MATHEMATICS

John Mason, Open University
Joy Davis, Rumney College

Abstract

We claim thnt explicit use of terms for technical aspects of
mathematical thinking and teaching can help, and we describe
the activities which led us to this conclusion. More
importantly, we describe our way of working and justify our
claim by reference to it, by expecting our readers to
recognise what we are saying in their own situation, and
thereby informing, clarifying, and perhaps altering their

own activity.

THE PROBLEM

When teachers are invited to talk about their teaching, they tend

to focus on lesson content and to shy away from discussing techniques,

tensions and difficulties. As one tutor said at one of our meetings,

"People want to talk about teaching, but they don't have the vocabulary

for it. So it comes over that they don't want to." In the related

domain of feelings, Lewis and Michelson (1983) note that although some

studies have focussed on how children and adults talk about their

feelings, very little is known about how labels are actually acquired

for feelings.

The problem therefore, is how to improve the effectiveness of

teachers' discussions of their teaching, and correspondingly, of

students' discussion of their learning. Our belief is that these two

domains are connected, and that a sensible place to begin is to work on

helping teachers to talk effectively with their students about the

learning of mathematics.

Scardamalla and Bereiter (1983) suggest that (many) students are

interested in analysing their cognitive processes, and propose some

techniques for generating reflection in children. Our approach with

adults, is to develop and introduce meaningful vocabulary for the

Learning and doing of mathematics, as well as strategies for

negotiating or rejecting that vocabulary. However, words in themselves

do not carry meaning. Meaning arises in an individual as a result of a

desire to make sense, which acts upon some recent or vivid experiences,

and which is integrated by a crystallizing word or phrase. For example,
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most students have found themselves stuck on a mathematice problem at

some time. They have plenty of experience of getting unstuck, as well,

through teacher or peer questions or suggestions. The single word

STUCK, used as an acknowledgment of a state, can, we claim, integrate a

number of vivid experiences of being stuck, and aid recall of

strategies for getting unstuck that have worked in the past.

HYPOTHESES

1. People can develop their mathematical thinking, learning, and

teaching by reflecting on their experience;

Comment: Despite the adage, experience alone is insufficient to

guarantee learning. Play with Dienes blocks does not automatically lead

to a deep sense of base ten notation. As Brophy (1986) observes, "Mere

engagement in activities will not facilitate learning, of course ...".

Hart (1985) studied transitions between practical activity and

formalisation, found enormous gaps, and questioned the myth that

'practice', work is a good thing' in and of itself. Schon (1983) and

Kilpatrick (1986) highlight the role of reflection in learning from

experience.

2. Even where change in behaviour, attitude and perspective takes

place without conscious overview, it follows a definite pattern

which is elaborated in Mason (1984) and Mason (1986), but can he

briefly described an follows:

* Attention is focussed on some aspect of teaching, or learning, or

mathematics, as a result of reading, discussion, or observation

(Attending);

k That aspect seems to make sense in terms of past experience

(Resonating);

* Subsequently, that aspect comes to attention in or soon after an

event, either spontaneously, or as a result of intentionally

looking out for it (Noticing);

* An alternative behaviour-response is triggered as a result of

noticing an opportunity (Choosing).
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Comment: Our radical constructivist perspective (Mason and Davis

(1987), von Glaserafeld (1984)) leads us to concentrate on studying how

we and other people construe and reconstruct ideas for ourselves, so

that ideas become our own' and integrated into our behaviour,

attitudes and perpsective. Being involved in in-service and mathematics

teaching, we act upon our our beliefs by constructing events, both

face-to-face and at a distance, which are designed to foster and

support sense-making.

DRDUCTION

Assuming Hypothesis 2, it makes sense to invoke the same pattern to

investigate Hypothesis 1. Baldly described, our method is

Offering activities (Wertsch 1981) or tasks in which a potent

distinction is often noticed, or to which attention can be drawn

(Engaging);

Drawing attention to such a distinction (Attending);

Asking people to interrogate their experience and nee if they

recognise the distinction (Resonating with own experiences);

* Inviting people to set themselves to notice the distinction and to

report such noticings vividly to colleagues (Noticing);

* Suggesting or identifying specific teaching techniques or

mathematical processes which may be effective or appropriate in such

situations (Choosing);

* Inviting people to share vivid reports of the use of such techniques

or processes as part of negotiating and enriching the meaning for

vocabulary (Ceepening through Resonating with others).

For example, as a result of our teaching tests, we were led to a

particular cane of Hypotheses 1 and 2:

TIMIS

Teachers and adult students can improve the effectiveness of their

reflection by being encouraged to adopt a vocabulary for significant

thinking processes, such as the use of

Specialising to refer to a wide range of acts in which abstract and

general statements are particularised to concrete, specific, confidence
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inspiring examples (all relative to the individual of course), both in

mathematics and in mathematics education, and summarised in the

expression, Seeing the Particular in the General.

Generalising to refer to the act of focussing on similarities in

several situations, leading to a sense commonality and generality, and

summarised in the expression, Seeing the General in the Particular.

KNOW and WANT to refer to the act of crystallising and recording

what you know that is relevant to the problem, and what you want. These

tend to change as you begin to make progress.

An elaboration of the technical uses of these and other words, and

the way such technical uses are introduced in a manner corresponding to

Hypothesis 2, can be found in Mason et al (1982) and Mason (1984).

Michener (1979) offers additional vocabulary, but does not elaborate

particularly on a method of introducing the vocabulary to students.

COLLECTION OF EVIDENCE

The context of our activities consists of students studying Open

University courses and of running in-service workshops for O.U. tutors,

and for advisory teachers, teachers, and pupils. One O.U. course is in

Mathematics (3500 students per year), and two others are in Mathematics

Education (300 students each per year). These are studied at home by

correspondence, supported by television and radio broadcasts,

tutorials, and in the case of mathematics, a week long summer school in

the middle of the course. Since 1982 we have engaged in the followings

Activity 1 Informal discussions with O.U. students about learning

mathematics.

Activity 2 Meetings with O.U. tutors to stimulate reflection on and

questioning of their tutoring, especially with regard to

conducting mathematical investigations with students, and to

suggest vocabulary as indicated above, for use by them with

students. The meetings were conducted along the lines

indicated in Hypothesis 2.

Activity 3 Structuring of investigative workshops for 0.U.

undergraduates at face-to-face summerschools (3500 students

each for a week at one of 3 sites over a 10 week period) in

a style corresponding to Hypothesis 2.
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Activity 4 Conducting INSET workshops for teachers, and workshops for

pupils in the same style.

Activity 5 Course texts written for adult O.U. students, in the style

of Hypothesis 2. Our main study coincided with the redraft

of the original text (Mason (1980), and strongly influenced

the new version (Mason 1984).

Activity 6 Course texts were written for mathematics teachers (300 per

year) in the style of Hypotheis 2 (O.U. 1980).

Information and evidence was collected in a disciplined (Mason 1984)

but informal manner as follows:

1. Audio recordings were made of meetings, from which pertinent

anecdotes and quotations were selected, to use as stimuli in

subsequent meetings. For example, one student said "I study a text

for a week, do the assignment, score well, but three weeks later I

can't remember anything about it." We have found that when quoted to

students at summerschool, there is an immediate moan of recognition,

and a sense that they appreciate that we understand something of

what it is like to be an O.U. student. This is a good example of

resonance, and its use to communicate effectively with people.

2. Audio recordings were made and used analogously to activity 1.

3. Anecdotal but unsystematic observation suggests that over the four

years since we began, tutor and student attitude to investigations

has changed markedly from negative, barely tolerant to accepting or

even enthusiastically positive, as reported In Davis and Mason

(1984). Tutors are found using the suggested vocabulary, not just in

investigation sessions, but in lectures and tutorials; course

authors have picked up the vocabulary and used it in subsequent

redrafts of mathematics texts f,,r students.

4. We use live workshops for the honing and precising of activities

which are than used in texts as described in the DEDUCTION. A major

force in our methodology is the search for resonance - first in past

experience, and then subsequently in noticing that aspect in new

situations. (See O.U. 1982 for examples.)

5. We look for spontaneous utterances from students at summerschools

during the particular or subsequent courses. For example, Davis

reported a student in a tutorial group for an advanced O.U.

mathematics course as follows:

1.234
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.:ne student was invited t^ go to the board and co-ordinate

suggestionsfrom the others. ... Then he said out loud, and wrote, "I

KNOW ..., I WANT ...". I was surprised to observe such explicit use

of one of our frameworks which I had not yet myself used with this

group, and asked him where he had come across this approach. "Oh, I

tound it some years ago in a book (the O.U. text (1980) referred to

earlier), and I've used it ever since because its so useful. It

helps me to get started on questions, to organise my thinking, and

to get me out of being stuck."

The spontaneity and richness of experience suggested by the remark is

most gratifying. Our criteria for success do not depend on achieving

any particular density of spontaneous uses of the suggested vocabulary,

because we do not want to get trapped into trying to prompt students to

'give us that we want to hear'. We have recorded enough such utterances

to convince ourselves that students, and teachers can become more

reflective and more effective. We make no claims of necessity.

6, Remarks under 5 apply to activity 6 as well. In November 1986 we

conducted a survey of ex-students on the mathematics education

courses. Of the 896 students approached, replies were received

from 625 (69%). Of these

40% said they now use Do, Talk, Record (one of the course

frameworks), most of the time;

92% said they now use it some or most of the time;

56% said they were using one or more of the frameworks

explicitly with their pupils.

On the surface, such responses seem encouraging, but whether the

respondents all mean the same thing by "use most of the time", is

impossible to tell, and rather unlikely. We choose to interpret the

results simply as indication that there may be some potential in

our approach. Our methodology validates its findings in other ways.

VALIDATION

Our Radical Constructivist approach leaves valid 'y to the

practitioner. We seek resonance in those we work with face-to-face. We

then write our texts in a corresponding manner to try to promote

resonance and effective reflection. This report is not presented in as
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self-consistent a style ac we would wish, due to limitations of space

and in order to meet the usual research requirements. Our preference,

and our methodology, require us to present exercises through which

readers might attend to some pertinent noticing, recognise it In their

experience, and so be moved to notice something in the future which

otherwise might have gone unnoticed. Validation of our thesis resides

for each person in the extent to which they recognise something of what

we describe, in their own situation, and find their own experience

enriched or clarified as a result of trying to construe our report.
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YOUNG CHILDREN'S UNDERSTANDING OF NUMBER AND UNIT IN A CONTINUOUS DOMAIN

Patricia F. Campbell, Greta G. Fein, and Shirley S. Schwartz

University of Maryland, College Park

Kindergarten and first-grade children's developing con-
ceptualization of number and unit in the domain of length
was assessed using a computerized estimation game format.
Assessment occurred after 2, 4, and 6 hours of Logo keyboard

experience. Preliminary results indicate significant effects
due to grade, unit of measure and magnitude.

Much research has focused on the development of counting skills

(Fuson, Richards & Briars, 1982; Gelman & Gallistel, 1978) and the

importance of counting in mathematical development (Carpenter & Moser,

1984; Fuson, 1982, 1984). However, number in its most general form is a

measure of quantity. What distinguishes number from sequencing, as in

rote counting, is a unit of measure. In assigning a number to a

collection of discrete, discontinuous items via counting, the units are

the individual items in the collection. In that case, quantity is

determined only by the number of unit entities, regardless of their

size. However in the most general case of measure, quantity is a

function of both the number of units and the size of the units.

Further, different units may be utilized when determining quantity.

Accordingly, in this domain, the effect of unit transformation is much

more complex. Young children appear to understand measurement as a

relationship between increased quantity and increased unit numerosity.

However the inverse relationship between unit size and the number of

units is difficult for young children (Carpenter 1975; 1976; Gal'perin &

Ceorgiev, 1969; Hiebert, 1981).

In their information-processing model, Klahr and Wallace (1976)

hypothesize that individuals generate an internal representation of a

component of the total space or quantity to be measured. This

representation serves as an internal unit; numerical values may be

associated with it. Further research is needed to determine how

children determine unit size, coordinate number words with unit

The project reported herein was performed pursuant to Grant No. MSMA 1
R03 42345-01 from National Institute of Mental Health to the first

author. Any opinions, findings and conclusions are those of the authors
and do not necessarilty refleet the position or policy of the National

Institute of Mental heattn.
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iteration, and maintain consistent unit sizes during measurement and

estimation tasks.

Logo provides an arena in which young children may define, create

and manipulate units, maintain or predict unit size, and create length

rather than end point representations through either iterative or

numeric distance commands. Further, Logo permits a child control of

transformations of unit size and number without the distracting

processing and dexterity demands associated with measuring instruments

and physical quantity. This study utilized Logo as a controlled setting

in which young children's developing understanding of distance and the

inverse relationship between unit size and number was examined.

METHODOLOGY

Sublects. The subjects for this study were 26 kindergarten and 23

first-grade children from a diverse racial and ethnic population of

middle/upper-middle class socio-economic status.

Experimental Design. The dependent variables were children's

understanding of distance in terms of a unit of measure and children's

conceptualization of the inverse relationship between the number of

units and unit size. These variables were measured by an Estimation of

Distance task that varied both unit size and partitioning constraints.

The independent variables were grade, Logo experience and the spatial

factors inherent to distance representation (the length to be measured

[long or short] and the orientation of the distance path in the plane

[horizontal, vertical or oblique]).

Procedure. Each of the first-grade children received Logo

instruction in small groups of 12 children during one-hour sessions once

a week. Each of the kindergarten children received Logo instruction in

small groups of six children during 15- to 20-minute sessions

approximately two to three times per week. Following each instructional

session, the Logo instructors recorded the number of minutes of

individualized Logo exploration keyboard time made available for each

child.

Logo instruction for the first-grade children utilized the Turtle

Graphics component of Logo; the kindergarten children utilized a version

of Instant Logo which required the RETURN key to be struck with each

single keystroke. The kindergarten children spent approximately two

months completing pre-Logo movement activities followed by exploration
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with a Logo robot prior to introduction to the triangular cursor on the

monitor screen.

Estimation of Distance Task. The Estimation of Distance Task

utilized a hypothetical setting that required the child to move the

triangular cursor from an initial location to a targeted position on the

monitor screen in either one move (go all the way to the target) or in

two moves (first go half way to the target, then go the rest of the

way). Because this assessment was to measure only distance estimation,

not direction estimation, the initial heading of the cursor was always

positioned toward the target. A line segment representing the distance

traversed by a single forward unit was visible during each item

presentation.

Each of the three Estimation of Distance assessments were

individually administered in two 15-20 minute sessions. The two

sessions, each presenting 24 items, were conducted within a one week

period after 2, 4 and 6 hours of individualized Logo keyboard time. The

first 12 items in each session consisted of 12 targets whose distances

were to be estimated using a unit length of 10 turtle steps (Us). The

next 12 items in the session utilized a forward unit length which was

either half (11%) or double (Us) the original unit. Children in each

grade were randomly assigned to either the Us or the Ui Ut condition.

During the second testing session of each asseFsment, the last 12 items

were estimated using the other unit length. In both testing sessions,

the items alternated between the Single Move and the Two Moves

condition.

For half of the items, the distance to the target was short (6, 8,

or 10 U1 units); for half of the items the distance was long (12, 16 or

20 Ul units). Children in each grade were randomly assigned to one of

12 distance presentation patterns.

The path between the initial cursor position and the target

location was either a horizontal, vertical or oblique directed line

segment. Children in each distance pattern were randomly assigned to

one of six possible patterns for orienting the target path on the plane

of the monitor screen. Because pairs of items were balanced for the

three angles of orientation, this assignment controlled for the

representation of the Move condition across alternating items. In

addition, each path orientation occured for both long and short

distances. Each student's path/distance pattern for the first 12 items

was repeated for items 13-24.
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ANALYSIS AND RESULTS

The following repeated measures analyses reflect data collected

after 2 and 4 hours of Logo keyboard time. Two dependent measures were

utilized. The Numerical Estimate of Distance measure is the number of

units entered as the initial estimate of distance in response to each

item in the U condition. The Estimation Accuracy measure is the ratio

of the number of units initially estimated to the correct number of

units. This measure was calculated for each item under all three unit

conditions (Us, Us,. Us). Both of these measures were analyzed

separately across the Move conditions. In each analysis the covariance

structure was checked to determine if assumptions for repeated measures

was satisfied; if necessary, adjusted 2 values were computed using the

Greenhouse-Oeissercorrection.

The initial analysis sought only to determine if the children did

in fact estimate different lengths with differing numbers. This

analysis utilized the Numerical Estimate of Distance measure with a

Grade(2) x Time(2) x Session(2) x Length(6) ANOVA with repeate:f measures

on the last three factors. Under the Single Move condition, significant

effects due to grade (F(1, 47) = 9.75, 2, = .003) and length ( (5,235) =

26.06, 2.< .0001) were noted. The first-grade children were more

accurate estimators overall; as the distances increased, the children

estimated the length with larger numbers. No significant grade effect

was noted in the data collected under the Two Moves condition. The

significant effect due to length noted under the Single Move condition

was also present under the Two Moves condition (F(5,235) = 20.79, 2. <

.0001). Under the Single Move condition, the children generally tended

to underestimate the total distance to the target; when estimating half

the distance to the target, the children tended to overestimate the

distance.

Subsequently, a Grade(2) x Time(2) x Session(2) x Orientation in

the Plane(3) x Distance(2) ANOVA with repeated measures on the last four

factors was completed using the Estimation Accuracy data collected under

the Ul condition. Because the ratios of the children's initial

estimation of length to the actual length were not normally distributed,

this analysis was completed on the logarithms of the ratios in order to

yield homogeneity of variance. Because of the use of logarithmic data,

geometric means were computed.

1241



- 289 -

Under the Single Move condition, significant main effects due to

time (F(1,47) = 5.3, 2 . .0259) and grade (E (1,47) . 18.37, 2 < .0001)

were noted. Significant interactions were also indicated between time

and distance 01,47) . 6.07, n = .0174) and between orientation and

distance 02,94) = 3.77, 2 = .0346). The first-grade children were

more accurate than the kindergarteners with accuracy for all children

improving over time. After two hours of Logo keyboard time, the

children tended to underestimate the distance to the target by 32%;

after four hours of Logo keyboard time, the children were

underestimating the distance by 24%. Examination of the time x distance

interaction means revealed that after two hours of Logo keyboard time,

the children were underestimating the longer distanceSih-by 38% and the

shorter distances by 27%. However, after four hours of Logo keyboard

time, both longer and shorter distances were being underestimated by

24Z. The interaction means also indicated that while longer distances

were more difficult to estimate than were shorter distances when

positioned as either horizontal or vertical lines, this pattern reversed

for oblique lines. A significant time x distance x grade interaction

was also indicated (j(1,47) = 5.12, .2. . .0283). Under the Two Moves

condition, the grade effect persisted (F(1,47) = 8.5,.2 = .0054) along

with a significant effect due to distance (F(1,47) = 14.06, 2 = .0005).

As the distance to the target increased, so did the children's

underestimation of half of that length. The shorter lengths were

underestimated by 7%; the longer distances were underestimated by 20%.

The analyses thus far have considered children's ability to

associate a numeric value with either a total or a partitioned distance

for a fixed unit (1.11) of length. In addition, the children also

estimated the lengths of these same distances when the unit of measure

was either doubled (01) or halved (UA). The Estimation Accuracy

measures under these conditions were evaluated with a Grade(2) x Time(2)

x Unit Size(2) x Orientation in the Plane(3) x Distance(2) ANOVA with

repeated measures on the last four factors. Under the Single Move

condition, significant main effects due to grade (F(1,47) . 11.46, 2 =

.0014) and unit (F(1,47) = 145.99, 2 < .0001) were indicated us was a

significant interaction of unit with grade (F(1,47) = 11.82, 2 ... .0012).

Overall the children tended to overestimate the distance to the target

by approximately 2% when using the doubled unit (U2); however, with the

halved unit, the children underestimated the length to the target by

approximately 50% (62% for kindergarten children; 35% for first
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graders). When the doubled unit was present, the kindergarten children

were very accurate, averaging only a 3% underestimation. Conversely,

the first-grade children tended to overestimate with the doubled unit by

about 9%. A time x unit x grade interaction was also significant

(F(1,47) = 4.88, R.= .0321). Under the Two Moves condition, the

significant main effect due to unit size persisted (E(1,47) = 111.76,

< .0001) as did the unit x grade interaction CE (1,47) = 6.53, R =

.0139); however, the overall level of accuracy diminished. Under the

halved unit condition, the children tended to underestimate the position

half way to the target by about 42% (50% for kindergarteners; 31% for

first-graders) while they overestimated the half-way position with the

doubled unit by approximately 10% (9% for kindergarten children; 12% for

first-grade children). In addition, a significant main effect due to

distance was indicated under the Two Moves condition (E1,47 . 38.65, 2

= .0001) as was a distance x grade interaction (F(1,47) . 8,42, R.

.0056). The partitioning of longer distances was underestimated by

about 30% (40% for kindergarten children; 18% for first-grade children)

while the partitioning of shorter distances was underestimated by only

8% (10% in the kindergarten; 5% in the first grade).

DISCUSSION

The analysis described above is preliminary as data from the third

assessment period is currently being collected; however, some trends

seem to be present. The children did understand that a distance could

be traversed by iterating a given unit of measure; as the unit of

measure decreased in size, the estimation task became more difficult.

The children did understand that a compensatory relationship existed

between the unit size and the number of defining units. Further

analysis is planned to examine whether the children's estimations reveal

application of the inverse relationship between unit size and unit

numerosity and whether the children realize that equal distances remain

equal when they are measured with a different number of units (Carpenter

& Lewis, 1976).

Although longer distances were more difficult to estimate, the

childrea gained proficiency over time. Further analysis is planned to

investigate whether having visible versus invisible/self-determined

targets (Single Move versus Two Move condition) influences the length

effect. Even the kindergarten children understood that a distance could
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be partitioned into cwo components and that the numeric value for length

assigned to any one component would be less than the numeric length

value assigned to the original distance. Howver, many of the children

had difficulty determining what that smaller numeric value should be.

Although significant main effects due to Logo keyboard time are

indicated in these results, further analysis is pending. A control

group of first-grade children who have had no Logo experience will be

administered the Estimation of Distance Task at the time that the

first-graders with Logo are completing their third assessment.

Subsequent comparison of these two sets of first-grade data will serve

to control the confounding effect of development and maturation.
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MECHANISMS OF TRANSITION IN THE CALCULATION OF VOLUME DURING

THE CONCRETE SYMBOLIC MODE

K.F. Collis and X.J. Campbell

University of Tasmania

Forty Eight primary school children were tested individual-
ly on a series of tasks related to the calculation of the
volume of physical or pictured rectangular solids, some
constructed from individual cubes, others undivided. A
developmental sequence was found which was analysed using
the SOLO Taxonomy. This showed clearly how the young child
starts by focusing on the external aspects of the figure
and gradually moves to an appreciation of its internal
structure. The results could not be explained simply by
the child's number skills, and the developmental sequence
wee justified by a Guttmann reproducibility coefficient of
r e 0.90, obtained over several tasks. The results were
related to performance on transformation tasks used by
Piaget et al. (1960) and Lunzer (1960) in order to clarify
questions raised by Lunzer concerning Piaget's theory of
the primacy of topological notions of volume.

INTRODUCTION

The aim of this study was to validate and to extend the theory of the

SOLO Taxonomy (Higgs and Collis, 1982) through its application to a new

set of mathematical data, and to analyse the transition mechanises by

which children move between successive levels of development. A pilot

study involving detailed examination of some of the elated format math-

ematics items used by Collis, Romberg and Jurdak (1986) revealed an

interesting sequence of development on a series of questions related to

the volume of pictured three dimensional rectangular solids constructed

from individual cubes. A sequence of changes in the way in which child-

ren organised individual cubes for counting appeared to reflect suc-

cessive steps in their ability to conceptualise and integrate the three
dimensions. This developmental sequence proved amenable to analysis

using the SOLO Taxonomy, and allowed investigation of the way in which

children cone to use the three dimensions in understanding volume.

This latter is a subject of long-standing controversy between Piaget,

Inhelder and Szeminaka (1960) and Lunzer (1960). Piaget et al. contend

that the child's first understandings of volume are topological. Lunzer

(1960), who replicated the general stages of development discovered by
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Piaget et al., disputed the theory of the primacy of topological no-

tions. The present research examines the mechanisms involved and

provides some further insights into the child's understanding of the

concept of volume.

METHOD

Forty eight primary school children in grades 2 to 6, and from middle

class areas of Hobart, were tested individually on a series of tasks

related to the calculation of volume. The same testing procedure was

used with each child. The items included:

(A) Pictured constructions: Three sets of questions in the format de-

veloped by Collis, Romberg and Jurdak (1986) required the child to cal-

culate the number of cubes used to build pictured constructions made

from individual cubes.

(B) Transformation tasks: Four transformation tasks were used. Two in-

volving physical constructions were those used by Piaget et al. (1960)

and Lunzer (1960). In the Piaget et al. task children had to build on

a 2x2 base, a tower made with the same number of cubes as a 3x3x4 con-

struction also made from individual cubes. In the task developed by

Lunzer, the original construction (equivalent to 4x4x3 cubes) had no

visible divisions into individual cubes, but one row or column of cubes

was placed along each dimension. Children had to use this information

to calculate the number of cubes needed to construct the whole figure,

and to build a new tower of equal volume, but on a 2x3 base. Equivalent

pictorial representations of these two transformation tasks were also

included.

In addition several other tasks were included to throw more light on

the behaviours under examination. These were: -

(i) Conservation of interior volume: A 3x3x4 "house" was transformed

into a 1x36x1 "bungalow", and appropriate conservation questions naked.

(ii) Invisible cubes: Children who did not include invisible cubes when

counting a pictured construction were asked (a) whether, if they were

to build the item with real cubes, they would need to use any cubes not

shown in the picture; (b) whether any cubes would be needed under the

back corner cube, and if ao, how many.

(iii)Faces and cubes: All children were asked about how individual

pictured faces combined to form cubes, and to give an opinion about an

inappropriate combination of faces.

(iv) Impossible figure: The final pictured construction was an "imposs-
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ible" figure in that two elevated cubes were depicted with no support-

ing cubes. Children's reactions were gauged as they were asked to

count the cubes, and then make the construction.

(v) Memory questions: Children were asked to memorise, and then to

build from individual cubes, immediately upon removal of the original,

four constructions, each presented individually. Two were easy and two

more difficult. Two were presented physically, two pictorially.

(vi) Number skills: To investigate the relationship of numerical

skills to ability to calculate volume, children were asked to solve, at

the start of the interview, equivalent numerical items which contained

no reference to the counting of cubes in three dimensional construct-

ions.

RESULTS AND DISCUSSION

The results will be discussed in three parts:- (A) The developmental

sequence observed on the pictured constructions; (B) The transformation

tasks; and (C) Numerical items.

(A) Pictured Constructions. The following sequence of development in

counting the cubes used in pictured constructions was observed. The

developmental sequence is described in terms of the SOLO Taxonomy and,

based on two criteria, all steps are within the concrete symbolic mode:

(i) All children conserved interior volume; (ii) The tasks involve

quantitative abilities.

Steps within the Unistructural Level.

(1) Visible cubes only are counted, individually, and in a relatively
disorganised manner.

(2) Visible cubes are counted, individually, but organised into (the

visible aspects of) rows, columns or layers.

(3) Visible cubes are counted first, individually; some invisible cubes

are included afterwards - incorrectly and in a disorganised manner.

Steps within the Multistructural Level.

(4) Visible and invisible cubes are organised together in a non-optimal

way, and are counted individually.

(5) Visible and invisible cubes are still counted individually, but

they are well organised into a consistent arrangement of rows, columns

or layers, which reflects the internal structure of the building.

(6) Visible and invisible cubes are chunked together within a group

(that is a row, column or layer), and successive chunks are added.

(7) Doubling is used to combine two similar layers.
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(8) Multiplication is used to find the total number of cubes in several

similar groups.

Some, but not all of the children who multiplied had reached the relat-

ional level. The criterion of relational level ability used here, is

the generalisation of these multiplication skills to constructions where

the individual units (division into cubes) are not shown.

Identical sequences of development were found for constructions made of

physical cubes, except in these cases "visible" cubes corresponded to

all the cubes wilich could be seen on the outside of the construction.

This would seem equivalent to the topological appreciation of the object

describt.d by Pr.aget.

Coping with Invisible Cubes. Some additional tasks were included to

investigate why children at the earliest stages fail to include invisible

cubes. First, in 77% of cases where invisible cubes were not included

the child later stated that cubes which could not be seen in the picture

would be required to construct the building. In addition, in 79% of

these cases, children could give the correct number of cubes needed

under the beck corner cube. When asked why these cubes were not incl-

uded in their calculations they replied "I forgot" or "I didn't realise

I had to" etc.; but when asked to recount the cubes, many still omitted

the invisible ones, or at most moved to step 3 in the unistructural

level. Thus, in general, children who do not include invisible cubes

when counting the total construction, can focus correctly on them when

asked about a particular part of the construction. This is typical

uniatructural behaviour. What they cannot do, is remember the parts

sequentially to provide a "construction" of the whole. This is a multi -

structural ability.

The ability to operate correctly on part of the construction is also

apparent in the results from the "impossible" figure. All children

showed by questions or exclamatio-s while ccunting or building the item,

that they recognised the need for supporting cubes. In addition, on

questions about the faces of a pictured cube, all children showed appre-

ciation of how faces combined to form cubes. No child agreed with a

statement proposing an alternative structuring of faces into different

cubes.

Finally, on the memory items 94% of children, including all children

responding at the unistructural level, solved the two physical memory

items correctly. Eighty percent of children operating purely within

the uniatructural level (Steps 1, 2 and 3) failed both pictured memory
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items. No other children failed the easy pictured memory item,

although there was a progressive ability to solve the difficult pictur-

ed memory item with developmental level. It would seem that all the

children in the sample could form an image of a physical construction

with which to guide building from memory. Often children were not

accurate on their first attempt, and altered their construction until it

"looked right". This indicates probable use of the Ikonic mode of oper-

ation. In contrast on the pictured memory items, children responding

uniatructurally could not use the pictured information to form a suit-

able representation in memory of either the easy or difficult items;

while children in the early stages of the multistructural level continue

to have problems with the difficult pictured memory item.

(B) Transformation Tanks. A regular sequence of development was found

across the four transformation tasks. Their order of difficulty for 44

of the 48 children tested was:

(a) physical transformation task - individual cubes;

(b) pictured transformation task - individual cubes;

(c) physical and pictured transformation tasks - undivided solids;

solved simultaneously.

This sequence occured because the first two transformation tasks could

be solved by multistructural level strategies; while the tasks, involving

undivided solids could only be solved at the relational level, as defined

for this project.

(i) Physical transformation task - individual cubes: Thirty one

children in the sample (65%) solved this task correctly. Incorrect

strategies included building the new tower higher than the original with-

out counting cubes, and the counting of "curtain walls". All children

at the uniatructural level in Part A used such eacorrect strategies.

Correct strategies reflected the previously established developmental

sequence. First the cubes in the original construction were counted

individually, then by successive addition, and finally by multiplication.

(ii) Pictured transformation task - individual cubes: Twenty two

children in the sample (46%) solved this tank correctly. No children at

the uniatructural level (steps 1, 2 and 3) were able to develop an

appropriate strategy to find the height of a building, built on a 2x2

base with the same number of cubes as a pictured 3x6x2 construction.

Once children gave multistructural level responses in part A, they

attempted to calculate the height by counting successive groups of 4

cubes, usually by dividing the original building into groups of 4
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cubes and counting the number of groups. Children in the early sta as

of the multistructural level (Steps 4, 5 and 6) lost track when apply-

ing this strategy, and only at the final stages of the multistructural

level could this strategy be followed through successfully. It was

succeeded by the use of multiplication.

(iii) Physical transformation task - undivided solid: Thirteen child-

ren in the sample (27%) solved this task correctly. No children at the

unistructural level in Part A had any appropriate idea of how to

calculate the number of cubes equivalent to the solid. Many children

responding multistructurally in Part A counted "curtain walls", where

the four side walls only were counted, with corners included twice. A

progression of strategies was used from counting imaginary cubes indiv-

idually, to sequential addition and then mLltiplication for the four

walls. The next step was for the child to realise the inadequacies of

the "curtain wall" approach, and to modify the calculation to include

the middle, or to count corners once only; inevitably a cumbersome and

inaccurate procedure. Finally, children who imposed an appropriate 3

dimensional structure, used a correct multiplication strategy.

(iv) Pictured transformation task - undivided solid: Twelve children

in the sample (25%) solved this task correctly. Children responding

unistructurally in Part A had no idea how to start solving the problem,

while children at the multistructural level attempted to calculate

aspects of the outside of the figure only - either adding edges or surf-

ace areas. A correct solution was only achieved by multiplication of

the three dimensions.

Developmental Sequence. The results of both Parts A and 13 present a

clear developmental sequence which can be tested empirically, using a

Guttman reproducibility coefficient. This sequence can be represented

as follows:

Concrete symbolic mode

(a) No transformation task solved correctly: this group included all

children classified as operating at the unistructural level in Part A.

(b) Physical transformation task with individual cubes solved success-

fully: these children perform at or above the start of the multistruct-

ural level (Step 4) in Part A.

(c) Pictured transformation task with individual cubes solvedsucess-

fully: these children perform at or above multistructural level Step

6 in Part A.

(d) Two undivided solid transformation tasks solved successfully:

relational level: these children also use multiplication in Part A
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(Step 8) and on the other transformation tasks.

Out of 48 children, 5 were exceptions to the above sequence: r..0.90.

This sequence, together with the detailed developmental steps given in

Part A, appear to add weight to Piaget's claim that the child's first

understandings of volume are topological. That is the child starts with

the external aspects of the figure and gradually comes to an appreciat-

ion of its internal structure. This occurs earlier for constructions

where division into individual cubes makes the internal structure easier

to grasp, and on these the "curtain wall" approach is abandoned at the

end of the unistructural level. With undivided solids, calculation of

"curtain walls" contin'ies throughout the multistructural level, and

children's first attempts at sequential addition or multiplication are

applied to this inappropriate structuring. Resolution of the problem,

for undivided solids marks entry to the relational level.

(C) Numerical Skills: Several additional items were included to elim-

inate the possibility that the developmental sequence merely reflects

the child's progressive mastery of numerical skills. When children were

asked to count arrays of "X"s there was no difference in counting acc-

uracy across grades or developmental levels. The developmental sequence

cannot thus be explained by simple counting ability. Nor can it be seen

as depending only on the child's proficiency with addition and multi-

plication. While grade 2 and 3 children had lower scores on these tasks

than older children, within grades 4, 5 and 6 there was no relation be-

tween developmental level and addition skills. Furthermore, half of

these children did not use multiplication to solve any cube problem, and

yet obtained correct answers on moat multiplication items. This sugg-

ests two separate sets of skills are necessary for solving the cube

problems: (1) mastery of appropriate numerical operations, (ii) correct

understanding of the internal structure of the solid. Relational level

skills would appear to include appropriate integration of both domains.
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CONCEPTIONS OF AREA UHIFS
BY 8-0 YEAR-OLD CHILDREN
Bernard Heratid, Universit6 de Sherbrooke

Many investigations have shown the difficulties experienced by children in
understanding the area concept. The present study has focused on a
fundamental sub-concept, that of the unit of area. Twenty-five third graders
who yet had never been subjected to any formal teaching of this notion,

were questioned individually.They had to cover up different figures using a

variety of unit shapes. It was found that the majority of them are naturally
inclined to select only one type of units, and that this type is intimately tied
up to the shape of the figure being measured. This study thus raises the

problem of using exclusively the square unit, since this choice does not
unpote itself as forcefully as one usually believes.

THEORETICAL FRAMEWORK

According to the three successive evaluations of NAEP (National Assessment of

Educational Progress), elementary school children are far from having acquired the most

primitive notions related to the concept of area. For instance, the last report (Lindquist et

al., 1983) confirms the preceding results and shows that only 24% of 9-year olds have

been able to determine the area of a rectangle, although subdivided into square units, and

only 8% of the same children have been able to 'ad the area of the rectangle using the

given dimensions. Hiebert (1981) stresses the fact that these poor results point to a

primitive understanding of the unity concept, a key notion which underlies all measure

operations.

Many investigators have shown interest for this concept and have tried to identify the

related problems of understanding and learning. For example, from their work on

conservation and on the measure of surfaces, Piagct et al (1948) have shown that recourse

to c-mmon units of measure, in order to compare two different surfaces, is not a natural

procedure for children. Moreover, when faced with the problem of enumeration, children

perceive as equivalent units which are certainly not (squares, triangles, rectangles). More

recently, following their identification of misconceptions of the concept of area, I lirstein et

at (1978) have shown the importance of understanding the concept of a :mit of area and its

spatial characteristics. Rogalski (1982) has studied the covering of a plane figure with

similar figures and she claims that the operations of enumeration develop in a context of

constant interaction with the properties of the figures involved.

Recently, Maher and Beattys (1986) have studied the problem of choosing an appropriate

measuring unit. They found that 11-14-year olds prefer a square unit to cover up a
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rectangular shape, but not to cover up a circular one. But in that study the type of shapes to
be covered was quite limited (rectangular or circular) and so was the choice of unit shapes,
the only rectangular unit being the square.

The aim of the present investigation is to look more closely at the problems related to the
choice of an appropriate unit in the measurement of plane figures. More specifically, we
think it is important to find out to what extent children, who have no school knowledge of
the concept of area, are inclined to choose the square as a covering unit. This study should
also provide an answer to two more specific interrogations:

1) When covering a given figure, are children naturally inclined to resort to only one or
to several types of shapes?

:4) Does the shape of the figure to be coveted influence the choice of a unit? Arc these
units similar in shape to the figures?

EXPERIMENTAL DESIGN

Twenty-five third ode level children aged 8:9 years old on the average and living in a
middle-sized city, were individually interviewed. Each interview lasted on the average 20
minuses. The notion of area had not been studied in class yet.

Each child was presented with four geometrical figures of about the same size: a circle (40
cm. diameter), an equilateral triangle (40 cm. side), a square (40cm. side), and a rectangle
(48 x 32 cm). These dimensions were chosen so that, on the one hand, the different areas
be approximately the sans, and that on the other hand, they did not take too long to cover
up with unitary shapes, the reason being not to discourage the children facing the task. For

each figure to be covered, children were supplied with six elementary shapes: the square (8
cm. side), the equilateral triangle (8 cm. side), the circle (8 cm. diameter), the rectangle
(made up of two squares), the rhombus (made up of two triangles), the isosceles trapezium
(made up of three triangles). She dimensions of these unitary shapes were chosen so that
children could easily manipulate them and also that as far as possible, a whole number of
these different shapes could be juxtaposed to cover up the figure to be measured.

The experimentation has been conducted by a single investigator using a semi-standardized
form of interview. At first, each child was asked how many (unitary) shapes was needed to
cover up as best he/she could each one of the cardboards. Care was taken to insure that the
question had been well understood. Then, it was made clear to the child that he/she was
free to start with any one of the cardboards, and that to achieve this, he/she could take the
pieces (i.e. the units) he/she wanted. Thus, there were no constraints imposed regarding
the choice of the figure to cover up, or the units to take. Once the covering ofa figure was
done, the unitary shapes covering it were taken away so that the child's choice would not
influence his/her next covering.

1253



301

After having completed their covering tasks, children had to give the reasons for each one

of their choices. Finally, they had to do a last covering, that of a curvilinear shape

The analysis was based on the videotapes of the inverviews.

RESULTS

Considering the first question: Do children choose a unique type of unit shape (not

necessarily of the same shape as the figure to be covered)?, we found that the majority of

children adopted this strategy (cf. Table ).

shape to

units
be covered

chosen
F1 A 0---1

64% 28% - 8% 4%only r-

12% 40% - 4% 4%only

only Q - - 36% 8% 4%

only if.1 - - 20% - 81

only - 8% - 16%

only - - - 44% 32i

Total (question 1) 76% 68% 64% 64% 68%

F----1 and El

(both)

12% 28% - - N/A

ZNandir-A or - - 24: N/A N/A

Total (question 2) 80% 96% 88% N/A N/A

other types of units 12% 4% 12% 36% 32%

Type of unit chosen in relation to the shape to be covered.
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Thus; in 68% of the total number of coverings a single type of unit has been chosen.
Considering the different types of figures, the highest incidence occured for the rectangle
(76%). The lower incidence, in the case of the square (68%), could be attributed to the fact

that quite a number of children (28% cf. question 2), for efficiency reasons, were inclined

to use a rectangular unit along with the square unit (the rectangle being twice the size of the

square). It will also be noted that the mules obtained for non-rectangular figures (triangle

and circle) are only slighdy inferior to the rectangular coca (rectangle and square).

In analyzing the children's strategies, we fund that more than half of them (56%) have
systematically proceeded in this way (choice of only one type of unit) for the four types of
figures to be covered. And we find only 16% of them who, for all cases, alweys choose at

least two different types of unit It thus seems quite natural for children in this age group,
to resort so only one type of unit shape.

As an answer to the second question: Is the choke ors unit dependent on the shape to be

covered?, we see from the table that children are inclined to choose a type of unit that
somewhat matches that of the figure to be covered.

Thus, as far as the rectangle is concerned, we find that 64% of the children have chosen the

rectangular unit as the sole shape to cover up the figure, and that 88% of them have selected

exclusively rectangular units (rectangles or squares). Similarly in the case of the square,
although only 40% of the children have chosen the square units as covering pieces (the

influence of the rectangular unit has been mentioned above), we find that in all 96% of
them have restricted their choice to rectangular units only.

Considering the triangle, we found that 36% of the subjects resorted to triangular units to

cover up this type of figure which is very significant if we consider that this kind of
covering proved to be very difficult and long to realize. It must also be noted that no child
restricted his choice to either the rectangle or the square as unit pieces to cover up the
triangle. On the other hand, 88% of them have chosen units of a triangular type (triangles,
trapeziums or rhombuses) to cover up this kind cf figure.

Finally, it is evident that the circle was the type of figure having been the most problematic

to children. Nevertheless, when compared to the other shapes, the circular unit has been

clearly preferred (44%). For instance, the square unit has been chosen by only 4% of the
subjects! This result is most remarkable if we consider the fact that the circular unit has
never been utilized alone in covering non circular figures. Moreover, in combination with

other shapes of units, it has only been used in a few cases to cover up the non circular
figures (8% for the triangle, 4% for the rectangle end the square).

Thus, we can conclude that whatever the type of figure to be covered, there exists a direct
link between it and the type of unit chosen.
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TILE CURVILINEAR FIGURE

We found it interesting to know what strategy the children would adopt when faced with a

curvilinear figure. Globally (cf. table), the results obtained agree with our previous

findings. Thus, in relation with question 1, we find that 68% of the subjects have chosen

only one type of unit, which corresponds to the averages found for the other types of

figures. In relation to question 2, our global results are nearly equivalent to those found for

the circle: 32% of the children have chosen exclusively the circular unit because it is better

suited to cover up a round thing. Let us also notice that very few subjects (8% total) have

chosen either the rectangular or the square units. Nevertheless, we note that 28% of them

have shown a preference for a unit of the triangular type. This could be explained by the

fact that these shapes having acute angles made it easier to follow the edge of the figure to

be covered.

IN CONCLUSION

From this study we see that children who have not yet formally learned the concept of area

are naturally inclined to resort to only one type of shape when choosing appropriate

covering units. This has been true whatever type of figure had to be covered. On the other

hand, the choice of units is strongly tied to the shape of the figure to be covered. For

example, the units of a certain shape (e.g. rectangular units) will mostly be used to cover

up a figure of the same type (e.g. the rectangle or the square). Nevertheless, we cannot

claim that the square naturally appears as a unit of area. This is especially true for non

rectangular figures, but it also holds for rectangular ones, in particular for the rectangle.

From these observations it appears that the traditional approach, whereby the measure of a

surface area is presented solely in terms of the square units, has to be questioned. It would

probably be preferable to construct a different introductory teaching unit that would start

with the utilization of a variety of shapes, and that would finally bring the child to a rational

choice of the square unit.
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THE C,ONSTRUCTIVIST
Pre Confrey

Cornell University
This is the first one ofa series of dialogues between Socrates and a researcher in
mathematics education who holds constructivist assumptions named Leggos It is not
necessary to understand the constructivist position before reading the dialogue
Leggos, the constructivist. begins with naive constructivist assumptions and with the
assistance of Socrates, ho moves towards more radical ones throughout the course of
the dialogue

Socrates: Good day, Leggos I have hoard rumors that you have invented a new way
to teach mathematics to the youth of our country I have always held a keen interest
in the teaching and learning of mathematics, so I should like an opportunity to learn
more about these method,
Legge*: I would enjoy discussing these matters with you, Socrates. for I consider
you to be the patron of these methods
Socrates: Tell me, what are you engaged in
Legges: We have developed to teach the students to understand their
mathematics
Socrates: What mathematics is this?
Logger. The arithmetic, algebra. geometry, end trigonometry taught in our schools.
of course Socrates
Socrates: Alt, school mathematics, then, and how is it that you know that they are
not understanding this matheinaucs?
Logger: The evidence is abundant They can not solve problems which deviate only
minimally from the traditional presentations Their knowledge is fragmented /tad
unstable They propose solutions without assessing their adequacy and whose
credibility is negligible When problems arc embedded in real-world contexts the
students performance on them is significantly diminished
Secretes: Oh, the situation is indeed dismal flow has it come about?
Legge,: Through the teaching-learning process The students imitate the example!,
in the text or spoken by the teacher They memorize formulae end carry out
techniques in a mechanistic way
Socrates: And is the teacher engaging them in a conversation such as we arc
engaged in today
Legge,: No. Socrates. the students arc like scribes in the classroom diligently
copying and recording the lessons answering brief product-oriented questions and
returning home to carry out the calculations which will produce the required
answers quickly and mechanically
Secretes: So, what you seek to do is to improve the students performance on these
problems?

The Naive Clutitristiiitirditia.

Losses: Oh no. Socrates. not on those exercises but on real problems what we call
problem solving problems Problems which entail multiple steps and which are set
in a word problem context.
Socrates: Can you give me a simple example?
Legges: Well. for instance we ask the student to write an equation for the problem.
there are sir plebisas Mr every orator
Secretes: And what happens?
Leggos: They write 613. 0
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Secretes: And do you clams to have a way to overcome such persistent errors in
translating from the word problem context to the algebraic expressions?
Legges: Yes, Socrates
Secretes: How do you intend to de this?
Legges: We involve them activce in learning Our classrooms aro student-centered
Our teachers do not teach; they provide a rich environment filled with hands- on
activities and the children take part in active ways manipulating the objects and
discovering the important concepts for themselves
Secretes: Se yin claim to be able to oleoresins the errors Rade by
itedeats by using mtanipolatives and involving the students actively in
the learning preceee. Sy doing ie, yes claim that the stedente will learn
hew to melee problem-salving problems with real werld contests ee as to
learn school inetkosaatica. The teacher's role la to create such as
eavireassent
Legge.: Yes Socrates
Socrates: Ilia from this point that we shall begin then It sounds quite simple and
so, 1114124111 these ideas a bit more closely I have heard that your methods have
evolved from your conduct and analysis of clinical interviews with students How are
these interviews conducted?
Legge*: Maki are developed to allow us to examine students' conceptions of
particutar concepts. The interviewer poses the problems and the students speak aloud
as they solve the problem. The interviewer explores the students' ideas fluidity
pursuing the students' line of thought whenever it may stray. The fundamental
requirement is for Use interviewer to attempt to reveal the rationality in the students'
methods.

LtranhilliactaiLCIalietaltilightvelatica
Secretes: What have you learned from them?
Legge,: We have found all the things I described before poor understanding,
imitation, blind rapitition of formulae, and weak transfer to different contexts.
Secretes: And so. the students perform quite poorly?
Logger: Well, in fact, we have found some positive results as well.
Secretes: And what are those?
Lessee: We have found that the students' errors seem to be systematic. not random.
They also exhibit some original attempts to solve the problems in potentially
innovative ways, they show great diversity in their methods, end they frequently
express delight as a result of their participation in the interviews
Secretes: Now this is interesting indeed Do the students see the systematic
character of their errors?
Legges: Well, they perform them repeatedly, so they must be metre of there
Socrates: Ah. Leggos, have you been aware of your tendency to rub your hands
together nervously?
Legges: No I was not
Socrates: Suppose a child were walking about in a unfamilar room. blindfolded,
and reporting the shape of the things s/he encountered to an experienced
blindperson Nebo had thus been in many similar rooms before Perhaps that
blindperson had even been the same room, though s/he had no way of knowing if it
were the same one, except through the child's description Isn't it entirely possible
and indeed likely that the blindperson would be sensitive to patterns in the child's
reports which the child did not notice?
Legge,: It is
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Socrates: And would the child's experience in the room mirror the blindperson s
were they both to walk about the room?
Legg's: Not if it were the first time s/he had encountered it S/He would be
awkward and uncomfortable I suspect The child's reports would be very confused
Socrates: Could the blindperson know what the child s experience was evenalter
many reports from the child?
Legge,: Only as it appeared like his/hers, or in ways which it explicitly differed
Let's go back to considering the interview Can you give me an example of a
systematic error pattern?
Leggos: Well. in fractions. the students will claim the 5/4.2 and pi are not
fractions
Socrates: Why?
Lows: It seems that to the student, a fraction is a part of a whole You see they

have certain misconceptions
Socrates: And what is it that they cannot do with such a misconception?
Leggos: What do you mean Socrates?
Socrates: Well, surely Leggos, you would not be concerned about such a thing
unless it impeded the child's progress, would you? Does it cause the child difficulty in
solving problems?
Leggos: I hadn't thought about that Socrates I simply judged it as mathematically

errant.
Socrates: I see. Leggos I only asked because I thought you had indicated that your
goal was to teach the child to solve problems I see now that you are also concerned
that the child's knowledge of mathematics is correct
Legates: Surely Socrates. that is what schooling is about
Socrates: Leggos. let us return to this question of what correct mathematics is in a

few moments I am captivated by your example of this child's misconception How

would a child know that 5/4 is a fraction?
Legg's: For a child a fraction is one number over another
Socrates: And what kind of problems is it used to solve?
Lows: Problems dividing quantities into equal shares
Socrates: And does the answer come out sometimes to be 5/4?
Lows: Surely Socrates for if 5 apples were shared equally by 4 children each
child would get 5/4
Socrates: It is so. Leggos How would a small girl solve such a problem if asked to
take 5 apples and to divide them among 4 children?
bogies: She would probably give each child an apple and then struggle to divide

the last one into 4 pieces
Secretes: So each person would have 1 and 1/4 apples
Leggos: But Socrates that is the same as 5/41
Socrates: To you perhaps, how will it appear to the child?
Lesvos: As 1 apple and 1/4 But Socrates 3/4 means 3 divided into eequal parts and
1 1/ 4 is the same as five 1 /4 portions
Socrates: I agree Loggos. for I know the relationships among these multiple
meanings but the child has solved her problem in an entirelyadequate way has she

not?
Leggos: She has
Serrates: And so does this child possess a misconception when she denies that 5/4 is

a fraction
Legge,: Yes Socrates it is wrong
Socrates: Indeed Leggos. it is wrong from the perspective of the more expert
knower Is it also wrong from the perspective of the child? Does it not meet the
child s purposes?
Lassos: Yes I see that the child cannot know unless she /he is told she/he is wrong
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Socrates: And if she is told she is wrong can she make sense of why she is?
Legges: Perhaps not but we cannot leave her with this wrong idea
Secretes: Is there another way? Another problem which might leave her wanting
to assert that 5/4 is a fraction 7
Leases: Hmsa perhaps a problem with a ratio of 5 yellow apples to 4 red ones. In
that. she will not want to write it as 1 1/4
Secretes: Good. Leggos, now you aro on your way to exploring interesting
curricular ideas But let us stay with this idea of misconceptions a bit longer
Perhaps, we ought to declare that the label "misconceptions" is unfortunate for it
neither conveys who is aware of the limitations (the observer) nor does it emphasize
that despite its limitations, the concept does function to assist the student in doing
something
Lieges: I think I agree Socrates. and I can see from our example that it conveys a
judgment that the child has not managed to learn the concept which s/he could have
been expected to learn. What I wanted required a different problem perhaps But.
Socrates. if "misconception" is misleading, then a phrase needs to be developed which
conveys what the primitive or naive conceptions of a student allow him/her to do and
how they are restrictive
Socrates: Restrictive, primitive, naive from whose point of view?
Leases: The teacher, researcher or mathematician So perhaps we should name it
from the perspective of the child... say childs mathematics
Socrates: But would not my own mathematics. unsophosicated as it is appear to be a
childish mathematics to research mathematician
Lollies: Mine might as well. Socrates. there are many subset's of the population who
might make claim to their own mathematics, and perhaps there are as many
mathematics as there are people ultimatiely But for my situation, where I am
intanszd in educating the child, perhaps such a phrase, though limiting serves
some purpose
Secretes: laggos, at the beginning, you claimed that your methods eliminate errors
and misconceptions If you were to cast these as limited but sensible conceptions, as
a childs ayethAltatics, would you still seek to eliminate them?
Legg's: No, I see that I would not, Socrates I would seek to build from these limited
conceptions towards more sophisticated conceptions
Socrates: Is there a way to assist the child in seeing the limitations in her beliefs'
Lieges: I am not sure that one can every the limitations in one's own
perspective before one has'achieved a more sophisticated perspective But, I can
imagine that the child could recognize that she was bumping up against a problem
which she could not solve with her perspective
Socrates: And how might you do that with 5/4, 2 or pi?
Legg's: Each one might cause a different difficulty Socrates Not understanding
that pi is a ratio of circumference to diameter could hide the recognition that for all
circles that ratio is constant, not recognizing that in the number 2 as a hidden ratio
to the unit 1, can cause students difficulty in solving problems with quantities such as
miles per hour, feet per second, pounds per inch. the "per" quantities And not seeing
5/4 ass fraction might cause the student to lack an understanding of simple ideas of
probability I see that the name. fractions, hides a whole host of different
conceptions, each one complementary but different
Socrates: So in each case there might be a different problem circumstance that
could be devised for extending and modifying the concept of a fraction There is
something more that intrigues me about these interviews You said that the
interviewer comes to the interview with a certain set of tasks, and then depending on
how the student responds. the interview evolves
Images: Yes
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Socrates: And what is the interviewer finding out?
Leggin: What the students concept is
Socrates: Indeed, and is that indelibly in place in the students' head, awaiting
discovery by the interviewer?
Losses: No, it takes a great deal of skill to interview You must enter with the
expectation of seeking these stable belief systems in students
Socrates: Whet you have said is that through these tasks, the interviewer can
reveal these conceptions held by students which appear limited to the interviewer
Can the interviewer also reveal the child's conceptions which do not result in obvious
limitations, or seem to differ from those held by the interviewer?
Legge*: What do you mean Socrates?
Socrates: Well, it seems that one can examine where the student's activities and
responses differ from the one's expected by the interviewer When the responses do
not differ, can the interviewer presume that the student's concept is the same as
his/her own?
Legge:: I do that. but I must admit that when I listen closely. I am often surprised
by the diversity of the ideas I often presume agreement only to learn that I am
mistaken
Secretes: Bow do you find out that you are mistaken?
Lentos: By the unexpected responses given by the child
Socrates: So in the absence of evidence to the contrary, you assume agreement?
Legge,: I suppose
Socrates: And so, Leggos, can you in fact claim that you are revealing the child s
conception?
Lows: But how am I to describe the results of our investigations if I am not
uncovering the child's conceptions For documenting these provides the evidence
for our claims
Secretes: What is wrong with what you have said yourself? As you have said
through the use of particular problems, designed to highlight certain aspects of a
concept. you are attempting to characterize chi/diva's insthanuttics In doing so. you
build a.m.*/ of what a student believes by creating an outline of the boundaries of
the belief system, from your own more sophisticated perspective What is the child
doing in the interview?
Leases: Being interviewed Telling us what s/he knows
Secretes: But Leggos. did you not say that the students in the interviews often
express pleasure at their participation? Why is this?
Looses: Perhaps because they seldom get the opportunity to be listened to in
mathematics
Socrates: That may be so, but perhaps there is more to it than that What is it that
they say more precisely?
Legg's: They say that they learned more in the interview than they do in class It
is always an embarrassment Socrates for we claim to be examining their conceptions,
not changing them
Socrates: I see Suppose you took that as a strength of the interview how could
you understand their role? Recall, you have lust finished revising the role of the
interviewer into a model builder modelling children's mathematics So I pose the
question. if the child s active participation in the interview process were
highlighted how might you characterize it
Limps: Well. I doubt they are trying to examine the interviewer s conceptions.
you are implying that Socrates
Socrates: Could they do this if they wished?
Legge,: Not at a very deep level for we decided that to build a midel one relies
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heavily on the discrepancies with expected responses and the interviewer seldom
makes errors or deviates from the students' expectations
Secretes: Well figuring out the interviewer's mathematics would be quite difficult
then for the stuclant. although you allow this might occur at some level But is there
something else that the student might be inclined to do?
Legge,: They do seek to figure out what it is that the interviewer wants
Secretes: So indeed, they too are in the process of model building but their task is
far more difficult. is it not?
Lieges: Well, with careful analysis of the conduct of interviewers, it is often the
Mt that the student seems to respond to subtle cues on the part of the interviewer
Secretes: I see, and so is this what students gain from the interview?
Leggos: No. I do not believe it captures it all, for the student's also seem to be
impressed by their own attempts to solve problems They seem to act more automously
in the interview, maintain a sense of responsibility over their activities
Socrates: What is this you are saying?
Lewis: Well, the students often are surprised by their ability to explain their
methods, and by describing them to an expert listener. they seem to become more
aware of them It provides quite a contrast to the docility we witness in class
Secretes: Don't they feel exposed?
Leggett: At times, but they also seem to gain some insight into the concepts through
their process of examination
Secretes: Is that because they solve the problems successfully?
Leases: Perhaps, in part, because their level of success is higher in an interview
than with paper and pencil But the process of verbalizing their methods to another
person and the need to be complete and careful in their explanations also influence
their level of insight.
Socrates: I MN, so the interview contributes to their ability to see their own
thinking
Legge,: Yes. Socrates, it doss seem to be a process of relic ctioa encouraged bya
situation in which they wish to feagliajlate
Secretes: Ah, Leggos, this business of the social interaction in the interview seems
far more complex that we had expected. It seems to be a process of two people
building models of the other and of themselves Is the process the same for the two
people?
Loggias: No. for the student, the model building of the interviewer is difficult, and
they are encouraged to focus back on themselves, for the interviewer. the model
building of the student is primary, and the model of him/herself is elaboratedas the
differences in expected responses are explored.

backintiatlasukaltring
Socrates: And now. Leggos. how do you use the results of this research?
Legge*: From it, we can reveal students' conceptions and we design materials to
build from them With these materials, the students can develop more powerful
conceptions
Secretes: Are you saying that you treat the interviews as providing model of
cbikIrs,a 's mad emetics and using these you create materials Does not our discussion
of the conduct of the interview provide any influence on the design of the teaching
and learning?
Legg's: Yes, Socrates as I said we expect students to construct the ideas actively,
for we know active participation is necessary
Secretes: Active participation Leggos, is just a phrase What happens in that
interview that makes it active participation? How can these things be encouraged in
the teaching- learning process?
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Legge*: Socrates. these questions are quite difficult, but I vitt try to answer them
succintly In the interview, the student attempts to solve a problem with a conceptual
basis, s/he engages actively devising strategies to solve that problem, trying
different methods, working from his/her prior knowledge, and in doing so s/he
becomes aware of his/her own commitments, beliefs, and strategies
Socrates: An adequate description of the individual's process of solving the
problem Notice that your portrayal omits the part of interviewer Who in the
classroom can act the role of the interviewer?
Legg's: The teacher
Socrates: Are there differences?
Legg's: Yes the teacher is responsible to a number of students
Socrates: Is there anyone else'
Legge': No, Socrates. for the other students lack the necessary knowledge to act the
part of the interviewer
Socrates: I agree, but I wonder if they can be taught to play some role to assist in
the process of active participation as you describe it Perhaps we can define this
process a bit more.

Casstractivist Cycle

Logjam: Well, Socrates, at first the student interprets the problem
Socrntes: Shall we call that finding the problematic, using that term to describe
what problem the student wants to solve?
Lows: Okay. and we must recall that there are many different problematics for a
given problem. Then the student plans and executes a course of action to resolve the
problemmatic using his/her child's mathematics
Socrates: And that shall be the actioa 7
Logger And the student becomes aware of his/her own beliefs and strategies as
s/he talks out loud?
Socrates: A process of reflection is it not?
Lewis: Yes, I suppose it is a process like that, a problematic action and reflective
cycle repeating again and again in the company and encouragement of an
interviewer.
Socrates: So, Leggos. originally you claimed to overcome the errors made by
students by using manipulatives and involving the students actively in the learning
process You said the teacher's role was to create such an environment Have you
changed your position?
Lewis: I believe my original statements needs some improvement indeed Socrates
I now see that it is not a case of overcoming the errors of the student but it is a case
of modelling a child's mathematics In doing this discrepancies between the
expeckid range of responses and the responses of the child assist us in devising our
models, it does not. however give us access to the child's conceptions in any direct
sense By engaging in a cycle of construction, including defining the problematic,
acting using prior knowledge and reflecting a student constructs his/her ideas And
it' the teacher is indeed to act in the role of the interviewer, a role which seems
essential in the process of construction s/he will have far more responsibility in
teaching than to simply create the appropriate environment Finally our discussion
suggests that the role of the other students in the process might be important to
attend to

Aiteraatives tkilloitilla sad Realisa

Socrates: You arc a very able learner Leggos Notice that so far it is not obvious
that the ideas we have examined are unique to mathematics Are there implications
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of your interviews that are specific to mathematics?
Lagos: Socrates. though our example of the children s mathematics was
mathematical. I do not see that these methods are limited
Socrates: Leggos. there are a few idea in your original statement which we have
not examined as of yet Let us visit those very briefly You said that you use
manipulatives and that these manipulative, would assist students in solving
reel-world problems How do you see that as coming to pass?
Leases: pie maaigialatives we lase are designed to embed the concepts
of mathematics is these. Whoa 'artists with these, those ideas will
emerge. Ily timmaiagratly I. this way. the child will be able to
recogaise the satheastirml Mum la the real- world. Ry deiag se. our
goal le to assist the Madera& is developirg as ualierstaadisg of
mathematics.
Socrates: Let us explore your ideas about mathematics Can you give me an
*maple
Leggin: Well. suppose we stay with fractions since our explorations have been with
that
Socrates: What is s correct understanding of a fraction, Leggin?
Lagos: A fraction is a number in the fora. a/b where a and b are integers.
Socrates: Oh. then. Z and pi are not fractions
lanes: A fraction is number which ma be gut in the form of a/b when a and b
are integers
Suntan I see. then a fraction is a rational number and pi is not a fraction, but it is
a ratio I wu mistaken before Do the students understand the difference between
fractions and ratios? These definitions can be very subtle We must explore the place
of such formalism ate later time. for I see that this neat and tidy stucture underlies f
your concern for 'correct- mathematics. For now answer me this, why aro fractions
important?
Legge.: Oh. because they have real-world applications Students encounter them
all the time
Socrates: Please lassos, tell me when in the world a student will stumble over a
fraction 7
Lou..: Suppose a young boy measures himself and finds that his height falls
between 43 and 46
Secretes: And where is the fraction?
Leggin: It is the point between 43 and 46 where he marks his height
Secretes: The point is the fraction?
Legges: No. well, the fraction is the length from 43 to that point
Socrates: And how is the child to know this?
Legg's: He must estimate what proportion of the distance is covered
Secretes: So Leggin. when is the fraction?
Legg's: It is the result of comparing the distance between 43 and the point to the
distance between 43 and 46
Socrates: Is the fraction the distance or is it a comparison?
Ledges: It is a comparison made by the child
Socrates: So the fraction is an action by the child in order to describe a distance
which is less than one unit long Ah. it is a part of a whole Can it be determined that
this is really his height?
Loggia: Someone else might measure as welt
Socrates: Would you then know his real height?
Looses: No. you would have other measurement
Socrates: Leggos then is the real fraction knowable
Looses: Perhaps not, but error is always a part of measurement
Socrates: Is it error you need to speak of or is it variability? Cs n you know if it is
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error ever?
Lanes: I see your point for measurement Socrates perhaps a more formal example
would allow us to demonstrate the perfection and eternal qualities of mathematics.
Socrates: Okay. let's try one
Losses: 1/2 1/3 5/6/ That is a statement about fractions which is really true
Socrates We can prove it
Socrates: Suppose I got I out of 2 problems correct on a quiz furl/ 21 and 1 out of3
on the other, how many correct will I have of my total?
Logics: 2 out of 5
Socrates: Can that be written. 2/57
Leases: Yes
Socrates: So, is 1/2 1/3 = 2/57
Lasses: Yes, but that is not what we mean by 1/2 1/3 5/6
Socrates: Precisely my dear Leggos The meaning is not in the mathematics
though it is convenient to speak that way Just as when we say an object is
symmetrical we mean that with our bilateral way of viewing and a mental act of
folding, one side of the object will land on top of the other To say an object is
symmetric, is to embed in the object. the mental act of folding Suppose we were to
differ on whether an object were describ'id as symmetric, how would we decide 2
Leggos: We would each try to demonstrge its symmetry to each other
Socrates: And could we know really who was right?
Losses: No. although we could appeal to an expert
Secretes: Let us return to the question of the room again with the blindperson and
the child If no one with vision were allowed ever in the room. could you come to
know the real interior of the room?
Logos: If enough people were to report on it. and if we were to test out the level of
consensus in our reports by experiments conducted within and outside of the room
we could achieve a measure of consistency and confidence in our description
Though. no doubt even within that apparent consensus. disagreements would likely
arise They always do
Socrates: And would any of those descriptions be definitively the way the room
really was
Lesvos: Not necessarily. but if we could communicate to enough people about our
experiences would it matter?
Socrates: Indeed it would not, if you are prepared to accept that no way of knowing
how the room really was is possible
Leases: But, Socrates. you would simply remove the blindfold for those who could
Socrates: And how would you know another more figurative blindfold were not in
place 7
Leases: Because we would all agree
Socrates: Though my experience denies that level of agreement would happen it
would not solve the problem, for even consensus is achieved through another act of
human cognition No escape from this predicament is possible We cannot know
reality for that in a matter of ontology Our epistemological boundaries require that
all knowledge requires acts of coastructioa.
Leggos: And is that the assumption behind constructivism7
Socrates: It is. and Leggos is the blind person like any other person but he lacks
sight? Are not his/her other capabilities more acute. developed and perhaps
different in quality than ours from the absence of sight. as we speak of it
Levies: Yes I believe that is so
Secretes: So canyou indeed declare that removing the blindfold is a initiation into
true' vision or is it only another a switching of systems of perception ?

Leases: I am embarrassed at my neglect of the blindperson's strengths Socrates
And Socrates are you also implying that a researcher, a mathematician or teacher is
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in some way akin to the blind person. are you suggesting that becoming expert can
also lead to a blindness? For whereas blinders can restrict one's field of vision, there
is also (readopt from distraction Perhaps it is specialization we ought to speak of at
the same time as we speak of expertise
Sacral's: I had no intended that Leggos, but perhaps it is so
Leggos: It may be true that knowledge of our experience of the world is bounded by
our conceptions. Socrates, but surely, it is not the case for the queen of the exact
sciences. mathematics?
Socrates: How you will attempt to secure this special status? And is it possible in the
arena of human knowledge to ever escape the boundaries of human knowing?
Legge*: Not in any way, though I must confess to believing there is a lot about
human knowing that we do not know yet How feelings and intuition work. how we
communicate and so on But I sea that mathematics seems to require a human
activity.though I cannot say that when I see a fraction I go through the complete
process of construction
Socrates: That is so, Leggos, for automaticity and stability are certainly necessary
for using a construct efficiently But we will explore this further at another time
Logics: I do hope so. Socrates, for I fear you are leading me down the path of the
skeptics And no son or daughter of the ruling class will attend my school should I be
cast in the company of such critics But for now I must admit I find your arguments
compelling.
Socrates: Ah so Leggos, perhaps mathematics is also cultural and political, if you
fear such reprisals.
Legatos: Socrates, all knowledge is essentially political, as you well know
Socrates: Yes. but to establish that the content of mathematics is political. its
concepts. and structures as is its means of access and its dispersal will take another
conversation Leggos
Loggia: I will look forward to such a conversation
Socrates: Also, keep in mind that a constructivist way of looking is only as correct,
as it is helpful to you in solving the problems you have described about students'
learning in mathematics. It would be contradictory for me to assert any stronger
position than that, while establishing the boundaries of knowledge
Leggos: I see
Socrates: And. Leggos, one last line of questionning will complete our discussion
today You have claimed the manipulatives you use are designed to embed the
concepts of mathematics in them When working with these these ideas will emerge
By learning meaningfully in this way, the child will be able to recognize the
mathematical ideas In the real- world Do you wish to revise that portrayal?
Lasses: Yes Socrates. I must, for as you have led me to see, the mathematics is not
in the manipulative, but the actions and operations enacted on the manipulatives by
the child.
Socrates: And bow shall the child come to uct on the manipulatives?
Lassos: Through his/her interpretation of a problematic which she finds in
her/his interest to solve
Socrates: And how shall s/he gain facility in these actions. to recognize
opportunities for their use
Lasses: S/He must reflect on those actions and see how they were useful in solving
the problematic
Socrates: And is this activity done all alone?
Looses: No. Socrates, in this the lesson is the clearest of all, for I shall have to
educate my teachers in the ways I have learned today. though I must confess I have a
need to reflect on all of this myself For Socrates. I see that I did not pay close
attention to what it was I had learned through my own methods of interview It is
clear there is more to this than what is easily noticed from the interview and I must
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stre &then my awareness of my Own commitments and my own understanding of the
problem before wo can continue to work
Socrates: Leggos thank you for an enjoyable exchange and as you are reflecting
on our conversation. you might wish to include another item in your deliberations
Losses: And what is that?
Socrates: Do not forget to consider my role in this exchange for what is contained
in the container has the same shape as the container Perhaps next time we can talk
more about teaching. Good day
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AS A CHILD LEARNS, SO MUST ONE TEACH

(ELEMENTARY SCHOOL MATHEMATICS DIAGNOSIS AND INSTRUCTION)*

Bruce Harrison, Thomas L. Schroeder, and Marshall P. Bye

Department of Curriculum and Instruction, The University of Calgary

Diagnosis and instruction in elementary school mathematics
have tended to focus more on mathematical content and on
error patterns than on the conceptual misunderstandings
within the learner. The present review cites examples of
weaknesses inherent in such approaches and contrasts these
with the strengths and practical applicability of a growing
body of research that has been built on insights from
genetic epistemology. Exemplary research projects offering
promise for. the advancement of knowledge regarding
meaningful and helpful diagnosis and follow-up instruction
are described and discussed.

A natural outgrowth of the kind of behaviourist thinking that has

dominated North American in education Is the tendency to focus almost

exclusively on the mathematics content being learned by children and

to alter mathematical "stimuli" according to observed error patterns

while providing considerable "drill-and-practice to "extinguish"

inappropriate responses. A more realistic approach attempts to

understand how the child processes the information presented, adapting

to feedback from real-life experience. When knowledge and

understanding of mathematics are seen in terms of ongoing thinking

processes rather than as products, traditional tests prove less

valuable than diagnostic techniques like those that have grown out of

"genetic epistemology." For example, the Chelsea Diagnostic

Mathematics Tests (Hart et al., 1985) were constructed using

information from numerous Piagetian and nen- Piagetian interviews of

large numbers with 10- to 15-year-olds. However, tests like these

have only been developed relatively recently. What about their

predecessors?

*Excerpts from a review of more than 300 diagnosis/instruction research
documents prepared for the Student Evaluation Branch, Alberta Education
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BEHAVIOURIST APPROACHES

Prior to the popularization of "genetic epistemology," North

American educational test design was (and, in many ways, continues to

be) dominated by behaviourist learning theories. The one impossible

weakness in behaviourist theories is that the "learning" which these

theories explain bears no necessary logical relation to the events in

the environment. "It is always possible that the reward has come for

reasons that have nothing to do with the response. The animal never

understands the nature of the problem, never knows wy the 'operant'

operates and therefore, all his learning is potentially superstitious"

(Mayer 1961, p. 75).

Many diagnosis and remediation studies do not appear to have

adequately considered underlying cognitions. One such study was

carried out with 36 Grade 3 pupils. The Key Math Diagnostic

Arithmetic Test was administered with items in ascending or descending

order of difficulty. There were 15 addition and 14 subtraction items.

Four feedback item-order treatments were given: two gave item-by-item

feedback of correctness of response with either ascending or

descending item difficulty, two did not give feedback. In any event,

when feedback was given it was with respect to answer correctness

only. The researchers found it "puzzling" that pupils who attributed

success or failure to external causes like "task difficulty" or "luck"

performed better in subtraction when receiving feedback. "Somehow,

contrary to the hypothesis, it appears that such individuals found

both positive and negative feedback as facilitating. We have no

reasonable explanation for this result. . . ." (Englehardt, Van

Wengenen A Thomas 1982, p. 56-60). Such "puzzles" underscore the

importance of taking into account underlying cognitions and processes,

especially in relation to realistic, concrete constructions of

meanings. More reliable evidence is needed than that drawn from naive

student introspection, and the kind and quality of feedback is an

important consideration.

An often-cited guidebook for diagnostic teaching of arithmetic

(Reisman 1972) suffers from a preoccupation with correct mechanical

procedures and correct answers, to the neglect of ways to encourage

children to construct meaningful ways of thinking about arithmetic and

its concepts and processes. It focuses almost exclusively on the

mechanics of computational algorithms and on the "patching up" of

erroneous procedures. While it is unlikely that anyone would contend
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that computation is unimportant in arithmetic there is a growing body

of evidence to support the claim that the best way to improve student

performance in this area is not to focus on the algorithmic mechanics

and the vaguely conceived symbols involved. An indicator of the power

of hands-on activities with concrete materials has come from an

analysis of 64 elementary school research studies which reported that

pupils who had used manipulative materials in arithmetic scored at

approximately the 85th percentile on achievement tests whereas those

who had not had such experiences scored at approximately the 50th

percentile (Suydam 1986, p. 32 citing Parham 1983).

Reue.....rch on the effects of "low-stress algorithms" appears to

have focused primarily on computational mechanics and memorized

shortcuts. Examples of student work with low-stress algorithms give

the impression that they are heavily dependent on pictorial

organizational "props" (that appear to have little to do with the

underlying meanings for the computations being carried out) and that

they are geared toward special-education, severely remedial, or

disadvantaged children. It is claimed that such children can reach "a

normal level of mastery in critical numerical competencies," while

normal children could reap time savings by using such procedures

(Hutchings 1980, pp. 244, 245). But "numerical competency" only means

being able to compute accurately with simplified algorithmic

procedures. What about promoting understanding and realistic problem

solving? Imitative teaching of operations and solution methods for

one-step "word problems" is not enough (Cooper 8 English 1984, p.111).

COGNITIVE APPROACHES

Learning theories are being developed that take account ". . . of

the systematic development of an organized body of knowledge, which

not only integrates what has been learnt, but is a major factor in new

learning . . ." (Skemp 1962, p. 133). Any teaching/learning design

which can ensure that each individual will be able to build the

prerequisite concepts, before or while tackling new learning tasks,

promises to facilitate effective, enjoyable, useful, and transferable

learning. Such an approach encourages the development of relational

thinking ("knowing both what to do and why") rather than instrumental

thinking, ("using rules without reasons"), which is likely to occur

when one's mathematical diet is limited to a steady stream of narrowly

focused "explanations" and "exercises" (Skemp 1978, pp. 9, 14).
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Thornton (1978) reported the results of using experimental

materials in the teaching of basic facts of addition and

multiplication to students in Grades 2 and 4. The outcome

performances used to compare the effectiveness of the experimental and

control groups were timed posttests and retention tests of student

achievement in recalling number facts, but the exper4ental treatment

was essentially a cognitive one in which students were encouraged to

organize their thinking and create their own thinking strategies or

adopt strategies suggested in the instructional materials. Superior

performances by the experimental groups were taken as indicating that

an emphasis on the cognitive can demonstrably improve students'

achievement, even in routine computational skills.

One way to provide supplementary diagnosis and instruction for a

classroom teacher's mathematics program is to set up a mathematics lab

that includes provisions for clinical assessments. The

Diagnostic-Prescriptive Program in Mathematics ". . . was designed to

improve mathematics achievement by directing the intervention toward

diagnosed deficiencies in number concepts, computational skills,

relationships among measures and problem solving" (Knight 1979, p. 1).

Mathematics laboratories were set up in seven participating schools

with Stanford Diagnostic Tests and/or Metropolitan Mathematics Survey

Tests as diagnostic pretests and progress posttests. Mathematics

activities were jointly prescribed and planned by the mathematics

resource teacher and the regular teacher. A variety of physical

materials such as Unifix cubes and hacp-tnn blocks were available for

hands-on activities. The pupil participants were 420 2nd through 8th

graders who had been identified as needing remedial help.

Significantly higher posttest scores were achieved by the participant

students than were statistically predicted from the pretest scores.

Over the seven month treatment period the smallest grade-equivalent

gain was 11 months and the largest, 14 months. (Knight 1979, pp. 1, 3,

7-11).

A mathematics lab can also be made an integral part of the

instructional program for all students. The formal diagnostic

assessments can be replaced with daily and weekly individual anecdotal

appraisals in the context of ongoing learning activities. This was

the approach taken in the Highwood Bilingual Elementary School

Mathematics Lab (Harrison & Harrison 1983). The Lab was started in

1976 to help students develop a better understanding of mathematical

concepts through purposeful use of a wide range of manipulative
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materials. A Project Teacher worked with the classroom teachers over
the first six years of the Project to develop student-centred,

concrete, mathematics-learning-activity approaches for six- to

eleven-year-olds. By observing how real objects are manipulated and

by encouraginiviiscussion among students, the classroom teachers were

able to gain valuable insights into their pupils' understanding of the

concepts being developed, enabling them to further that understanding

through supportive activities. A frame of reference based on

contemporary cognitive learning theories was used in the selection of

manipulative materials and in the design of the teaching approaches

used in the Lab. (Harrison 1982) Just before the Highwood Math Lab

project began, the Stanford Achievement Test median arithmetic score

for the eight-year-old students was 5 to 10 percentiles below the

median reading score, approximately the 50th percentile. After the

first three years of development of the Lab, the eight-year-olds'

median arithmetic score was then 15 to 20 percentiles above that of

the reading scores, which had remained near the 50th percentile.

(Harrison & Harrison 1983, 1986, Highwood 1979)

Several studies (e.g., Booth & Hart 1983, p. 80, and Romberg &

Collis 1985, p. 376, 377) have reported on the importance that

children ascribe to their own intuitively devised "child methods" in

arithmetic and how these can interfere with the development and use of

paper-and-pencil algorithms that should prove more efficient in the

long run. It has been suggested that the current emphasis on paper-

aud-pencil procedures as early as Grade 3 may be inappropriate in

terms of pupil cognitive development, partly because "...children's

decisions to use taught algorithms to solve these problems appear to

depend more on the semantic structure of the problems than on either

instruction or cognitive caeacity...." (Romberg & Collis 1985 p.376).

Educators would do well to invent ways of building on these

child-methods instead of trying to subvert them with algorithmic

procedures that the child finds meaningless, at least initially. With

so many electronic machines around that can handle algorithms

consistently, accurately, iteratively, and endlessly, why promote

anything less than the intelligent learning of mathematics?

CONCLUSION

A major weakness in research in the area of diagnosis and

instruction in mathematics has been the preoccupation with
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mathematical content and computational algorithms to the exclusion of

considerations of the processes by which pupils build abstractions and

generalizations from their own actions with physical objects. It is

necessary to understand how children learn mathematics and how to

determine the levels of abstraction and sophistication that the

children concerned bring to the particular mathematics topics at hand.

Approaches that have taken into account insights from cognitive

assessments of child responses to mathematical tasks have proven

particularly successful in providing effective diagnosis and

instruction.

One source of interview task assessments of children's

mathematical cognitions in the major mathematical topics from Grades 1

to 3 is the Assessing Cognitive Levels in Classrooms (ACLIC), Final

Report (Marchand, Bye, Harrison & Schroeder 1985). For older

children, cognitive assessments can be made by means of paper-and-

pencil adaptations of individual interviews or by drawing from

existing sources of cognitive assessment items (e.g., Cornish & Wines

1977 1978; Hart et al. 1985; Marchand, Bye, Harrison & Schroeder

1985).

Instructional activities suitable for providing follow-up to the

cognitive assessments need to be mathematically sound and relevant to

curricular expectations and must make provision for the child to

respond naturally at or near the level of cognitive sophistication so

far reached in the particular context. Provision must be made for the

student to build concepts and strategies from direct experience, by

communicating with others, and from within through imagination and

intuition. A particularly rich source of instructional activities in

mathematics for 5- to 12-year-olds has been developed by Richard Skemp

in accordance with these principles just stated. (Skemp 1982-84,

Primary Mathematics Project, in press) Exemplary process-oriented

materials for mathematics teaching, learning and evaluation have been

developed for secondary school students at the Shell Centre for

Mathematical Education, University of Nottingham. Each of these

sources of cognitively-oriented learning materials describe

field-tested, inservice strategies that can be used to lead teachers,

evaluators, and researchers to a greater appreciation of cognitive

assessment procedures and activity-based instructional methods.
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EPISTEMOLOGICAL DETERMINANTS OF MATHEMATIC AL CONSTRUCTION,

IMPLICATIONS IN ITS TEACHING

Angel Ruiz-26iSiga,
School of Mathematics,
University of Costa Rica.

Abstract

In this work an analysis of the epistemological constituents of mathema-
tical knowledge is attempted. its involves a discussion over the relationship
between the roles played by the epistemic object and subject, as well as,
within the first but with its own status, the social role in the cognitive result.

Before beginning completely the chosen set of problems, an attempt is
made to place it in a historico-philosophical context that allows a better un-
derstanding of its nature. This is given especially by the existing contrapo-
sition between Empiricism and Rationalism, and in particular the crisis in
the latter brought on by the results of Godel in the thirties. The author
affirms that these results show the need for an epistemological and methodo-
logical renewal in the understanding of the nature of Mathematics. It reveals
a weakening in the rationalist paradigm which emphasizes the deductive -
formalizing aspects, and the a priori sense, dominant in the history of mathe-
matics.

An epistemologico-psychological analysis is made starting from the
concept of Piaget of "reflexive abstraction". The essence of this concept is

described, along with some premises and limits of the horizon where it is
inscribed, which is to say in that of the so-called genetic epistemology.

So, by way of conclusions, we study the consequences of this interpre-
tation in Mathematics Education and its psychology, its implications in the
orientations, but above all in the methods of teaching. Also the importance
is affirmed of the history of Mathematics to give structure to the priorities
and orders in Mathematics Education.

1. In the 1950's and 60's took place the now famous reform which introduced

the so-called "modern mathematics". This reform sought to emphasize the

axiomatic, deductive and abstract character of mathematics. A structuralist and

formalist vision of mathematics was favored over empirical, heuristic, intuitive or

constructive approaches. These reforms corresponded completely to paradigms

about the nature of mathematics which had predominated for centuries (in dif-

ferent manners) and had been in vogue in the period known as the "Crisis of

Mathematical Foundations" at the end of the 19th and beginning of the 20th

centuries.

In reflecting about mathematics, we will call those paradigms which affirm the a

priori character of mathematics and emphasizes the role of the mind as a producer of

absolute and eternal truths rationalist paradigms. The rationalist paradigms have

combined, althought not always, two additional visions about mathematics: that of

Plato, which makes mathematical entities citizens of an abstract and independent

world, accesible only by means of reason, and, on the other hand, the vision which
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emphasizes the axiomatic and formal as determinant characteristics of the nature of

mathematics. An integrated combination of these ideas, in some proportion, consti-

tutes what can generally be called the Rationalist Paradigm in Philosophy of Mathe-

matics (I emphasize rationalist because it constitutes the decisive theoretical element

in this conceptual conglomeration).

The reforms previously mentioned were made in large part on the basis of this Intel-

lectual paradigm. The interesting thing is, however, that they were made 20 or 30
years after this paradigm was severely criticized by &Mel in his famous article "On

Formally Undecidable Sentences of Priacipia Mathematics and related systems" in

1931. The conclusions of Godel are extraordinary. On one hand they imply that any

formalism sufficiently strong for expressing the basic parts of the elemental theory of

numbers is incomplete. As such, he concludes that mathematics cannot admit any

absolute formalization and that formalizable parts do not guarantee consistency. On

the other hand, he cast doubt on the Hilbertian pretentions for proof of consistency

and mathematical fundamentation (pretentions which monopolized the interest of

many mathematicians and philosophers after the "inexcusable" weakness of the Logicist

project of Frege-Russell). Godel's conclusions were directed toward breaking the

scheme of an absolute and closed system for any discourse and the pretention of

Ationalism of explaining any reality on the basis of reason. They were a reminder that

no rational system can explain the totality of the real, as well as a call for seeking a

bridge between Rationalism and Empiricism, giving a just role in mathematics to
intuition and experience. They constituted a hard blow to the rationalist paradigm

about mathematics to Formalism, to Platonism, as well as the infallibility of this.

The reading of the implications of the results of Godel, however, was not under-

tcken in an ample and decisive manner. The best proof of this is probably the reality

of the reforms in the teaching and learning of mathematics, which might be explained

by the Platonist position of Godel himself, or by the weak traditions of applied

mathematics in North America, or simply by the enormous life of a paradigm which,

in order to die, needs to be replaced first by another. What is clear is that no alternative

paradigm to Rationalism exists. The conventionalist and linguistic proposal of Logical

Empiricism does not appear a totally satisfactory option.

2. The crisis of Rationalism rising from the results of Godel should lead to the deny-

ing of the principal premises of the majority of thinkers in this tradition. Now it can't

be said, for example, that the theorems of mathematics are true in the real world and

that these infallible truths are accesible to human thought; or that intersubjectivity is a

non-practical and non-material metaphysical fact. These have been, during a long

pericd of time, theoretical suppositions beyond discussion I. The results of Godel have

created the necessity for a theoretical rethinking. It is not strange, then, that Lakatos
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insisted since the 1960's on the "rebirth of Empiricism in recent Philosophy of Ma-

thematics" 2. The paradigm of the injection of truth from the summit to the base

entered in crisis with Gliders results. The intents (which Lakatos called "Euclidian")

to incorporate the nature of mathematics in its scheme failed. Lakatos affirmed the

existence of a "... genuine revolutionary turning in the philosophy of mathematics"3.

To what point a reactivation of Empiricism has extended is difficult to know; it is not

easy to change a paradigm when this has been a fundamental pillar of western episte-

mology for many centuries. But it is obvious that Empiricism has received greater

attention.

Alongside Cartesian rationalism, the empiricist tradition developed together with

the experimental sciences. This gave birth to a different rationality, which gave pre-

eminence to the sensory 'n the knowledge of the world. Empiricism has stolen much

terrain from Rationalism in that which has to do with knowledge in general. However,

mathematics, until Godel, had been the last redoubt of Rationalism. Before Godel,

at times Empiricism was flirted with, but the predominant mathematical philosophy

was rationalist. The ideas of Mill about mathematics were always strongly attacked.

The two traditions could both be characterized as rationalist, in the sense that

both work on the basis of deduction and the axiomatic, but in their bodies of theory

they differ anout the injection of truth (in one case from top to base, and in the other

the reverse). This is the approximation of Lakatoc 4. Both traditions have been mutual

antagonists in the latest centuries of epistemology. It is only natural that with the

weakening of Rationalism, Empiricism would he fortified. However, the situation

hasn't been so simple. The classic vision of Mill isn't so easy to accept ; the character

of mathematics a product of the generalization of physical experience? Go back to

almost mechanical inductivism in reflecting on mathematics? This difficulty had led

the great majority of empiricists to deny real material content to mathematics, and like

Ayer, Pap, Carnap, and up to a point the late Russell, concede it a conventional and

linguistic character: "There are three feet in a yard". Parting from the considerations

we have mentioned, the options which appear are: mathematics has to do with infal-

lible truths a priori, without material content, or these refer to some ideal or material

world; or mathematics does not have to do with infallible truths and so the options

which appear are inductivism like Mill or conventionalism. This appears to he the crux

of controversy in modem mathematics. If the scheme of a priori truths is soffocated

by the "Code, factor", then everything indicates a tendency to submersion in some

type of Empiricism.

A revision of reflection on the nature of mathematics has been to eded for several

decades. In this terrain the analysis of its constituent epistemologies is important. We

will use ideas of Piaget to develope an epistemological proposal.
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3. In the theoretical analysis of mathematics, it is necessary to treat the central theme:

What type of mental activity does mathematics engender? How is mathematical

thought generated? Are we talking about the inductivist generalization of Mill? If not,

are we not affirming typical rationalism? For Piaget, in relation to mathematical

thought, there has been an evolution in human beings in steps from birth to maturity.

Each of these steps manifests itself in mental structures 5. These structures are oper-

ational in character 6. The passing from one to another takes place through an abs-

traction, different than that postulated by Aristotle, which is called "reflexive 7.

We are talking here about an operatory as well as combinatory generalization 5. Each

new structure adds elements to the former in a new synthesis 7. This leap forward

occurs because of necessity for filling voids in the avoidance of contradiction 10. This

lack of contradiction, or coherence is, according to Piaget, a particular case or operatory

"reversibility" 12.

As such, the abstraction is produced parting from the actions of the subject, not of

the object 12. The reflexive abstraction is identified with the power of the subject to

coordinate actions. Moreover, we are speaking of an abstraction parting from the

combination-coordination of actions 13. This power of the subject is not exactly

hereditary, but it is biological 14. It is part of the "cognoscitive functions" in general.

According to Piaget his cognosctive functions are the differentiated organs of the

" autoregulation" of the subject in relation to the object; it is something which affects;

then, behavior. This vital autoregulation associated with any living thing has to do

with the organization of the organic structure of the subject in assimilation of condi-

tions produced by the outside environment. As such, the "reflexive abstraction" refers

to the most general organizing function in living things: the "reconstruction convergent

with superation" 15.

According to Piaget, the reflexive abstraction, the evolution of structures and pre-

eminence of the subject, within the basic biological framework, are the key to mathe-

matical reflection. Mathematical entities are produced by the subject in steps parting

from the reflexive abstraction which refers to the form of organizing content. More-

over, the subject, in this process, separates form and content. Form is what corresponds

rightly to mathematics. The formal character of mathematics is no accident, but rather

according to Piaget is intrinsic to the epistemological nature of mathematics.

In all this, exists a basic supposition that, parting from an analysis of the psycho-

genetical processes, understanding can be obtained about the general conditions of the

epistemology. This is a point of departure. The reflexive abstraction permits us to

explain how mathematical structures advance from one level to another. Piaget says

that in this process the subject is active factor and the object is only an environment.

Of course, all this is only an interpretation. In order to do Piaget justice we should

avoid the interpretative and seek the objective. The probable is, in our opinion: (I) the
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subject needs action in order to generate change in mental structures, and (2) the

concrete material object is necessary in all the first steps in psychogenetic evolution.

At this point, knowing with certainty how much corresponds to the subject and how

much to the object is difficult. Piaget's interpretation is: the emphasis should be put

on the subject, along with a recurrence of biological hypothesis nor proven.

At this point, then, a methodological and philosophical discussion becomes ex-

traordinarily important. Piaget, through his genetic epistemology, seeks a range of

statistical results about the development of mental structures in children, but these

are inadequate for arriving at more general epistemological conclusions. In any case,

the processes of knowledge can only be explained in any depth parting from aphysical

analysis (in the general sense). Behavioral data cannot be conclusive because they are

indirect. They cannot explain the material phenomena which engender them.

The power of abstraction of the human mind over the real and objective cannot be

apprehended with a single method. Different types of abstraction exist, not only

related to different objects, but also according to their form of approximation. The

reflexive abstraction of Piaget, which emphasizes the operative does not represent a

complete explanation of how to determine mathematical knowledge epistemologically.

It is even possible that the most definitive answer is related to deeper knowledge than

the science we possess today. In any case, it is necessary to supply some methodolo-

gical indicatives to this discussion. In the first place, an epistemic subject is a dynamic

factor of central importance in mathematical knowledge, but always dependent upon

the object. At this point it is also necessary to point out that the social is not only

a part of the object, but also intervenes in the configuration of structural/mental con-

ditions which participate in the relation object-subject. We can, then, speak with

security of three functional factors in the process of knowledge: the subject, the

society and the material object. These are simply three categories that refer to intricate

overlapping aspects of the "non-null intersection" of a unified totality. The three

affect the epistemological behavior in different ways. The behavior of the object, in

its most general sense, affects the other two. Knowledge is a dialectic fusion which

encloses three different functional dynamics in a proportion difficult to establish by

merely speculative means. I even believe that, up to a point, the biological interpre-

tation of cognoscitive functions of Piaget cannot be ignored a priori. On this subject,

the point which should be understood is that there exists at this time an impossibility

for sufficient scientific evidence and a methodological inconvenience for accepting it.

Seen from the classic framework of reference: the subject, whose ultimate deter-

minants are biological and even more so physical, is active; but not in a vacuum, but

in a conjunction-fusion with the object, whose independent movement incides over the

subject. The social is a bridge which penetrates the interior of the subject, supplying

part of its theoretical supports. The epistemological relationship subject-object esta-
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blished within the general social framework defines a different reality to the object and

subject. Thus, the object is not the object itself, but rather the subjectivized object;

the characteristics of the object are learned and understood by the subject within the

conditions which establish their own limits. This subjectivized object is the departure

basis of consciousness. The subject is, at the same time, objectivized. In this epistemo-

logical relationship, while it is true that both poles do not remain as they were, this

does not mean that their independent conditions disappear. These conditions are

points of support for the relationship. This is a methodologies! interpretation. From -
this point we need scientific and precise empirical support.

In the classic empiricism of Mill, the subject is reduced to a blank piece of paper
on which the object prints lb message. In Kantian apriorism the object almost disap-

pears (is subjectivized) and the subject is the only active factor which produces mathe-

matical knowledge. In Piagetian apriorism, some of the problems of Kant are inherited

and are attempted to be resolved through a biological interpretation. The analysis of

the mentsi factor as operatory, as advanced by Piaget, is more adequate than the mere

inductivist generalization. The epistemological problem with the vision of Piaget is,

however, the reduction in the active role of the object, and the almost total absence of

the social as a special factor; the limitation of the types of mental abstractions. But

through this analysis we have identified a possible point of methodological reference:

the constituent epistemological factors of mathematical knowledge.

4. It is not necessary to insist upon the importance and implications of an episte-

mological and philosophical revision of the teaching of mathematics or its implications

upon the psychology, programs, and methods of teaching. If we adopt the point of
departure identified here, some consequences are inevitable:

a) Mathematics should be taught in direct relation to material and social reality.

This implies, apart from a direct approximation to objects, a strong linkage with other

natural and social sciences.

b) The content of mathematics should be taught with an understanding that a

dialectic relationship exists between the abstract and the empirical. It is necessary to

understand the specific abstract dimension of mathematics integrated in a special sub-

ject-object epistemological relationship which determines its character.

c) Mathematics should not be taught as absolute, eternal and invariable truths.

d) Axiomatics and deduction should be introduced in the teaching of mathematics

as important and useful instruments, but not the heart of mathematics. (This implies,

for example, determining precisely when certain formalism are specifically useful or

necessary and when they are not).

e) A new teaching of mathematics should emphasize heuristic, intuitive, concrete

and constructive theoretical methods.
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One of the decisive resources in teaching mathematics which assumes this type of

vision is the use of the history of mathematics. Not only as a source of anecdotes

which give "color" to mathematical content, but rather a key factor in the structure

of the teaching of these contents, the programming and method teaching. This does

not mean, for example, that the order and logic to be decided should simply be histor-

ical and the deductive logics: an adequate convergence between sociogenetic and

psychogenetic orders.

It is probable that at this time no defined program of how to achieve a new stra-

tegy of teaching mathematics exists, along with its respective philosophy, methods,

programs and texts. I believe that we live in a transitional period in which different

concrete ideas and plans are being tested. It is difficult to know how long this will

last. But I believe that in this period, discussions about methodology and philo-

sophy are particularly important. (On many occassions, there is a tendency to

dismiss philosophy as mere empty and useless sets). In this sense, perhaps, all this

work constitutes a defense of the Philosophy of Mathematics.
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STUDENTS' UNDERSTANDING OF MATHEMATICS:
A REVIEW AND SYNTHESIS OF SOME RECENT RESEARCH.

Thomas L. Schroeder
University of Gately, Canada

Models of understanding and conceptual frameworks for bulkiing such models
that have been developed over the past decade are described in three broad
categories: (1) The Instrumental vs. relational distinction and evolving
epistemological and conzbuctivlst models, (2) FYagetian, neo-Piagetian, and
misled psychometric models, and (3) human information processing and
cognitive science models. Some examples of studies of students'
understanding of mat en are reviewed and discussed In terms of the
practical decisions researchers have made in choosing models and making
operational definitions, the feasibliity of reinterpreting the studies' findings in
different theoretical terms, the generalizability of their findings, and the potential
benefits of the studies for curriculum evaluation, teachers' professional
devekopment, and the improvement of instruction.

Mathematics educators have been concerned about students' understanding for many years

(Brownie work In Vie 1tig,',1' 's and 40l on "mearingIngful arithmetic' is relevant to this issue, for

example), but the past decade or so has soon substantial activity and progress In this area. The

numerous models and conceptualizations of understanding which have been developed can be

put Into throe broad categories.

EPISTEMOLOGICAL AND CONSTRUCTIVIST MODELS

In a seminal article, Skemp (1976) distinguished between instrumental understanding,

'rules without reasons,' and relational understanding, 'knowing both what to do and why."

Skemp commented that 1,ormetty he would not have considered Instrumental understanding to be

understanding at all, but to gave reasons for believing that "understanding° Is a case of faux amts,

where one term Is used with two entirely different meanings. Skemp also discussed mismatches

between the goals at students and the goals of t'elr leachers with respect to type of

understanding they sought, and argued that the term 'rnatherwdics" Itself could be a case of faux

Playing Devil's Advocate, Skimp listed some supposed advantages of Instrumental

understanding, and (Ave several atgurnents In favour of relational understanding. The theoretical

formulation Skemp used In the discussion was based on the distinction between fixed plans for

solving particular problems and schemes from which plans can be produced; throughout the

article he was concerned with the nature of the knowledge students have, their goals in

developing it, and their &Hes to use it In solving problems.

Responding to Skemp, Byers and Herscovlcs (1977) proposed two additional types of

understanding: Intuitive understanding, the ability to solve a problem without prior analysis of the

problem, and formal understanding, the ability to connect mathematical symbolism and notation

with relevant mathematical ideas and to combine these ideas Into chains of logical reasoning. In
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their model the tour types (or 'modes') of understanding were represented as the vertices of a

tetrahedron. Byers and HerscovIcs argued that fennel understanding is not merely a special case

of relational understanding, by giving the example of an algebra problem solved "with

understanding- and correctly buf with literally incorrect symbolc expressions. They also noted

that effective teaming cannot be based only on a single type of understanding, that at any given

time a sludent's.understandina of a particular piece of mathematics will be of a mixture of types,

that the types cannot be arranged in any strict temporal sequence, and that the system is dynamic

because the four types Interact at limes reinforcing or hindering one another.

Tall (1978) criticized the tetrahedral model because it can only represent the ratio

between types of understanding and suggested repesenting understanding as a point In 4-

space. Acknowledging that regardless of representation understanding Is a function of time, ho

urged consideration of the dynamics of understanding and suggested that the kinds of

understanding should be seen u facets of a single development. He noted that schemes grow

and b000me more versatile, they decay, and they are reformulated consciously and

unconsciously as the individual attempts to make a coherent pattern out of the world.

Understanding which results horn such a search for coherence Tall Identified as relational

understanding. Instrumental understanding Is characterized by compartmentalization of Ideas,

not wishing to make an overall pattern, preferring a limited closed system. Thus, type of

understanding was related to attitudes and goals. Tail argued that Intuitive understanding occurs

when a developing schema is not yet sufficient for the task at hand, but there are facets of the

problem that seem to link with it. Formal understanding, he contended, hasboth individual and

corporate aspects. The Individual reflects on his schema and rationalizes his thinking to fit it

together coherently, a process reminiscent of "formal operations' in Piaget's useof the term. The

individual also puts mathematics into a public context using conventional notations appropriately.

Turning to the case of non-understanding, Tall gave examples Illustrating the proposition that, it

understanding Is assimilation into an appropriate schema, then non-understanding may mean

either assimilation into an Inappropriate schema or failure because no schema Is available.

While accepting a model oontalning four types of understanding, Tall expressed the

concern that this might lead to the development of more and more refined categories, some of

which might not be universally accepted or uniformly interpreted. He also wondered whether the

presence of "(relative" and "former suggested the need for a kind of understanding to

correspond wih Pleget's "concrete." Flnalty, Tall expressed the hope that focussing on tho

distinctions between types of understanding would not obscure the connections between them,

and he gave the separation of "cognitive" from 'affective" as an example of an unhelpful

distinction.
Another article by Skemp (1979), offered as a synthesis of the articles mentioned above

and others, was based on his model of Intelligence in which human behaviour Is seen as goal-

directed, and two director systems are posited. Delta-one receives information from the

environment and acts upon It, comparing the present state of the environment with the goal state,

constructing plans from available schemes to take the operand to the goal-state and keep it there.

Delta-two, whose operands are not in the external environment but in delta-one, has the function

of optimizing the functioning of delta-one. The goal of Instrumental learning is to give right

answers. The overt operands are symbols, mathematical and verbal, spoken and written; the

hidden operand Is the teacher or examiner, and the goal Is to gain approval and avoid disapproval.

These operands are in the environment, so the activities are delta-oneactivities. When pupils
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learn a sat of rules (degenerate schemes) that are appropriate to a arrant class of tasks, the rules

am nuns for mulpulating symbols, and the connections are connections between symbols, not

between concepts. The goal of relational learning Is the oonstructIon of relational schemes. The

operands may be newly encountered concepts, and the goal to connect them with appropriate

schema.; the goal may be to deduce specific methods for solving particular problems or rules for

classes of tasks; wen goal may be to improve existing schemes by reelecting on them to make

thorn more cohesive, better organized, etc. These operands are concepts and schema* within

deenone, so in relational teaming della-two acitykos are dominant.

Skimp proposed to resolve the proliferation of models problem with a new model

containing three kinds of understanding: instrumental, relational, logical (equivalent to formal) and

ma modes of mental activity: intuitive and reflective. He argued that the two modes of mental

functioning do not correspond to different kinds of understanding, but that they occur In all

oombinstrons with tom. Skimp offered examples lo show that the six cells of this model are

meaningful. In the cells Instrumental/Intuitive, relationairrefloctive, and logical/reflective the

exempts& are straightforward, hut the example for Instrumental/reflective seems contrived.

Skimp himself expressed cescanaction with his attempt at an example for the logical/intuitive cell.

The relationallkituitive oornbination Skimp matched with Insights which develop slowly, as

opposed to nape of Intuition.

Olive (1982) designed a group-administered test for 9th and 10th grade students to test

for rotational or instrumenUil understanding of various mathematics topics, In both the reflective

mode and intuitive modes. Some Nino were found successful for these purposes, and some

strong correlations between item responses and Interview assessments were observed.

Bergeron and Hamm** (1981) reported using a model that described understanding of

mathematics (as ffiluillye, Instrumental, relational or formal) In a project with elementary school

teachers. They found that the teachers could klentity different modes of understanding with

various topics in elementary school mathematics, and that doing so changed their perception al

mathematics and their view of their own mathematical competence. Furthermore, It led to the

development of a constructivist approach to learning, a deemphans of the importance of written

answers, a focus on thinking processes, and an awareness that only through an appropriate form

of questioning can children's reasoning be uncovered. Noting certain weaknesses of the model

and difficulties using it, these researchers set themselves the task of constructing a new model

better suited to the analysts of concepts, a hybrid model that would apply both to states of

understanding as wail as the construction of understanding. In a companion paper (Herscovlcs &

Bergeron, 1961), they concluded that some of the criteria for classifying understanding were

quite useful In describing concept formation, and they stated that they know percelve(d) these

criteria as levels of understanding which In fact comae() the backbone of a constructivist model

of understanding.* (p. 69) The new model (Herscovlcs & Bergeron, 1982) Included the intuitive

and procedural levels and the stages of abstraction and formalization.

PIAGETIAN AND NEO-PIAGETIAN MODELS

Many mathematics educators consider the main value In Magellan research to be the

extent to which It characterizes students' understanding or potential for understanding of

Important mathematical Ideas. For example, one might say that a child giving a pre-operational

response In the conservation of number task lacks understanding of certain number concepts,
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even If he does have abilities with counting, or one might argue that a child giving a concrete

operational response to a task has a poorer level of understanding than a child who responds at

the formal operational level. The power to reveal students' understanding of mathematics results

from the non-routine nature of the assessment tasks and the ability of researchers to pursue a line

of questioning In a task-based interview. While a great many mathematics topics have been

addressed In the Plagetlan literature, many others (such as multidigit numeration or algebra) have

not, but a number of researchers Inspired by the Piagetlan approach have worked In these areas

with sentlar goals and tools.

The CSMS project (Hart, 1981) estabilshed helrarchies of understanding In a variety of

topic contexts exhibited by English schoolchildren aged 11 10 16 years. The projects methods

involved conducting tape-recorded Interviews with groups of about 30 students and develops-1g

written kerns that were eventually used with largo gametes. The Interviews served not only as a

means of assessing the sultablity of the written Items, but also to Inform the interpretation of tho

results of the written tests. In measurement and ratio and proportion, the initial Interviews and

written Items were based directly on Plagettan tasks. MI the Interviews and tests were designed to

reveal the methods one errors of students when they were confronted with mathematical

problems, rather than to mess abilities to use methods taught In school. One of the project's

main findings was that the methods students used were often not leacher-taught ;" but nor were

they idiosyncratic, for similar "child-methods- were observed repeatedly. Another important

conclusion was that mathematics Is very difficult for most students, since levels of

understanding observed were often much lower than teachers and syllabi expect.

The CSMS hierarchies were constructed within topics; the number of levels per topic

varied from three to seven. A student's level in a heirerchy was determined as the highest level of

Item-group In which the student obtained two-thirds correct. Criteria used to group Items into

levels included similarity of difficulty level, acceptable homogeneity and scalability, and

mathematical coherence. In the discussion, each hierarchy of levels was described both in terms

of content and processes used to deal with content.

The Plagetian stage-theory model of cognitive development has often been criticized for

the fact that the same subject may appear to be at different levels of development In different

topic contexts. This phenomenon, which Piaget recognized and called dewlap), suggests that

the results of this type of study need to be reported with reference to the particular contexts and

tacks used. While students' responses can be rated, students themselves should not be labelled

'pro-operational," *concrete operational,* etc.

A useful concept when applying Piegellan constructs and methods to mathematics

ourrtculum contexts Is the concept of uognitive demand. By this Is meant the nature of the

thinking that Is required In order for a learning activity o `make sense" to the student, for the

student to assimilate It Into his available schemes. In the CJHMP project (Bye, Harrison, &

Brindtey, 1980) and the ACM pro)ect (Marchand, Bye, Harrison, & Schroeder, 1985), for

example, a great deal of effort was expended developing demand criteria and analyzing the

cognitive demands of different aspects of mathematics curricula such as objectives, textbooks,

tests, and teachers' classroom presentations. By using the same cognitive level criteria both in

assessing the responses of students and rating the cognitive demands of aspects of the

curriculum, it is possible to Investigate whether there is a match or mismatch between distributions

of demands and of responses. Details of procedures for carrying out this son of analysis have
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been given by By*, Hantson, and Mind ley (1980), and by Marchand, Bye, Hantson, and

Schroeder (1985).

The SOLO taxomony (Biggs & Collis, 1902) may be considered to be both an application

and an extension of the Piave Ian model of cognitive development. II Is based on two constructs:

hypothetical cognitive structure (HCS) and snucture of observed Naming outcomes (SOLO).

The tomer is clarity related to the Piagettan stages (saneorknotor, Intuitive/preoperational,

corms operational, formal operational); the latter we concerned with describing the structure of

a given response as a phenomenon in Its own right, without the response necessarily

regresaniing a particular stage of Iraelleceial development (Coals, 1982). In some versions of the

theory (Collis, 11183) the etructuree of learned Nepotists we regarded as occurring within each

stage (or "mode), and they become Increasingly complex as the "cycle of leaning" develops.

Uni-etructural responses represent the use of only one relevant mows of the mode; mule-

ewuctural, several Begirt aspects, usually in sequence; rotational, several aspects related into an

integrated whote; and extended 'WINO moves As process into a new mode of functioning, I. e.

extended abstract functIoning In one mode 14 Identified as equivalent to unistructural functioning

In the next higher mode (Coils, 1902).

In a series of repOrts, Calls (1982) explained the theoretical role for the SOLO taxonomy

In assessing reasoning In malhenwilcal problem solving, Jurdak (1902) gave details of the

construction of eupertlanw (clusters of test ewe with a common stem where each individual Item

convert* to a dewed SOLO WO) for this purpose, and Romberg (1982) gave

interpretations of clusters of someone. The undertaking described in these technical articles

seem quite conplex, *wittily as oortvierad with the more familiar Magellan tenninology,

(*Makes, and assessment procedures. Me the SOLO taxonomy has appeal because It avoids

the problem of *calve and focuses on the structure of responses which can be observed,

rather than on etruclunie of the Intellect which cannot.

HUMAN INFORMATION PROCESSING AND COGNMVE SCIENCE MODELS

A relatively new theoretical approach to mathematics education research questions,

espedalty thaw having to do welt problem solving, Is the "human kiormatton processing" or

"oogrilive OCWflOir approach. Robert Davis (1984) has recently produced a major book which

defines key terms, presents methods and findings of relevant research carried out In this

framework, and shows how the concerns of mathematics education researchers are addresseo by

this theory. Understanding of mathematics was the locus of a report by Davis, Young, and

McLoughert (1982) which used human Infonnation processing In considering the question:

"What would be lost II understate:Nig was elminaled as a goal of Instruction?" In the studies

'ticketed In the report, episodes with a voids range of students were analyzed and categorized as

Indicating either a presence of Lack of understanding in some particular form. Identified behaviors

Were Mated to basic conceptualizations of human information processing such as sequential

processes, procedures, knowledge representation systems, frames, retrieval and matching,

pointers, transfer of control, sub- and super- procedures, metaphor and Isomorphism, critics,

planning space, planning language, and meta-language.

Gas* of good understanding were assodated with characteristics such as knowing

necessary techniques, having appropriate descriptors to specify what each technique can

accomplish, having a collection of recognizable sub-goal candidates, having mechanisms for
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recognizing appropriate sub-goals and retrieving appropriate labels, having mechanisms for

retrieving a tool from Its tag, and having mechanisms for assigning correct inputs for each tool or

sub-proceedure. II was observed that the best problem solvers were exceptionally skillful in

setting goals and sub-goals, using a powerful meta-language to describe and analyze what they

were doing, and making quick revisions to their strategy when they got a glimpse of a new

possibility, or when they saw a dead end looming ahead.

On the other hand, lad( of understanding was characterized by tack of critics, failure to

relate mathematical processes (e.g., borrowing and carrying) to pre-matheatical schemes (e.g.,

making change and fair trades), failure to acknowledge that concrete embodiments (even familiar

ones) had anything to do with related problems, and failure to appreciate the nature of the task.

The report concluded that "the overall patterns of what II means lo understand' are strikingly

similar at both ends (of the continuum from Grade 3 arithmetic to calculus), and everywhere in

between." (p. 35).

DISCUSSION

The conceptualizations of understanding described above differ somewhat in the terms

they use, but less so in the ideas that these terms seek to express. A useful exercise for

researchers Investigating students' actual understanding (as distinct from those who have

proposed to conceptualize tt) Is to reinterpret their work using each of several of those ways. This

has value In focussing the observations, and new Insights often result.

A second worthwhile activity Is to compare their findings with those of others, an activity

that would serve (if repeated often enough) to test Davis, Young, and McLoughlin's (1982)

conclusion that what It means to understand is similar across mathematical contexts and

populations of students.

There Is already evidence that studies of understanding have had positive Impacts on

teaching practice and curriculum development, and every reason to believe that if practitioners

continue to be Irrvbved further research will also result in additional benefits.
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PREFERRED LEARNING STRATEGIES AND EDUCATIONALARTHEMNIaCAL PHILOSOPHIES:

AN HOLISTIC STUDY

Rosalinde Scott-Hodgetts

South Bank Polytechnic

This paper reports an exploration of the relationships
between philosophies of education and mathematics and the

preferred learning strategies of students currently

undertaking courses in mathematical education. This

exploration represents the extension of an earlier

discussion about the implications of Gordon Pask's Holist/

Serialist dichotomy for the learning and teaching of

mathematics. As well as providing a theoretical rationale
for the hypothesis being tested, the report presents early

results from an empirical study currently being conducted in
London. Directions for further research and implications for
teacher education are also indicated.

INTRODUCTION

The motivation for the research reported here stemmed from two primary

sources: the author's earlier theoretical discussion of the implications

of Pask's Holist/Serialist dichotomy for the learning and teaching of

mathematics [1], and results of her doctoral research programme on

pupils" views of their teachers [2], which clearly demonstrate that the

pupils involved in the study valued teacher behaviour which could be

interpreted as reflecting a particular view of how pupils learn

(serialistically) and/or a specific philosophy of the nature of

mathematics and the way in which it should be taught (as a body of

knowledge, known to the teacher and to be oonveyed to the pupils). These

results prompted a review of the literature relating mathematical to

educational philosophies and practices, and reflection upon the

interrelationship of these areas of study.

Before presenting the hypothesis which was derived from these

reflections, and describing the current empirical study aimed at testing

this hypothesis, the underlying strands will be considered separately.
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IMPLICATIONS OF PASICS SERIALIST/HOLIST DICHOPUTZ

Pask and his colleagues have established a strong case for the existence

of two distinct learning strategies - serialist and holist. Learners

with a tendency to adopt exclusively serialistic strategies are labelled

'operational' learners, whilst those who in a free situation

consistently employ a holistic approach are called 'comprehension'

learners [3].

There is a clear link between the level of uncertainty at which a

learner is prepared to work and their preferred learning strategy.

Operational learners are characterised by a preference to proceed fran

certainty to certainty, learning, remembering and recapitulating a body

of knowledge in small, well-defined and sequentially ordered 'parcels'

[4]. They are confident that the necessary expertise will be gained

steadily. Comprehension learners, on the other hand, prefer to start in

an exploratory way, guessing ahead and working first towards an

understanding of an overall framework, before filling in the details. In

order to ensure complete mastery of complex topic areas interventions

must be made which encourage the learner to explore the material in a

variety of ways.

A consideration of reported gender differences in mathematics led the

author to a theory about the implications of Pask's theories to

mathematics learning and teaching [5]; a brief outline of the argument

is given below:

The evidence suggested that some pupils (both boys and girls, but more

girls than boys) may be adhering to serialistic strategies which have

led to their success in mathematics at the primary level, but which,

when used exclusively, have negative implications for these pupils'

lauz mathematical development. It is argued that children who are

predisposed to a serialistic approach are less likely to develop into

versatile learners within the mathematics classroan than those who are

inclined to adopt holistic strategies. This is held to be directly

attributable to the fact that input fran primary teachers tends to be

serialistic in nature, based on their awn rule-based experience of

mathematics, and lack of confidence in their own mathematical ability.
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The effects of these teacher interventions will be different for

comprehension and operational learners; the operational learners will

become increasingly committed to the view that a step-by-step approach

leads to success in mathematics; even those with enough versatility to

become more flexible in other curriculum areas, where they are actively

encouraged to adopt other strategies, will fail to do the same in

mathematics, because the value of alternative approaches will not have

been demonstrated; the effect on the comprehension learners, on the

other hand, will be mediatory; by showing the effectiveness of

techniques associated with serialistic skills, the teacher provides the

impetus for them to supplement their self-develcped strategies to

produce the versatility of approach which underlies complete

understanding of mathematical topic areas.

PHILOSOPHICAL PERSPECTIVES

Within the field of mathematics education, a great deal of recent

research has focussed on the relationship between teachers' views about

the nature of mathematics and their educational philosophies and

practices [6]. There is not roam here to discuss this work in detail,

and it is, in any case, readily accessible. There seems to be agreement

about the importance of these interrelationships [7]:

"There is strong reason to believe that in mathematics,

teachers' ccnceptions...about the subject matter and its

teaching play an important role in affecting their

effectiveness as the primary mediators between the subject

and the learners."

Sane researchers have gone further, [8], identifying a particular

mathematical philosophy as being the most canpatible with current

beliefs about what constitutes good mathematical education practice [9]:

"It is concluded that each of the views (of mathematics)

provides insights as to the nature of mathematics, but that

Falliblism is perhaps the only viewpoint compatible with

humane mathematical education."
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INTERRELATIONSHIP BETWEEN PHILOSOPHICAL AND

PSYCHOLOGICAL PREFERENCES

Although some writers have considered philosophical and psychological

constructs as separate factors influencing teaching strategies 110],

there has been little attempt to focus on links between them. One

exception to this Ill) concludes that there is a relationship between

Platonism and Logicism with right hemisphere processing and between

EtEsslism, Nominalism, Cbnstructivism and Intuitionism with left

hemisphere processing. No account is taken of the 'Falliblist' stance

taken by, for example, Lakatos.

This paper differs from that above in several ways. Firstly it is

believed that the distinction between certainty and 'fallibility' in

mathematics is of fundamental importance; secondly, it is believed that

many people do not have clear-cut views about the nature of mathematics,

so that incasing a rigid 2ramework in terms of established schools of

thought may distort the true picture; thirdly, it is believed that

categorising learning strategies and styles under the headings right and

left hemisphere may encourage a simplistic view, and lead to unwarranted

conclusions about the relationship between achievement and 'inherent

ability'.

The hypothesis being put forward here is that relationships between

philosophical views and cognitive strategies will not be clear-cut, but

that there will be a correlation between a view of mathematics as a
fixed boody of knowledge and a tendency to adopt serialistic learning

strategies. A possible rationale for this situation would be that an

individual's own learning experience within the mathematics classroom

had fostered both tendencies.

THE EMPIRICAL STUDY

The research, which is on- going, focusses on initial and in-service

students of primary and secondary mathematics education. The first stage

of the study, now completed, consisted of es:ablishing the students'

preferred learning strategies, by means of the Clobbit learning task
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1121, which requires students to learn, under restricted conditions,

about the taxonomy of a fictitious Martian species, and subsequently to

'teach back' what they have learnt to the researcher; and eliciting

their beliefs about mathematics and mathematics learning using two

questionnaires. The first of these is based on bi-polar constructs:

e.g.

Mathematics learning relies A B Gives opportunity for

almost entirely an experts' thinking things out for

thinking and knowledge. oneself in learning.

The second asks for a response to statements like:
Creative work in mathematics is possible only at research level.

or Mathematics is accurate and precise free of ambiguity and

vagueness.

PRELIMINARY RESULTS

Overall results of the research to date will be circulated at the

Conference. To give some idea of the information elicited, the results

obtained from a subset of the sample - 3rd year students on a 4 year

Primary B.Ed. course - are summarized below. These particular students

have not elected to study mathematics as their specialist subject.

Analysis of the strategies employed in the study phase, and the

protocols of 'teachback', led to five students being categorised as

operational learners, and five as tlamprehension learners.

The questionnaire analysis revealed a high level of agreement between

all subjects on a variety of areas:-

Subjects agree overwhelmingly that mathematics learning is fascinating,

exciting and stimulating, challenging and satisfying.; it was

unanimously agreed that mathematics learning gave scope for imagination,

and provided scope for finding things out for oneself and to,: being

creative at all levels. There was consensus, too, on thE 'iew that

mathematical problems in the classroom invite a variety cf ,n-yropriate

methods of solution, and different 'correct' answers.

It was only with regard to questions about the nature of mathematics

itself that there was disagreement between the two groups.

12j5



Three of the five operational learners gave responses which were

censistent with a view of mathematics as an irrefutable body of

knowledge. They selected most, if not all, of the following statements:

1. Truths have existence independent of peoples" discovery of them.
2. Mathematics is essentially hierarchical and cumulative.
3. It has developed through consolidation and extension of earlier

work - previous knowledge is not rejected as untrue in the
Prccess

4. Mathematical truths are not susceptible to revolutionary change
in the way that scientific truths are.

5. Mathematics is consistent - free of conflicting ideas, results
and conclusions.

6. Mathematical truths have an absolute quality about them.
7. Mathematics is a 'tidy" subject: there are no "loose ends", no

ambiguities, no uncertainties.
8. I do not think cf mathematics as a changing field of knowledge.
9. Mathematics is accurate and precise - free of ambiguity and

vagueness.

Three of the caterehensian learners were also consistent in selecting

statements indicating a more dynamic model of mathematical knowledge:

a. Mathematics knowledge is hypothetical and potentially subject
to modification or falsification.

b. I think of mathematics as a changing field of knowledge.
c. Mathematics is not consistent.
d. Mathematics is not accurate and precise.
e. Mathematical truths are susceptible to revolutionary change.
f. Mathematics is not a "tidy" subject; there are ambiguities and

uncertainties.
g. Mathematical truths are not absolute.

The other four subjects were inconsistent in their responses, selecting

the following statements from the lists above:

Operational Learner 4 1,2,3,5,7,a,b,e,g

Operational learner 5 1,2,3,b,c,d,e,f,g

comprehension Loarner 4 2,3,.,6,8,c,d,e,f

Comprehension Learner 5 1,2,3:4,8,c,d,f,g

DISCUSSION

The evidence so far collected from this and other student groups dais

suggest a strong link between philosophies of mathematics and preferred

learning strategies. It is surprising, given this, that professed views

about the nature of mathematics learning are so similar. Interviews with
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these students will probe reasons for this. Many of the students have

indicated that their views have changed dramatically since they arrived

at college; the nature of these changes will be explored, and related to

earlier learning experiences, and their current teaching practices.

In the longer term, a longitudinal study will be made to monitor such

changes in students of a particular cohort fran their arrival until the

end of the course.

It is important to encourage students to explore the interrelatedness of

their beliefs and preferences, and those of their future pupils. In

this, as in so many areas, increased versatility can only begin with an

awareness of current beliefs and levels of understanding. It is the

responsibility cf teacher educators to foster such awareness, and to

emphasise the necessity of adapting teaching approaches to take account

of the views and learning styles of others.
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A SOCIAL CONSTRUCTIVIST THEORY OF INSTRUCTION
AND THE DEVELOPMENT OF MATHEMATICAL COGNITION

.11mm Weinterg and Jim Gavelek
Michigan State University, Fast Lansing, Michigan

This paper presents a theoretical framework for viewing
mathematics instruction and development of mathematical
cognition from a social conetructivist point of view. The
paper describes the philosophical underpinnings, taken
from Wittgenstein, and the psychological foundation, drawn
from Vygotaky's work. In addition, it describes implications
for research in mathematics education.

INTRODUCTION

The purpose of this paper is to present a theoretical framework for

viewing the teaching and learning of mathematics (and its relationship

to the development of mathematical cognition) as a process of social

construction. The paper will present its theoretical framework which

is informed by the conceptions of mind and knowledge of Wittgenstein's

philosophy and Vygotsky's psychology. The paper will also discuss the

implications of a social constructivist view for research in mathema-

tics education and teacher education in mathematics.

The social conetructivist views knowledge not as a reflection of some

reality but as an artifact of communal interchange. Cognition is some-

thing social in its very essence. Knowledge is based on social inter-

action. Research in mathematics education grounded in this perspec-

tive focuses on the social construction of mathematical meaning that a-

rises from teacher-student or student-student interaction in classroom

settings.

WITTGENSTEIN

The philosophical framework fora social constructivist view of learn-

ing, instruction, and cognitive development is informed by the writings

of Ludwig Wittgenstein. He assumed that mind and knowledge are con-

structed through social interaction. The properties of mental states

derive from the fact that they are really properties of groups of peo-

ple which have been imputed to individuals (Floor, 1985).

One of Wittgenstein's main concerns was the use of language and its

role in meaning and knowledge. Meaning is located in the function

words have as signals used by peoplelln the course of shared activity.
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Language games are systems of communication; languages which are com-

plete in themselves. Wittgenstein's social theory of mind derives from

his social theory of meaning. Thinking is an activity of operating with

signs. The mental experiences which accompany the use of signs are a

result of our patterns of usage of those signs in a particular language.

"When I think in language, there aren't meanings going through my mind

in addition to the verbal expressions; the language itself is the ve-

hicle of thought (Wittgenstein, 1958, p. 107).

Instruction plays a central role in Wittgenstein'a conception of mind

and mathematics for we must be taught to use these signs in a manner

consistent with social practice. Our knowledge depends on our patterns

of training. Wittgenstein saw teaching as a punstituent part of the

"forms of life" of which he speaks. It was thought of as one of the

activities that go to make up a form of life and of an activity that

shapes how that form of life evolves. "An education quite different

from ours might also be the foundation for quite different concepts...."

(Wittgenstein, 1958, p. 128).

Wittgenstein spoke of mathematics as one of many language games. Math-

ematics is an anthropological phenomenon -- a system of signs and pro-

dedures for manipulating these signs which are established through con-

vention. As conventions these procedures are not accepted because they

correspond to some ideal; they are correct because they are accepted.

And they are accepted because they have proven functional. Wittgen-

stein's point is not that anything goes, but that there is no mathe-

matical reality which guarantees the results we get. Mathematical

objectivity is a function of human practice. "What I am saying comes

to this; that mathematics is normative. But norm does not mean the same

thing as ideal." (Wittgenstein, 1956, p. 190).

Mathematics creates concepts. Mathematics is the process of inferring

one statement from another, and the criterion of correctness is found

in the collective behavior of humans, in the results of their calcula-

tions. Mathematical statements do not state facts of any sort, but

provide us with a linguistic framework in which we can classify and

organize the empirical observations we make. If mathematical propo-

sitions do not state facts, do not tell us the properties of numbers,

what do they do? Wittgenstein claimed that they make a linguistic

point. "Rather than unfolding the properties of the number 100,
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for example, what I unfold may be said to be the sole which 100 plays

in our calculat4.ng system" (Wittgenstein, 1956, p. 26). Wittgenstein

emphasized thrc it is essential to mathematics that there be agreement

in the result1 of calculation among those who use the system. "rho

mathematical vat is only another expression of the fact that mathema-

tics forms concepts (Wittgenstein, 1956, p. 190).

VYGOTSK?

If Wittgenstein provides the philosophical framework for the social con,

structiviit view, then Vygotaky provides the psychological underpin-

nings. Both men believed that thinking is a social activity and that

knowledge is a collective achievement. Vygotsky believed that all

higher mental processes, such as logical memory, selective attention,

and comprehension of sign systems, occur at a social, interpsychological

level before they are internalized by the individual. The vehicle for

the the development of higher psychological functions is the mastery

of sign systems such as language and mathematics (Wertach, 1985). This

mastery alters the nature of cognitive functioning. Another im:ortant

aspect is the process by which the meaning of signs becomes loss depon-

dent upon the context in which they are used (Wertsch, 1985), such as

the use of numbers abstracted from representation of concrete objects.

Thus the activities associated with cultural learning play a loading

role in the development of the individual.

Vygotaky believed that instruction plays a major role in leading the

child to new developmental levels. "What the child can do in coopera-

tion today he can do alone tomorrow. Therefore the only good kind of

instruction is that which marches ahead of development and leads it"

(Vygotsky, 1985, p. 188). Tho zone of proximal development (ZPD) is de-

fined as the region of sensitivity to instruction in which the transi-

tion from interpsychological to intrapeychological functioning can be

made. It is the distance between the child's level of cognitive func-

tioning during independent problem solving and the level of potential

development during problem solving with the guidance of an adult (Vy-

gotsky, 1978). Adults and more capable peers provide instruction in the

ZPD by such means as directing attention to salient features of a task

or assuming responsibility for parts of the task beyond the child's

capabilities. As the child masters previously instructed skills, the
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adults or peers provide successively less assistance with the task. In

this way other people provide instruction in skills slightly in advance

of tho child's current abilition.

Central to the issue of instruction in the ZPD arc situation definition

and intersubjectivity. Situation definition is the way objects and e-

vents in a situation are represented, and intorsubjectivity exists when

participants share some aspect of the situation definition (Wertsch,

1985). When the participants in instruction are adult and child, the

communication is asymmetric, with the adult managing the control of in-

teraction. In an ideal situation, control of the situation moves from

teacher, to joint teacher-student, to student as the student becomes

more competent with mathematical processes.

Saxe (1982) defines cognitive development as the transformation and

elaboration of systems of knowing that are progressively more compre-

hensive and powerful as relationships develop among concepts, yygotsky,

in stating that higher mental processes of the individual originate in

social processea, claimed that we must consider two forms of cognitive

development; changes in ontogenesis and changes in sociocultural his-

tory (Wertsch, 1985). To understand the development of mathematical

cognition in the child, we must understand the cultural and historical

development of mathematics an social practice.

If one holds that mathematical moaning is found in the shared under-

standings of human beings, then we have to account for how this under-

standing, initially external to the child, becomes part of the child's

own cognitive processes. One way in which internalization might occur

is that children first acquire part of their culture's net of number

terms in playful activities. As children use those terms to solve nu-

merical problems, their use of, the terms is regulated by adults. The

adults.' conventionally defined system becomes a means of number repre-

sentation for the child through further constructive process; the

attempts to understand the organization of its own enumerative acti-

vities. With progress in this understanding, the child would be

increasingly capable of using historically and culturally determined

number terms to solve numerical problems (Saxe, 1982).
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A SOCIAL CONSTRUCTIVIST MODEL. OF RESEARCH IN MATHFMATICS EDUCATION

The leen° in research in mathematics education which takes a social con-

strectivist perspective is the specification of the processes which make

possible the transition of mathematical cognition from the interindi-

vidual to the intraindividual plane. The teacher's definition and the

student's definition of the task might be totally different. In addi-

tion, the definition of the task might change for any of the partici-

pants across the course of instruction. (Bauersfeld, 1979). Inter-

subjectivity, or a shared task/situation definition, is developed

through communication and negotiation of meaning. The communication

takes place on two levels; communication about classroom processes and

routines, and communication about mathematical content. Bauersfeld

(1979) points out that mathematicians have invested much effort in pro-

ducing universal statements, and most school mathematicians would claim

any mathematical statement as universal and objective. However, math-

ematical meaning is developed in the context of social interaction, and

"it inescapably becomes dependent upon interpretive, indexical, and re-

flexive constitution of meanisks" (Bauersfeld, 1979).

Articles by Bauersfeld (1979), Bishop (1985) and Campbell (1986) suggest

ways of using discourse analysis as a means of examining the development

of mathematical cognition. Bishop (1985) suggests a new orientation for

viewing social interaction in mathematics classrooms. He suggests that

mathematics teaching be viewed as controlling the organization and dy-

namics of the classroom for the purposes of sharing and developing math-

ematical meaning -- knowledge which connects with the individual's cur-

rent knowledge about mathematics, knowledge about other subjects, and

knowledge about the real world. His analysis focuses on three aspects

of the classrooms Omathematical activities, focusing on the learner's

involvement with mathematics; 2) communication, emphasising the process

and product of shared meanings; and 3) negotiation, focusing on the non-

symmetry of the teacher /student relationship in the development of

shared meaning.

As a prerequisite to communication, participants have to share common

understandings, which they take as a basis for reference when speaking

to each other. What a participant says not only carries the intended

message, but over and above that, the utterances contain information
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about understanding of the topic, interpretation of the situation, and

expectations of what others might know (Bauersfeld, 1979). "The stu-

dent's reconstruction of mathematical meaning is a construction via

social negotiation about what is meant and about which performance of

meaning gets the teacher's (or the peers') sanction." Negotiation is

goal-directed interaction, in which the participants each seek to attain

their respective goals. Negotiation includes the working out of both

the rules of procedure in the classroom and the construction of a way

of knowing, which the teacher is trying to develop in the students

through his/her greater mathematical knowledge. This construct catches

the imbalance implicit in the teaching/learning situation (Bishop,

1985).

Bauersfeld (1979) reanalyzed a portion of a dissertation by Shirk to

demonstrate the process of negotiation of mathematical meaning and

to demonstrate major shifts in student-teacher interpretation of the

situation definition during a lesson on the use of slide arrows in

motion geometry. Bauersfeld presents 116 lines of transcript, which

he divides into four parts. In each of the sections, the teacher's de-

finition of the task differs from the students' definition. In addi-

tion, the task definition of both the teacher and the students change

across the four segments of instruction. Included in the analysis

are the changing meaning of "slide arrow" for the students across the

course of instruction.

Campbell (1986) suggests specific points of the discourse to examine

to gain insight into student learning of mathematical concepts. He

analyzes a lesson on set sentences and number sentences in a fifth

grade classroom in the Phillipines. He uses the metaphor "going for

the answer" to examine the manner in which the teacher and students

collaborated to produce correct answers to the teacher's questions.

He segmented the lesson into a series of "question on the floor" and

associated "answer-established" pairs. From this he was able to illus-

trate, with examples,from the transcript, how the teacher used cor-

rections, prompts, and hints to help the children build definitions

to "set sentence" and "number sentence."

These three articles demonstrate the usefulness of discourse analysis

in examining teacher-student interaction in mathematics classes. This,

in turn, will help us gain insight into the way mathematical meaning
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is socially constructed in mathematics classes.
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THE MATHEMATICAL LEARNING HISTORY OF PRE-SERVICE TEACHERS

Erika Kuendiger

University of Windsor

Summary.Pre-service teachers from two consecutive
academic years were investigated. Consistently in

both samples it was found that future primary/junior
teachers evaluate their own former achievement in

mathematics as lower, have a less favourable causal
attribution pattern for their achievement and accor-

dingly are less confident in teaching mathematics
than preservice teachers who intend to teach math at
the junior/intermediate or intermediate/senior level.
Differences in attributing failure in teaching were
not found to be equally consistent. Moreover, gender
differences for teachers of the latter divisions were
investigated.

Motivation theory , based on attributions, provides a basis
for understanding how former and future achievement are

interlinked and how the achievement motive of a student
develops. A summary of relevant research results

demonstrating how motivation directs the learning process

in general is provided by Alderman et al. (1985). A

detailed description of the impact of a specific math-

related achievement motive can be found in Schildkamp-
Kuendiger (1982).

Yet little is known about;
a) teachers' mathematical learning history; that

is, their evaluation of their own math achievement and
its causal attribution; and

b) the relationship of this history to their confidence in
teaching mathematics, and about the causal
attribution they call in when their teaching is not
successful.

The impact of what has been called the mathematical
learning history on teaching-related performance seems to

be of particular interest at the beginning of a teacher's

career, that is, it the pre-service level. Pre-service
teachers' perceptions about their own former achievement
are well established as they are based on extensive
experience. Applying motivation theory, it seems reasonable
to assume that this body of experience forms a motivational
set that has a high impact on their perceptions related to

the successful teaching of mathematics.
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It is generally the case in teaching that some students
probably will not reach the objectives set by even the most
successful teacher. The students' failure to reach these
objectives provides the teacher with relative failure
experiences. In a situation where one learns how to teach,
the interpretation of these failure experiences is crucial
for the development of the teaching-related self-esteem ..

a) The impact of the variable " divisions chosen by
pre-service teacher"

Eccles (1986) points out that occupational choices are
based on a positive attraction to a profession.

The students in this study, whether male or female , who
decided to .become Junior/interaediate or interme-
diate/senior mathematics teachers (j/i/s teachers) made a
positive choice for mathematics. This is not, however, the
case for primary/junior (p/j) teachers, aS mathematics is
only one of the many subjects they have to teach. These
considerations are in line with those of Aiken (1976), who
reports that future secondary mathematics teachers have
more positive attitudes towards mathematics than primary
teachers.

Looking at these pre-service teachers as former learners of
mathematics, it is assumed that the j/i/s teachers have a
more positive learning history than the group of p/S
teachers. More positive learning history means beret former
mathematical achievement is perceived as relatively high,
few reasons are called in to explain this achievement and
the achievement is mostly attributed to ability and effort.
Less positive learning history means : former achievement
is perceived as lower , more reasons are called in for
explanation; amongst which are external reasons and lack of
ability.

No reseach results could be found that relate teachers'
learning history to their perceived success in teaching.
The line of reasoning outlined above leads to the following
hypothesise

Hypothesis

The two groups of pre-service teachers described earlier
differ in respect to their mathematical learning history,
in the direction outlined above. Accordingly these two
groups of teachers differ as to their perceived success in
teaching mathematics and their attribution of failure in
teaching in the direction that p/j teachers are less
confident and call in more reasons to explain failure in
teaching.
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b) The impact of the variable " gender of pre-service
student"

The research of Eccles (1986) clearly indicates that
because of sex - role stereotyping, women generally are not
attracted to professions in which mathematics plays an
important part.

The women in this study who explicitly chose to teach math
obviously constitute a highly selective group that did not
follow the general trend. Therefore one might assume that
female J/i/s teachers have an even more positive learning
history than their male peers. On the other hand, research
studies focussing on attributions have revealed that sex-
role perceptions mediate the attribution of academic
achievement in general and that of mathematics in particu-
lar:, the direction of this mediation being unfavourable
for women (see e.g. Hansen and O'Leary 1985)Schildkamp-
kuendiger 1982). As no related research results could be
found , no directed hypotheses will be formulated. Rather
the following research question will be investigated:

Research Question

Does this selection process evoke that female i /i /s

students differ from their male colleagues as to the
variables considered here ?

Since in the sample considered in this research there were
very few male students enrolled in the p/j division a com-
parable question for this division cannot be investigated.

Sample and Procedure

Subjects of this study are all students enrolled in the
pre-service programme at the University of Windsor.
and who
a) either had chosen to become primary/junior (K-6)

teachers; referred to as p/j teachers ( math education
is a compulsory class for these students) or

b) had chosen to qualify to teach mathematics at the
junior/intermediate (4-8) or intermediate/senior (7-13)
level, referred to as j/i/s teachers (math education
class is an optional choice of these students).

The pre-service programme is a one year programme. Data
were gathered twice; at the end of the academic years
1984/85 and 1985/86 when students had gained the most
experience possible in teaching mathematics,

Sample sizes:
1984/85 p/j

j/i/s
1985/86 p/j

j/i/s

teachers; 111 (96
teachers: 61 (36
teachers: 98 (84
teachers: 58 (35

female. 15 male)
female, 25 male)
female, 14 male)
female, 23 male)
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Relevant information was gathered via a questionnaire, in

which subjects were asked to make Judgements on 3 point
scales. The questionnaire contains sub-questionnaires
developed in other studies that were slightly modified to
fit the purpose of this research; these are:

a) Attribution of former mathematical achievement ;

a questionnaire developed by Kuendiger , referred to in

Schildkamp-Kuendiger 1980; this questionnaire was chosen
as it has the advantage of having been developed from the
reasons students actually call in for the kind of achieve-
ment considered in this research study. For further discus-
sion of this issue see Hansen and O'Leary (1985,p.74).

b) Perceived reasons for failure in teaching mathematics;
a questionnaire from the Second International Mathematics
Study (part of the Teacher General Classroom Processes
Questionnaire).
To investigate the above formulated hypothesis and the

research question Chit tests on the item level were done
with a significant level of 5/. two-sided.
In the graphs showing the results, arithmetic means are

used to characterise the distributions.
Data were analysed seperately for each academic year to

inspect whether or not results were consistent over time.

Results and Conclusions

a) The impact of the variable "divisions chosen by pre-

service teacher"

Graph 1 and 2 display the results for the 1984/85 sample.
Significant results of the 1984/85 sample are added; all

differences of this latter sample go in the same directions
as those of the 1984/85 sample'

In agreement with the above formulated hypothesis p/i pre-
service teachers as a group have a less favourable learning

history than i /i /s pre-service teachers in both samples
accordingly the former group feels less confident in

teaching mathematics. As to the reasons that are called in
for students not mating satisfactory progress in

mathematics, differences between the two groups are more
distinct for the 1985/86 sample. Yet, if they accur they go

in the expected direction, that is p/i teachers call in

more reasons.

Future research is planned to identify more precisely the

subgroup of p/i teachers who enters the teaching profession

with a negative motivational set, and to investigate in

what way lack of confidence in teaching mathematics mode-

rates actual teaching. Findings will provide the basis for
an intervention programme intending to establish a positive
motivational set related to the mathematics, teachers will

have to teach, in contrast to mathematics in general.
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b) The impact of the variable "gender of pre-service

teacher"

Although the whcle group of J/i/s teachers remembers its

math achievement Curing schooldays as above average, this

is even more true for the female teachers ( p < 0.05) in

both samples. Moreover, female teachers of the 1984/85

sample evaluate their math ability and good teachers'

explanations as more relevant a reason for their

achievement than do male teachers ( p < 0.05) ; whereas

lack of effort is perceived as less a reason by female

teachers (p < 0.05 ).
In the 1985/86 sample female teachers attributed their

achievement significantly more often to good teacher's

explanation and to help by others.
Overall,these results only partly indicate that female

J/i/s pre-service teachers have a somewhat more positive

learning history than their male peers. Further research is

needed to get a clearer picture of attributional
differences between these two groups.
Finally, in both samples there is another rather unexpected

significant difference between male and female j/i/s

teachers :when it comes to explaining why their pupils did

not make satisfactory progress female teachers perceive

insufficient proficiency on their part to be more relevant

a reason (p<0.05), although both groups are equally

confident to teach mathematics.
It is intended to further investigate the implications of

this finding.
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INFINITY CONCEPTS AMONG PRESERVICE ELEMENTARY SCHOOL TEACHERS

W. Gary Martin and Margarieto Montague Wheeler

Northern Illinois University

ABSTRACT

Because concepts of infinity held by preadolescent students
are resistant to the effect of schooling and are contextually
sensitive, there are two objectives for this research. First,
infinity concepts held by preserving teachers, who may even-
tually teach infinity concepts, are described along three
dimensions: arithmetic-geometric, convergent-divergent, and
cardinal - Limit. Second, the stability of concepts of infi-
nity along the dimensions is systematically explored. To
meet these objectives, an interview-based research model was
developed to randomly assign clusters of tasks crossing the
three dimensions to 48 subjects, optimizing comparisons along
each of the three dimensions. Many teachers provided
responses which were finite in nature. In each task, over
502 of the responses reflected incomplete concepts of
infinity. Tescbers infinity concepts were not stable, with
inconsistency of responses exceeding 451 in each dimension.

The mathematical concept of infinity contradicts personal exper-

ience, which is nec ly finite. Research, most of which has been

reported within the last twenty years, has revealed various aspects of

infinity held by elementary and junior high school students.

Preschool and young elementary school children show intuitions of

infinity when the questions are incorporated into a competitive game

setting or are phrased as: "Is there biggest number?", "Can you

name a bigger number?", "Can you count forever?", "Can you

successively halve a segment?", "Can you draw dote forever?" (Falk,

et. al., 1986; Gelman, 1980; Langford, 1974; Piaget 4 Inhelder, 1949).

Evans (1984) showed that children in the primary grades had knowledge

of infinity, including recognition that there is no largest number.

Fischbein, Tirosh and Hess (1979) found that older children, starting

about age 11, have intuitions of infinity that are extremely sensitive

to the conceptual and figural context of the problem posed. Langford

(1974) found children able to conceive of indefinite iteration of

addition, subtraction, and multiplication about age 9, but not until

age 13 could students conceive of indefinite iteration of division.

It is interesting that the development of infinity concepts arises

independent of formal schooling (Gelman, 1980; Evans, 1984), yet

appears resistant to the effect of schooling (Fischbein, Tirosh, 4

Hess, 1979). Intuitive notions of infinity seem to cluster in
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developmental levels (Falk et. al., 1986, Gelman, 1980; Langford,

1974; Piaget i Inhelder, 1949) but do not expand to increasingly

abstract and formal concepts through the process of schooling. One

reason say lie with the concepts of infinity as developed through

instruction. The relationship between instruction and students' con-

cepts are unclear when increasingly sophisticated conceptual schema

are considered. If, however, a teacher's schema are incomplete or

inconsistent, concerns exist about the teacher's own students develop-

ing increasingly abstract mathematical concepts. The primary objec-

tive of this research is to examine the infinity concepts held by

preservice elementary school teachers.

Previous infinity research has been neither comparative nor broad

in range. Researchers have tended to focus on either an artihmetic

context (e.g., Evans, 1984, Langford, 1974) or a geometric context

(e.g., Fischboin, Tirosch, 4 Hess, 1979). They have not compared and

contrasted the commonality of such contexts. Little attention has

been given to differences in infinity ueed in both divergent and

couvergent contexts: the unboundednesa of the whole numbers versus

the bounded intervals of fractional numbers, or lines versus line

segments. Infinity used in a cardinal sense has not been contrasted

with infinity used in a limit context. A secondary objective of this

research is to compare and contrast behaviors within and across these

domains: arithmetic versus geometric, bounded versus unbounded, and

cardinal versus limiting processes.

METHOD

Three dimensions, arithmetic-geometric, convergent-divergent, and

cardinal-limit, were crossed to generate eight (2x2x2) tasks: ACC,

GCC, ACL, GCL, ADC, CDC, AIM, and GDL. The shaded cell in the figure

identifies Arithmetic-Convergent-Cardinal task named by the ordered

triple ACC. For each task, three subtasks were systematically devel-

oped in order to examine the consistency of response within a particu-

lar task. These were baseline subtask and two systematic varia-

tions. The first variation was additive in nature whereas the second

Converqvo

Divergent
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variation was multiplicative. The three constructive subtauks of the

ACC task as printed in the protocol are as follows:

Let's construct Set S,
Writ( the number 8, the first element of the set.
Multi.ly the element by 1/2. Include the product in the set.
Multiply that product by 1/2. Include it in the set.
Consider Set S. with all such numbers.
Describe Set S.

Let's construct Set T.
Write the number 64, the first element of the set.
Multiply the element by 1/2. Include the product in the set.
Multiply that product by 1/2. Include it in the set.
Consider Set T, with all such numbers.
Describe Set T.

Let's construct Set U.
Write the number 8, the first element of the net.
Multiply the element by 1/8. Include the product in the set.
Multiply that product by 1/8. Include it in the set.
Consider Set U, with all such numbers.
Describe Set U.

A set of questions for each auhtesk was pre:,:ited so that

responses to questions concerning the baseline subtask could be

contrasted by the subject to the other two subtask.. For each subtask

of the ACC task, the subject was asked "How many elements are in the

set?" Subsequently, the subject was asked to think about the elements

in Set S and Set T (also Set S and Set U) and to identify the set

which has more elements or if one set ham as many elements as the

other. Each response was probed by the interviewer.

With the ACL task, the three subtask settings were identical but

the questions varied. "What is the smallest element in the set?" was

a common question for each subtask. Similar to the ACC task, the

subject was subsequently asked to consider Set S and Set T (also Set S

and Set U) and to identify the set with the smallest element or if the

sets have the same smallest element.

For testing purposes, eight task-clusters were developed. Each

tank-cluster wee formed by clustering a task with the three tasks

differing from it along a single dimenoion. For example, a teak-

cluster was formed by clustering the ACC task with the CCC, ADC, and

the ACL tasks and the CCC task was clustered with the ACC, CDC, and

GCL teaks. When the eight task-clusters are considered collectively,

each task appears in four different clusters and each singular compar-

ison appears in two clusters. This design optimizes singular con-

trasts along the three dimensions.

From approximately 120 advanced undergraduates enrolled in a

methods course for the teaching of elementary school mathematics, a

pool of volunteers was solicited. Forty-eight subjects were randomly

selected from the pool. Six students were randomly assigned to each
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tesk-cluster,, Subj, is were individually. intwriewed by one of the two

investigators usir- the protocols appropuiste Uor the tasks Ic.thin

particular cluster. , -e opler of presentatifa 4C the tasks wthin

cluster van random. Vol. each rubtask within a task-clutter, 4 printed

description of the setting was cotrurrently awie available to the

subject while the interviewer read rAotad th description. The ques-

tions, presented only in oral form, warn prw:ibed by the prztocD1.

During the 30-45 minute interview eass.ve, ondio-record iugs And

interviewer's notes were wads. Complete tr. rcripts were propsrad from

the notes and recordings.

IMMO AND C0NCLUfilila3

Analysis of the data proceeded in two stage's, torresponding to

the two major objectives of the investigation. In (he first stip, *a

overview of infinity concepts of presewvies ulenontary school teachers

was sought. To this end, response. to each taut. were categorised; the

categories and results are summarised in Table 1. Oix categories were

used to describe responses: finite, four claims cv! infinite, and

uncategorixod. The finite categorisation includes responees in which

specific number. were employed or in which in unopmeafied sunhat. is

indicated (e.g., "very small" or "a lot").

The tour infinite categorizations include reepolmes in which tae

terms "infinite" or "infinity" were explicitly used. Also included

are responses rhich indirectly evoke the concept. Iv the cardinal

context, these responses included "goes on and on" or "unending";

whereas in the context of limits, the responses include "you can't say

(which is largest!" and "there isn't Ea largest element) ". The four

infinite categorisations are differentiated from each other based ou

responses to the comparison subtasks. In lagjatize.,. neitheg emit, the

subject indicated that both comparison subtasks disagreed either in

number (cardinality teaks) or in limit (limit tasks) with the baseline

aubtask. In the ini bite. hgral Attu category, the subject stated

that both of the comparisons agree with the baseline. In the

IathuWWIL.IMULtiALUAL category, the two comparisons receive unlike

responses. In the infinite, mut tall category, when asked to

compare the eubtaske the subject stated Chet one "can't tell".

Finally, Ungnteghtigna task responses include responses which did not

fit into any of the other categories.

Several observations based on the data in Table 1 are important.

In only one task (CCU are more than 501 of the responses categorised

as finite. Moreover, when summing the percentages of the four categor-

ies judged infinite, the remaining tasks have rates of infinite

responses of over 501. It appears that while the majority of the

students have some concept of infinity in many task settings, finite

responses continue to occur with sone frequency. Further, three of

the four convergent tasks had rates of finite responses of over 201,

while no divergent task bad a rate of finite categorisations I5Z.
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Table 1.

Percentaze a litAk2ablk ax Teak

Categorization

Task

agjk Szl2L QaC. Ggla ARC. au au. AU

a 22 21 22 25 23 23 23 23

Finite 14 0 36 56 9 0 13 22

Infinite

Neither agrees 23 5 5 0 43 0 22 0

Inconsistent 23 14 18 8 17 9 35 9

both agree 23 43 36 16 17 57 26 39

Cannot compare 9 19 0 16 8 35 4 26

Not categorized 9 19 5 4 4 0 0 4

Table 2.

EaLacatataa gj Agreement at. Remnant' 12 Ulla..

Wir lasiralims.

Level of agreement

Dimension Consistent Lutonsistent H21 gialliiiii

a

Cardinal-Limits 41 14 61 5

Convergent-Divergent 42 50 45 5

Arithmetic-Geometric 45 44 49 7
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Thus, the convergent setting seems less conducive to use of the

infinity concept than the divergent setting.

Responses in each of the first three categories (Finite,

iternea. and Winite inconsistent) of Table I

are not adequate for any of the tasks settings. Summing the percent-

ages across these categories, five of the eight tasks (GDC, GCC, CCL,

ADC, and ACC) have
inappropriate response rates above 50%. Thus, many

subjects appear still to have an incomplete concept of infinity. All

of the Cardinal tasks have rates of inappropriate
responses above 50%,

while only one of the four limit tasks is over 50% inappropriate. It

thus appears that comparing limits of infinite seta may be easier than

comparing the cardinslity of such sets.

In the second stage of the data analysis, behaviors were compared

along the Arithmetic-Geometric,
Convergent-Divergent, and Cardinal-

Limit dimensions. To accomplish this, a subject's categorizations on

each pair of tasks
singularly differing along a given dimension were

compared. For example, to explore
differences along the Arithmetic-

Geometric dimension, responses to the following pairs were compared:

CDC - ADC, GDL - ADL, GCC - ACC, and GCL - ACL. A subject receiving

the same categorization
for both tasks, was judged Consistent. If the

categorizations differed, the subject was judged Inconsistent. If

either or both of the tasks were not categorized, the subject was Not

classified. Results are summarized in Table 2.

In each of the three
dimensions at least 45% of the responses

were inconsistent.
This suggests that the

conceptions of infinity are

context-dependent; the subjects do not have a generalizable notion of

infinite. The percentage of
inconsistent responses was greatest in

the Cardinal-Limit
dimension, while percentages of inconsistent

responses were nearly
balanced in the other two dimensions. This sug-

gests that subjects are
more likely to be inconsistent between

cardinal and limit settings.

Prospective elementary
teachers have difficulty wit.. ..ne concept

of infinity. Some do not recognize infinite situations as being

infinte. Many have incomplete
conceptions of infinity in various

settings. Their conceptions of
infinity seemed frequently to be

inconsistent when an arithmetic context is contrasted with a geometric

context, when a convergent context is contrasted with a divergent

content, and when a context
involving cardinality is

contrasted with a

context involving limits. The deficiencies in the conceptions of

infinity of these prospective teachers suggest
that they will not have

the knowledge necessary to develop and deliver effective instruction

on the infinity concept. If such deficiencies exist among practicing

elementary teachers, a partial explanation of the inefficacy of

schooling in developing children's conceptions of infinity may have

been identified. These results suggest
that teacher education pro-

grama should devote more
attention to the concept of infinity. In

particular, care should be taken to discuss the concept of infinity in

a variety of contexts:
Highlighting the similarities between contexts
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may prove useful in extending the generalisability and richness oftheir infinity concepts. In ,his way teachers may develop in their
future students broader conceptions of infinity.
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INTERVENTIONS TO CORRECT PRESERVICE TEACHERS'
MISCONCEPTIONS ABOUT THE OPERATION OF DIVISION

by

Chaim Tirosh
University of Tel Aviv

Dine Tirosh
University of Tel ,Iviv

Anna 0. Graeber
University of Maryland

James W. Wilson
University of Georgia

In this study, 32 out of 59 preservice elementary
teachers experienced difficulties in solving division
word problems with the divisor greater than the divi-
dend, Two interactive computer instructional pro-
grams, a tutorial program and a drill and practice
program, were developed to increase the preservice
teachers' awareness of the source of their difficulties
and to help them improve their performance on these
problems. Half of the 32 preservice teachers worked
with each program. After working with the programs,
the performance of 25 preservice teachers in solving
division word problems improved. Only the tutorial
program, however, was effective in increasing the
preservice teachers'awareness of their tendency to
reverse the roles of the divisor and the dividend.

Arithmetic operations are central to the mathematics curriculum

of all countries. A relational understanding of arithmetic operations

- based on conceptual and operational connections - is essential to

avoid misconceptions. Misconceptions, once learned, may be difficult

to overcome. An understanding, based on constructs and relationships,

of arithmetic operations is likely to facilitate students' transition

to new material such as extending their conceptions from the domain of

whole numbers to the domain of rational numbers.

Studies by Greer and Mangan (1986), Tirosh, Graeber & Glover

(1986) have indicated' that a substantial portion of preservice

elementary teachers have difficulties in solving division word

problems with divisor greater than the dividend. The main purpose of

this study is to better understand this particular misconception

among preservice elementary teachers. Prototypic instructional

computer programa were written to implement strategies to help
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preservice elesentary teachers (a) to become aware of their tendency

to reverse the role of the divisor and the dividend in solving

division word problems with the divisor greater than the dividend, and

(b) to improve their performance in solving division word problems.

PERSPECTIVE

A considerable body of research now exists on children's and

adolescents' erroneous beliefs about the operation of division. One

moat widespread misconception is that the divisor must be less than

the dividend (Hart, 1981; Bell, 1982; Bell, Fischbein & Swan, 1984).

Due to this misconception, children and adolescents are faced with

difficulties in solving division problems with divisor greater than

the dividend. Tiroah, Graeber,and Glover (1986) found that preservice

elementary teacheri held this misconception. Many of them

reversed the role of the divisor and the dividend in problems with a

whole number divisor greater than a whole number dividend.

Several of strategies have been used to help children and

adolescents improve their performance in solving word problems. These

strategies include use of diagrams, estimation of answers, and

substitutions, of simpler numbers (Bell, Swan & Taylor, 1981).

Previous interviews with preservice teachers indicated that the

majority of them accepted diagrams and estimations as appropriate

strategies. The authors decided to implement the diagrams and the

estimation strategies in an interactive computer instructional program

designed to increase the preaervice teachers awareness of their

tendency to reverse the role of the divisor and the dividend to

improve their performance in solving division problems.

A second computer instructional program, developed for this

study, implemented a drill and practice mode with immediate feedback.

This program provides the students with immediate feedback as to whether

their responses are right or wrong and with opportunities to correct

wrong answers.

METHOD

Subjects

The subjects were selected from 59 college students enrolled in

sections of a mathematics content course or a methods course for early
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elementary education majors at the University of Georgia during the

Spring Quarter 1986.

Instruments

I. Writing Expressions for Word Problems. This test included

21 word problems( 13 division, 4 multiplication, 1 addition and 2

subtraction). Six of the division word problems had a divisor greater

than the dividend. The remaining 7 division problems had a dividend

greater than the divisor.

The 13 division items were interspersed with the other 8 problems

to reduce the likelihood that correct answers would result from

guessing. The students were instructed to write an expression that

would lead to the solution of each problem.

2. Beliefs about Division. Students were presented with

statements about multiplication and division. One of these statements

was: "In division problems, the divisor can be larger than the

dividend". The preservice teachers were asked to determine whether the

statements were true or false and to defend their answers.

3. Tu?21-ing Computer Program. This program includes eight

division word problem, four problems with a divisor greater than the

dividend and four problems that have divisors smaller than the

dividend. Three distinct sets of cues were available for each of these

problems: (a) diagrams that illustrate the word problems, (b)

estimation of the quotients, and (c) completion of statement about the

size of the the divisor and the dividend. The preservice teachers

received these cues in the above order. The sequence of cues was

terminated when the student gave a correct response and indicated with

cnrtainty that the answer was correct. If the student finished the set

of cues without giving a correct response, a correct response and

rationale was provided. After completing the work on each of the four

problems with the divisor greater than the dividend, the student was

shown a statement about the relative size of the dividend, divisor,

and the quotient.

4. The Drill and Practice Computer Program. This computer

program includes the same problems used in the tutorial program. The

student has three opportunities to answer each problem. Afte, each

trial the student gets an immediate response as to the correctness of

the answer. If the student gave incorrect answers in each of the

three trials, the correct response was provided.
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Procedure

At the beginning of an acedesic quarter, the preservice teachers

completed the first two instruments. Preservice teachers who reversed

Rho role of the divisor and the dividend in their answers to at least

two of the division word problems with the divisor greater than the

dividend were assigned to use one of the computer programa in the

instructional stage. A short interview was conducted by one researcher

immediately after the preservice teachers worked with the computer.

Three weeks after working with the computers, the preservice

teachers that participated in the instructional stage were given two

instruments similar, but not identical, to the instruments given to

them before instruction.

RESULTS

Thirty-two of the 59 preservice teachers (54%) reversed the role

of the divisor and the dividend in their answers to at least two out

of the siz division problems with the divisor greater than the

dividend. half of these 32 students used the tutorial program; the

other half used the drill and practice program.

In the tutorial group, only one of the 16 preservice teachers

correctly completed the four problems with the divisor greater than

the dividend without using any of the assisting cues. Four of the 16

used the disarm in answering at least one of the problems, seven

required the diagram and the estimation cues, and four all three

cues (diagram., estimation, and completion questions). Eleven of the

preservice teachers reported, immediately after working with the

tutorial program, that the technique of estimating was the most

helpful to them. In the drill and practice group, only one of the 16

students correctly completed all four of the problems with the divisor

greater than the dividend on the first attempt, eight wrote

appropriate expressions using not more than two attempts, and three

needed no more than three attempts. Four students failed to give a

correct answer to at least one of the four problems after the three

attempts allowed by the program. Thus most of the students in both the

tutorial and the drill and practice groups were able to respond

correctly to division problems when assistance was available.

In an interview with each of the preservice teachers immediately

after their work on the computer 10 of the 16 students in the tutorial
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group recognized they had a tendency to reverse the roles of the

divisor and the dividend. Only four of the 16 students in the drill

and practice group, however, became aware of this tendency. Moat of

the students in the drill group argued that they were assigned to

"work with the computer" because they made "careless mistakes" on the

pretest. Moreover, three weeks after instruction all the students from

the tutorial group gave a correct response to the statement about the

relative size of the divisor and the dividend whereas two students from

the drill group still claimed incorrectly that the dividend must always

be greater than the divisor.

Table 1 and 2 show that before instruction the preservice

teachers performance on these division word problems was rather low.

It was found that only 42 percent of the preservice teachers in the

tutorial group and 41 percent in the drill group wrote appropriate

expressions to the division word problems. After instruction,

however, 70 percent of the preservice teachers wrote appropriate

expressions. The number of reversed answers decreased from 44 to 23 in

the tutorial group and from 41 to 18 in the drill group.

The difference in performance between the tutorial and the drill

groups after instruction is rather small. Both of the computer programs

helped the students write appropriate expressions for division word problems.

DISCUSSION AND IMPLICATIONS

The results show that both the tutorial and the drill and practice

programs proved to be effective in improving students' performance in

writing expressions for division word problems. The frequency of reversed

expressions to these problems decreased by half. The potential of computer

instruction programs such as these with children and adolescents and the

lasting effects of such interventions needs to be investigated.

Preservice teachers that used the tutorial program were exposed

to appropriate strategies of solving division word problems such as

drawing diagrams and estimation of the answers. The majority of them

identified the strategy of estimating answers, which provided the

students with a means of checking their answers, as the one that was

most helpful to them in monitoring their work. The estimation strategy

may be useful for helping children and adolescents as well as preservice

elementary teachers overcome other misconceptions about the arithmetic

operations and for improving their performance in solving word problems.
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teachers with strategies for solving problems. Immediate feedback, and

the opportunity to try different solutions to the problems, helped the

preservice teachers improve their performance. Further research on

the effects of feedback in computer instructional programs is warranted.

We need to understand more about the processes students may generate

in such situations in order to correctly perform division problems.

The tutorial program was effective in helping preservice teachers

become aware of their tendency to reverse the role of divisor and divi-

dend. After working with the computer programs, the majority of the

students assigned to the tutorial program were aware of the impact that

their tendency to reverse the role of the dividend and the divisor had on

their performance. Only 25 percent of the students assigned to the drill

and practice program, however, were able to describe their misconceptions.

The influence of awareness of misconceptions on students' understanding

and performance on problems division needs to be investigated.

Today's preservice teachers are tomorrow's teachers. It is

crucial that they become aware of and and develop strategies to

overcome their misconceptions about the operation of division and

about other arithmetic operations.
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ALTERATION or DIDACTIC CONTRACT IN CODIDACTIC SITUATION

Groups de Recherche our l'Enseignement Superiwur:
Daniel ALIBERT (Institut Fourier(UA CNRS) et J E.de Didactique) ,

Marc MAW, Francois. RICHARD ( Juan. £quipe AIRS di Didactique
dee Nithematiques at d. l'Informatique) .Univereit* Grenoble I.

Repave an anglais de Daniel Alibert

Formalism and lack of functionality of proofs are

frequently observed in the first year student's

mathematical productions at University: mathematics

aren't acknowledged an a acientifio subject playing a
rasp in the understanding of reality.
Scientific process itself seems not to be an

interesting learning subject to deal with.

Facing this problem, we set, within a definite

theoretical framework, an experimental teaching method

for mathamatios whose characters (uncertainty,

scientific debate among studente, emphasis laid on
epistemology-) presuppose an important alteration of
the didactic contract.
This alteration produces changes in the student's

relation with mathematical knowledge and laarning.Wa

analyze these alterations through obaervatione of

lectures and student's answers to questionnaires.

S11 tjcae et cadre thioriwenaral. .

Las productions mathematiques d'un grand nambre d'etudiants

entrant A l'Universite pour y suivre des itudea ecientifiquen

longue' consistent en teztee cu en dieooure vivant a reproduire la

forme du &scours de l'onesignant sans quo le control. de la

signification soit ressenti acme primordial: mouvent le syntaxique

prend ainni in pan our In eemantique. On observe par example

([7]), un contain inauffisant our le rsate d'un developpement

limite ( "il tend vers zero oe qui vide de eons la partie

principals; netts difficult* eat en particulier un obstacle

important A la maitrie. de la mien en equation par lea

diffirentielles ([7]).
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Una antra observation est le dtEr;.nterit temoigne pax boaucoup

d'atudianto vis-e-via de is prows en general: vue comma un

axeroica de style props. A l'notivite de l'enssignant, qu'il faut

navoir reproduire devout lui sans en reorentir la nyaessite

profonde, lea problems qu'elle vise A resoudre n'ont en general

pas fait l'objet dune veritable devolution par l'enoeignant, ni

dune appropriation par l'etudiant.

Chas ass etudiante entreprenant des etudes scientifiquea

universitaires, de tells. coustatations montrent quo le.

mathematiquas no soot pas recomnuse acme une discipline

soientifique parmettant, moms d'autres disciplines (sciences

physiques par exempla ), la resolution de certain. problems., it an

liaison avea cllaa, une certain. apprehension du reel: en

partioulier on pout constater un vide epiatemologique quasi-total .

Lo reponse aux problems poses par oes observations, non.

avons devolopp6 une experimmntation d'enseignamant den

mathimatiquen an premiere annee 41.1nivarsite (Doug Al) einserant

dams lo cadre theorique forme par les hypotheses cognitive. at

didactiqueo generale. suivante.:

-lea itudiants aonstruisent lours propres conaninsanoas dons

an Jen di dasAquilibra ht de reAquilibre dans lequel interviennent

tons les oanatituauts du milieu +nivel ils cont aonfrantia avoir
mithimmtiqn., problems., maitre, antra. Atudiants.((6),[3]).

-Ces nonnaiasanoes soma d'autant plus stables at

susceptible. d'un reinvestiosement performant qu'elles auront 6t6

Atablies, at utiliadits, dans plusieur. cadre. do oonaeptualispation

entre lesquels una oommuniontion oat possible (OH.
-4n as qui concerns l'apparition de In necaositi de in prowls

pour le. andiants, nous nous nil/anyone our lee travaux de

M.Bnlocheff ((2]) pour etudier en quoi les situations mines an

place font favorable. A aette apparition.

Nous considerona d'autre part, pour les Atudianta an soolarita

post-obligatoire an mains, Tenn veratable apprentissage

mathematique dans am dimension maientifique goner/as panne par la

constitution dune epintemologie den notions abordike.
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Cs system, d'enseipment, qui a ate experinsnte depuis trois

any A l'Universite d. Grenoble dans une section duns contains

d'etudiants a pour principal.. oaracteristiques les suivantes:

1) de grand.. plaqm d'inoertitude sort menage.. A l'interieur

dm reassignment, incertitude inetitutioncalisee par le recours

aux *nonce. explieitement aonjeoturaux, dont in validation, it

scuvent la production aim, *et amain. A IA collsotivite des

etudiants:

En soffit noun pennons quo 111 fonotionnalite de IA promo. ne

pout apparaltre reellament quo dans uus situation al l'incertitude

constitue une variabl. fondamentale.

21Lee arguments di prouve apportes par cheque itudiant no Is

Sant pas dans une demarche s'adressant A l'onseignant, main dam

une situation da What Soientifique entre pairs, le. etudiants

eux-seines:

Nous Loons 'Ste mends it distinguer tree nettesent intr. les

argussantations de promos "pour convaincre" un interlocuteur dont on

mit qu'il no poised. pas la connaisomm vise., oonne comaismance

inatitutionnelle, it los argumentation. de preuvo "pour adherer" A

is oonviotion dune perfume possidant prealablemnt netts

ounnalemanoe (ioi l'enseismant). Cott. distinotion est is base do

La desoription theoriqus ilaboree a posteriori, sous le nom de

"situation mdidactique" : it s'agit dune situation dans 'arming

un itudiant souhaite convainore la collectivite des 'sutras

etudiants de La validitd duns ommissance qu'il poised., sachant

qua sem camarades ne poised/Int pa. netts comaissanas. Ceux -ci, de

lour cote, savant qu'il leaqit d'un savoir non institutional A

examiner. La situation oodidaotique set du type decrit par

11.8.1aoheff came potentiellement capable d'amener A l'essrqeme de

contradictions it & la production do prow....

3)L'introduction de certain. °utile nathematiques nouveaux

(integral, par sample) est organises de tells sorts qu'ils

apparaissent comma umessaires A ii resolution de problems.

'maple:es, souvent de Science. Physiques. Cette nocessiti est

readve mnifeste per l'inpossibilite all se trouvent 1. etudiants

de risoudre dam situations -problems's, par &insure trio concretes,

our languid. ilm peuvent avoir un certain contrail' ((5)). La

complexite dam problems. A resoudrs servira par la suit. de

justifioation A Itinportant effort thacrique qui sera commti pour

etablir les principals proprintes de l'outil conatruit.
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A travers mitts construction d'un outil nouveau, noun pennons

quo l'etudiant purrs se constituer une dpistimologie vgetabl. du

conoept

Ca partioulier nous avomm choiai de repousser longtemps

l'introduction d'algorittmes parforsants (calcule de priaitives

ici) pour meaner la ponoihilite de in ralexion in profandsur sur
le =wept lui -seam.

4) Mous pennons qu'i co niveau d'etudes, la prise de

oonecienme par les etudiants qu'il lour incomhe de construire, dana

un prooeosus reflaxif, lemma pcopres Dow:mismanage eat un facteur

positif de riussite:

Les principles proprilltes des =incepts introduita asront

iltablies in mars de debate autmar de onnjeaturee
. Un certain

nostmo de considerations sur los connaissances enseignees ainsi qua

sur les ptomains d'apprentissage aim en oeuvre sent egalement
developpilles dans les seances d'enseignement, visant i fairs

ressortir des connaissances i us niveau, larsqu'elles ant iti
produitos par lo systems codidactique.

La mime en piece de netts experimentation passe neoessairement

per un changlameat radical du oantrat didactic/no an viqueur, par

l'instauration dune nouvello coutume constitutive du "syateme

aodidactique". En particulier it est nenessairo de clamor un atatut

institutiomnel aux *way*. dont on u'a pas swore decide du
caraotere de Ter:cite, sous le nom de conjectures. Ca terse sera

par in suite investi duns signification wupplimmntaire de nature

Apistemologique: oonjectuxe exploratoire pertinente, dont les

oonsiquenoes saraient importantas-

S3 f{I_thadolocie d' etude:

Les seances de Debat Soientifique in comes de smthemetiquos

sant prepares' par le groups de recherche par uno analyse a priori

des situations-problems. on du domains des conjectures proposers,

wn partiouliar dm lour potential d'opparition de dAmerchaa jugdpas

favorablaa, dam techniques A utiliser pour &chapper A till on till

blooage previsibla. On essaie de pr*voir les principaux choir de

1'81%86191:mut, an partiouliar lea noments aft it us doit pas
intervanir.

Cos simmer out St& euragiatr4as st abaft-vas. par leo nembrer

du groups, pain analysis' a posteriori an conparant previsions of

r&olimations pour 'dams adaptam low seaman wuivantos. Cott.
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analyse a Fermis de reperer quell changemonts prof ands obs2

l'enseignant conditionnent le changement de oontrat.

Par ailleure l'e7,9emble is cam observations a forme la base

dune etude empi , de la methods du Debat Soientifique:

typologic des debate, miss an evidanos de techniques susceptible.,

d'etrm transmisee pour provoquer 1. changement de contrat ([1]).

En co qui concerns l'etude des changemants dans is relation de

l'etudiant an savoir, accompagnant oe changemsnt de oontrat

didaotique, dens lo cadre de la problematique dominoes plus haut,

nous AVOW MOU4 DOS rocherohes sur divers points:

-l'analyse des enregistruments et dee observations nous a

perils de preoiser quells proportion d'etudiante participant an

debat, de quel niveau soot les arguments *changes dans

1' amphitheatre, si lee oonnaissances mathemetiques

institutionnalisibes aunt des productions collectives des Atudiants

ou de l'enesignant soul, at quells est lour nature.

-Venally.e des reponse. t un questionnaire, passé awes

plueieurs anis de pratiqup du nouveau oontrat didactique, portant

dune part sur les reactions des etudients fame A une oonjecture,

d'autre part sur lair comprehension d'un concept melon qu'il a iti

introduit deem un cours "a]air at bleu ordonne ou dans des seances

de debat. C'ette analyse a examine (1)1e jugement ports globelement

sax le changement de contrat didaotique (2) lour oonception de

l'apprentissage des mathematiques (3) lour conception du savoir

mathimatique (4) lour attitude face l'incertitude, an particulier

an an qu'elle indult one recherche de preuve .Nous evens egalement

utilise on questionnaire de bilan propose en fin d'annee A

l'ensemble des auctions du Doug Al (450 itudiante).

-les control's des connaissances periodlquement organises sont

audits quant aux manifestations dune prise de distance reflexive

des Artudiants vie-A-vie des questions pollees at aux types de

preuves developpees:ils portent temoignage d'une evolution pozitiva,

dm is tendance au formal it A l'algorithmique yore un souci de la

signification des argumentation..

i4 hisinagbraltkaua4atritatinuL

En as qui concerns la participation effective des etudiantr au

debat, on observe fret/use...at qu'un tiers des presents Ferment is

parole au cours duns séance donne*, souvent &pre, concertation

avec lours voisins immediate c qui permet de conclure A une

implication forte de la colleotiviti dans l'aotivitt propose.: lea
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e njeux Bout resaentia mem auffieanta pour provoquer Ventres des

etudiants dans une veritable dimnrch. reflexive. C'est le un
premier reaultat in contradiction avec Pavia generalement port&

sur les Etudisnts A as niveau. Lam Monate proposes it dtbettue an

°curs de cos Manam mut loin d'Otre triviaux it ila permettent

d'aborder los problems revilement poste sur lee comepta

e moignee: Lem etudiants entrant dans un rapport de produoteura de

lours oonnaissanose mathimatiques.

Ins le prosier questionnaire nous relevons

(1) ohm ws dee etudiants uno reponse oomparative argument*.

entre lee dens methodos, dement largtoosnt (75%) la preference an

debit, sans exclure toujoure les parties plus traditionnelles.

(2) en oe qui concerns los comaimances aoquism, de nombreux

etudiants malignant quo le debit ear, dee conjectures lour pelmet

de saisir gaols sant les problems, qua los connaimanom
e nthematiques nouvelles visaient A reemdre, quill.. wont los

mreurs quo l'an pent fair. A lour propos. Pour max, ii s'agit

d'una approohm approfondie du oanoopt.

(3) oela revels uns reflexion sur l'apprentissage dam

mathimetiques prenant en compte 1:importance d'une certain.

epistemologio. Certaina natant quo smile La recherche lour permit

d'assimiler un concept. L'ex epo& traditionnel est apprecie (30%) in

situation d' institutionalisation .11 faut toutefois nnter quo 10%

de l'effectif rejette 1a nithode comt inabordable et trap pm

ordonnee. En partioulier cos etudiants na se sentent tam connorphe

par un *nonce conjectural, eouvent sans idle.

(4) facie A l'inoortitude d'uno aonjecture, nombreux wont oeux

qui relevant La difficult& du type de problems: entrer dans la

conjecture, bAtir UM demonstration, formuler les ideas. Ile

entrant .ions en plain dans le type d'apprentimage vise par La

methods. Malgre ass diffioultes ils se sentent connernee it

interessis: lo ouriositi sat souvent invoques, le debit avec lea

mares etudiants igalement. Cos rifloxions temoignent d'un rapport

nouveau avec leer milieu.

Le questionnaire de biles parole de relever de grandee

differences entre les reponse. dem diverse. sections: les

considerations tree molairem observes, en general soot remplacie

dans la section experimental. par dee riflexions sur la

comprehension it l'autonomie d'apprentimage.

rata A &valuer quells. aunt lea consequences pour

l'eneeignant de ce abangement de oontrat didactique: elles ne wont

pa. negligmblee. En premier lieu eon rapport an savoir maeigne
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change: i lea choix didactiques fondamentaux lui incombent

toujours, it devra toutefois pprendro a ne plus litre oslui qui

doit en toutim °amnions fournir les reponse' aux questions poses.

par Ism etudiants, mais an contraire en fairs la devolution k la

collectivite et joust un role fundamental d'orgenisateur du debit

e ntre les ttudiants. La collaboration d'un groups, mans reduit,

pour analyser les sequence's a proposer, et en abeerver la

realisation, est egalement un faateur trim important. Un certain

nnabro di techniques de gentian du debat doivent etre utilisers,

dont pertains. sort msintenAnt asses Men eprouvess, st d'autres

doivent encore fairs l'objet de reflezions ([1)).

Le problems de la transmiseihiliti de aette experience A

d'autres enseignants as pose t nous maintet.ant, pour une

e xperimentation plus large: le cat! "irvinierie" doit etre

devoloppe, mix noun pinions qu'il est timultanement indispensable

d'arriver a un approfondissament thiorique di in methods du dehat

soientifique, pour y roplrer on qui est fondamental, ou an

contra/re plus accessoire, et justifier sciontifiquement un certain

nombre de choir empiriquee: un premier model. est en conic

d'eprouve, autour de is notion de situation codideatique.

Par ailleurs nous avons debut* uus experience do collaboration

intardisoiplinaire pour l'apprentissagt par les etudiants de in

demnrohe oientifique, en partioulier dans em aspects de mise en

equation, sodelisation, vieant a attenuer la disjunction souvent

observe. entre los mathimmtiques et les melanoma physiques maim

lorequ'elles umeignent et utiliaant les 'Ames °utile.
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DIALECTIQUE ET PENSEE MATREMATIQUE

G. Ervynck

Katholieke Univeraiteit Leuven, Belgium

ABSTRACT

Mathematical thinking in its achieved form seems to be a

linear, straightforward, thinking, without feedback from
intermediate results that may interfere with the primitive
assumptions. This is nothing but an utterly appearance. In
building up a theory, the mind of a working mathematician
goes through a series of loops, alternatively bringing him
closer to the solution of his problem or taking him away
from it. The pattern behind this schema is : he coins a
plausible conjecture (thesis) which is submitted to an ob-
atacle (antithesis) and now his mathematical creativity is
in charge of finding an answer (synthesis) that offers a
way out from the conflict. In the mathematical literature,
very few papers give us clear insight into this process,
we found one by D. Tall relating extensively all the trou-
bles involved in the creation of a deductive theory. This
example will be discussed below.

ENONCE D'UNE THESE EPISTEMOLOGIQUE

La pensee mathimatique se prfisente habituellement sous uneforme pure-

ment dEductive. I1 suffit de regarder its manuels - y compris lea ma-

mmas du secondaire - et les articles dans les pEriodiques de recherche

pour constater que, quasi invariablement, la matiere defile sous forme

d'un enchainement d'axiomes, definitions, lemmes, theoremes, corol-

laires et (parfois) applications; puis, le paragraphs acheve, on re-

commence ce rituel apres avoir adaptfi lee hypothEaes initialer.

s'ensuit que, d'apres les documents Ecrits disponibles, le develop -

pement de is pensfie mathematique semble tEmoigner dune linEaritE sum-

prenante, Evitant tout retour Bur elle-mime et ayant dEs sea debuts

une vision prEcise des objectifa A atteindre. Une tells efficacitE

extreme ne ae manifeste pas dans d'autres sciences, ni dans le compor-

tement humain en gEneral.
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S'interrogeant sur les causes de ce phinomane extraordinaire, it con-

vient d'envisager que ces ficrits "e presentent la mathematique que sous

sa forme achevee. La structure deductive de celle-ci eat appelee A ser-

vir un triple but : (I) de verification : le mathematicien desire s'as-

surer en fin de travail ci sea assertions sont bien fondges, s'appuient

sur lea hypotheses (axiomes) initialement enoncees et, sin-tout, a'il y

a absence de contradiction; (2) de communication : it eat important que

lea idees de I'auteur puissent as transmettre A des (mime sans contact

personnel) collagues-mathematiciens sans perte de precision et sans amr

biguite; ce but rend imperatif l'emploi d'un langage formalise a l'in-

terieur d'une structure deductive; (3) de conservation faut que

les resultats de la pensee mathematique puissent resister A l'usure du

temps et matelot accessible. aux generations A venir, sans qu'il y ait

doute sur its intentions de l'auteur. Il est important d'accentuer que

l'on desire preserver les resultats et non pas la mithode ni les ava-

tars et lee detours de is recherche; cette derniare est tras personnel-

le et tras perissable dans ea fa:con d'agir, on saurait pretendre qu'il

est impossible de la redupliquer en dttail d'un chercheur 1 l'autre.

Sous sa forma operatoire et creative, la mathematique n'est pas plus

lintaire que d'autres sciences et d'autres activites cognitives humai-

nes. His en route, is cheminement de la pensee du mathematicien prend

l'aspect d'une h6lice avec de multiples retoura en arriare sous l'in-

fluence d'obstacles dont Is nature peut itre tram variee. Devant une

difficult la pensee s'arrete et se retrecit stir elle-mime come pour

raffermir sea bases. Puis une impulsion, une illumination so,:.daine,

fait redemarrer l'enchainement des idees jusqu'll heurter un nouvel ob-

stacle; pule un nouveau cycle commence.

D'un point de vue plus abstrait, ces constatations se traduisent

sous forme du schema gentral suivant. Confrontt 1 un problame, le cher-

cheur evince unx these (conjecture), qui peut etre vraie ou fausse, at

qui subit, souvent spontanement, l'opposition d'une antithase de nature

diverse, p.ex. elle peut decouler tout implement d'une lacune ou d'un

manque de comprehension dans is masse des connaissances acquises ante-

rieurement. L'une des apparences sous lnquelle l'entithase peut se pre-

senter, est bien connue des mathematiciens : cleat le "contre-exemple",

dont l'apparition entraine is menace de contradiction interne et par

consequent arrete definitivement un train d'idees projete, mais visi-

blement non realisable.

La simultanSitE des deux, thPse-antith03e, provoque un conflit inte-
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rieur qui souvent reste diseimule mail dont l'impleur peut etre telle

qu'il entratne un blocage couplet, parfois tewporaire, parfois perma-

nent, du processus cognitif. C'est a ce moment que dolt se manifester

Is faculte de creativite mathematique, en forgeant une synthese capable

de resoudre momentanement le conflit et de faire avancer d'un cram le

mecanisme de is construction theorique.

Nous retrouvons ici l'idee de l'exiotence de "cognitive conflict

factors" dans l'apprentissage des mathematiquea, enoncee at decrite

dana t6). En effet, on pout evancer la these que lea difficultes que

les chercheura ont dft vaincre, reapparaissent dana l'esprit de l'etu-

diant qui veut assimiler ulterieurement la mime theorie. Noua ten-

voyons l is reference citee pour des exemples concrete de telles situ-

ations.

Le processus dialectique decrit ci-dessus passe le plus souvent in-

apergu et rests diasimulfi dana le subconsciert du chercheur qui n'y

prite pas attention at l'ecarte de son champs de vision come etant

non pertinent pour le diveloppenent de is theorie en vole d'elebora-

tion. Il est pourtant extrimement important de se rendre compte di

l'existence at du fonctionnement de ce procesaus pour comprendre is

penaee du mathematician. La littfrature sur It sujet amble etre tree

clairsemee, it n'y a que, 1 notre connaissence, l'ecole francaise de

pensis mathEmatique qui y a consacre l'attention necessaire dans les

travaux de G. Bachelard, J, Cavailles, A. Lautman e.a. (C'est pour

rendre homage 1 cette ficole que cet article 1 ete redige en francais).

Citons quelques extraits de is these Essai sur is connaissance appro-

chee (1928) de G. Bachelard : "La deductionesttout au plus une methods

d'exposition" (p. 178); "La construction progressive obeit 1 une veri-

table dialectique ... car is dialectique incline sans opprimer" (p.
Igo; "En mathematiques,l'enrichissement le plus dicisif s'accomplit

en absorbent l'entithese dans l'hypothese" (p. 242).

ANALYSE D' UN EXEMPLE

Rams sont lea contributions dana la litterature mathematque qui nous

fournissent un reportage sur le vocessus de decouverte en mettant en

lumiere Is va-et-vient de is pensee, les tentative reuasie et infruc-

tueuses, l'approche penible vers is "linearite.
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y a le livre "Preuves et refutations" de I. Lalatos, ouvrage splerr

dide et original, dans lequel le lecteur eat invite A suivre cur le

vif les titonnements de la raison, cherchant A etablir eussi bien

enonce precis qua is demonstration correcte d'un theorem* geometrique.

Maio it faut reconnaitre qu'il s'agit 11 d'un example imagine, auasi

brillant qua scat is ricit des hesitations de la pensee mathematique.

Quant 1 trouver un cas reel, nous avons heureux de rencontrer un

article de David Tall qui relate amplement lea sinuositis inherentes

I un morceau de recherche. L'auteur desire elaborer une theorie de nom -

bras superreels qui contientdesimiiniments petits et qui est pourtant

plus simple que l'analyse non-standard de A. Robinson. La technique

puretsent mathematique utilises ne joue aucun role ici. Le recit marque

clairement les confrontations rfpetees de theses avec d'antitheses qui

amortisaent, voire entravent, is realisation graduelle de l'objectif

que l'auteur a'impose. Una analyse detainee nous a revele l'apparition

d'au moires use douxaine de cas de l'espece, qui necessitent autant

d'interventions de la part de l'auteur afin de creer une synthese pro-

visoire et d'avancer d'un pas vers la reponse finale.

Citons quelques examples &incidents qui as produisent en cours de

route at qui permettent de suivre en detail la pensee creatrice de

l'auteur :

(a) Au debut it y a un probleme de classification, une indecision quant

1 ranger le problZme dans La theorie des nambres transfinis ou dens la

theorie de la meaure; le conflit est'leve en decidant de creer une

thforie ad hoc de nombres infinitesimaux;

(b) Un autre conflit surgit loraqu'il faut poatuler La nature des fu-

ture infinitesimaux : au premier abord l'auteur est trate de les assi-

miler 1 des functions rationnelles - ce ne seraient done pas des nom-

bres ou des points (concept traditionnel); un compromis est formula an

admettant que les infinitesimaux seront tout implement des elements

d'un ensemble, dont la nature rests I determiner;

(c) Plusieurs foie, une intuition qui entraine l'introduction d'un con-

cept nouveau fait reddmarrer l'enchainement des ideas at l'elaboration

de la theorie avance d'un pas dfcisif; ce phenomene se presente p.ex.

lorsque l'auteur prend conscience du fait que la tonction f(t) t-1

pent jouer le role d'infinitesimal canonique; aussi loraqu'il introduit

une droite I l'infini;

(d) Des obstacles de nature diverse surgir et entraver une

aerie de deductions; p.ex. on se realii la theorie projetee ne
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sera pea applicable A des fonctions tout A fait arbitraires, d'oa is

.resolution de ne considfrer que des fonctions analytiques; autre exem-
pie : la reticence d'un interlocuteur A accepter un point de vue qui

s'floigne trop des idles traditionnallement admisee (obstacle subjec-

cif, situf tout a fait en dehors di la structure mathtmatique for-

sells);

(e) La similitude apparente avac une thforie bien fondle (developpement

en merit de Taylor) raffermit la confiance en la ofthode suivie; cet

espoir set modirf parfois parunvague sentiment de (Assortment ou une

menace latente d'incohfrence (problemes de convergence);

(f) L'intention d'inclure dans la nouvelle structure un concept prt-

conqu (ex. its nombres super-entiers) pent avoir ses fondements dans

l'inconecient et/ou le aubjectif personnel ("whisful thinking");

lorsque la realisation du dfsir s'avIre impossible, l'abandon de

celui-ci se /mune I une resistance psycbologique : uniquement sous

is poids des contre- indications formels (et donc irrefutablea) l'auteur

se resigns 1 abandonner le concept tent desirt : it n'y a pas de super-

cutlers dans is thforie;

(g) A plusieurs reprises l'auteur resaent le besoin de rediger as le

debut la partie apparaament consolidle de sa thforie. Ces redactions

frtquentes sont l'extfriorisation du besoin de raffermir see bases et

du souhait d'fcartur de vaguns doutes sur l'utilitf ou la cohfirence

de l'fdifice, en peasant en revue minutieusement toutes les prfimisses

et conclusions dont l'enchatuement ccnstitue is force logique et deduc-

tive de sa construction. Il est bien connu qu'une facon de contealer

is validitt d'un raisonnement mathfmatique consists 1 is rtpfter en

l'fcrivant ligna par ligne, surveillant 1 cheque pas l'application

justifies des r1gles de dfduction. En faisant ceci, l'auteur desire

augmenter sa confiance en la valeur et l'exactitude de see dfmonstra-

dons (qui, comma on le sait fort bien, ne se-ont considtrfee exactes

quo lorsqu'ils soat acceptfes par la communautfi des mathematicians).
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INTERPRETATION D'ENONCES IMPLICATIFS ET TRAITEMENTS LoGrquEs

LUIS RADFORD

ESCUELA DE FORMACION DE PROFESORES DE ENSERANZA MEDIA

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

Une experience a dtd mente avec des lycdens (16-18 ans) sur
la recherche des obstacles qui emOachent la distinction entre
condition nicessaire et condition suffisante. On met en evi-
dence l'existence de quatre traitements distincts de l'impli -
cation. L'analyse qu'on prdsente de ces traitements peut per -

mettre de comprendre pourquoi un tours traditicmnel de logi-
que nest souvent pas suivi de succes, ouvrant ainsi des
perspectives pour envisager un enseignement addquat de la lo-
gique dans les lycEes.

Les travaux d'O'Brien, Shapiro, Reali (01), (02), (03), (S1), ainsi que

d'autres chercheurs, ont montrd as le debut des anndes 70 que lorsqu'on

confronte des adolescents, non plir comme chez Piaget, a des experiences

physiques l'on peut manipuler les dltments qui interviennent dans un

problame donnd afin de ddgager des relations de cause a effet, macs i des

enoncis implicatifs, ces adolescents -qui etaient tenses avoir atteint le

stade des optrations formelles- mettent en oeuvre des procedures qui sont

loin d'Itre en accord avec le raiscanement logique. Ces procedures non

logiques ont fte attributes i des mauvaises performances des sujets in-

terrogds a raisonner logiquement. Toutefois, des linguistes dont O. Du-

crot (D1) ont axis en Evidence des diffErences entre l'implication (mate-

rielle) de la logique et les dnoncds "Si A alors B" ou "Si A,B" du lan -

gage courant(,
I)

jettant ainsi une ombre de doute sur les conclusions

d'O'Brien et les autres, car ils avaient utilise des EnoncEs implicatifs

(1) "Si vous avez soif, it y a du whisky dans le r4frigirateur" est Equi-
valent, d'apres le calcul des!ppopositions, A "S'il n'y a pas de whi-
sky dans le rtfrigerateur, alors vous n'avez pas soif", bien que ces
deux expressions soient diffirentes dans toute langue natdrelle.
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du genre "If the bike is blue, it is not old", etc. B. Dumont a montre

(02), (03) d'une facon nette l'inadequation de ce type d'enonces pour a-

border 1'etude du raisonnement logique.
Dans le but de mieux comprendre les obstacles qui empeschent la distinc-

tion entre condition necessaira et suffisante, nous avons mis en place en

1983-85 i I'IREM de Strasbourg, France, une experience centre sur un

questionnaire et sur des entretiens cliniques. Les questions ant ete

choisies en termes d'un contexte algoethmique. Un tel contexte evite-

rai t, pensions nous, at le deroulement de l'experience nous a donne rai-

son, les problet'aes linguistiques observes chez nos predicesseurs. La po-

pulation etudide a eta constituee de plus de 300 Cleves du Baccalaureat

Francais (classes de premiere: 16-18 ens).
Le type d'enonce implicatif utilise peut se comprendre sur l'exenile sui-

vant:
Un circuit electique intermittent comparte trois
lampes A,B,C. Chacune s'allume et s'eteint dais
l'ordre A,B,C,A,B,C,A,etc. Pendant l'allumage
cheque lave emet soit une lumiere rouge, spit
une lumiere bleue. Le fonctionnement du circuit
est regi par un ordinateur dont on ne connait
pas le programme.
Un observateur a suivi pendant un long temps le dem:ailment du circuit et
il a clegage la regle que voici:

St C est rouge, alors I l'instant suivant A sera bleue.

Le type de question pas& etait:

Sachant un certain moment la lance C nest pas rouge, 3 I 'instant
suivant la laave A sera: 1=3

rouge bleue opps
(=on ne peut pas savoir)

Nous avons etudie trois genres de questions, qu'on peut resumer ainsi:

di

iA ..). 13
nonA d

2

A 4 B
B d

3

A 4 B
{ non6

lr? A? N?

Par exemple di se lit: Si A alors B. Sachant qu'on a non A, que peut-on

dire de B? On reccnnattra en d 3 une contraposee.

TRAITEMENTS D'ENONCES IMPLICATIFS

GROUPES 1 ET 2: Dans ces groupes, qui s'etendent 1 environ 25% de la po-

pulation chacun, les individus ne font pas de distinction entre cause at

effet. Dans le groupe 1, l'enonce implicatif "Si A alors B" apparutt
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comae une simple association entre deux chases: ou A et a se produisent

ou aucun d'eux ne se produit. A la question: Si C est rouge alors au M3 -

ment suivant A sera bleue; sachant que C est non rouge, quelle sera la

couleur de A apres?, une Olive rdpond: "puisque si C est rouge A est

bleue, si C est bleue A est rouge". Cette 414ve associe, d'apres la r0-

gle, C rouge i A bleue et C bleue i A rouge. Il n'y a pas une ccmbina -

toire ou analyse des cas possibles Ici. Rion n'est hypothdtique. On pen -

sait jusqu'i maintenant que ces individus confondaient l'implication et

l'Equivelence. Il est clair que cela ne peut pas ltre vrai, vu que l'in-

dividu ne se place pas ici dans un contexte logique, et que I'dquivalen-

ce ( logique), qui s'exprime comae la conjonction de dee:: implications rd-

ciproques,ne peut apparaitre qu'apres avoir vraiment acquis la notion

d'implicaticm.

Pour le groupe 2, ce qui est important est ce qui figure ou ne figure

pas sur l'dnoncd implicatif. Dans la question (que nous sciimatisons):

Si P est non jaune alors H sera verte. Sachant que la lampe P dtait

jaune, quelle sera la couleur de H?, un Elve dit: "on ne peut pas sa-

voir (...) oui, parce que P est verte. Tu sais pas quelle est l'dqua-

tion si P est jaunt. WIC tu peux pas savoir." L'dlive parle d'"dqua-

tion" pour dire regle. I1 justifie "tu peux pas savoir" par le fait

qu'il n'y a pas de regle mentionnmnt le cas ou P est jaune.

En ddsignant la regle par A 4 13, les rdponses typiques de ces groupes

sent:

d
1

d2 d
3

Groupe 1 non B A non A

Groupe 2 opps A opps

GROUPES 3 ET 4: Dans ces groupes, qui Idtendent 1 environ 20% et 3% de

la population, respectivement, it apparatt pour la premire fois une a-

nalyse logique du problime. Le conditionnel "si" renvoie 1 une situation

hypothdtique (cf. l'exemple ci-apres). L'individu s'interroge sur le rap-

port entre les objets, ddbouchant ainsi sur une combinataire. A la ques-

tion: Si C est rouge, alors au moment suivant A sera bleu2; sachant qu'a

un moment A est non bleue, quelle etait la couleur de C au moment pri

cfident?, une d11ve dit: "moi j'ai fait, je suis partie de c41) j'ai dit

(1) "ca" daigne "C est rouge".
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si C est rouge, j'ai regardd si ca marchait", Plus loin, une autre

dleve arrive a la conclusion: "C forcdment nest pas rouge (...) parce

que si C est rouge, c'est stir t'as A bleue", et on salt qu'une des don-

ndes du probleme est justement que A keit non bleue, Cette demonstra-

tion par l'absurde est lotn dltre dvidente: elle demande que l'dleve

se place dans une situation hypothetique et, come nous limns vu pour

les groupes 1 et 2, cela ne va pas de soi, Bien que pour les Mites du

groupe 3 la resolution d'un probleme implicatif se fasse dans un con-

texte hypothetique, ces flaves nrarrivent pas a rdpondre correctement

les questions de type d2, mettant en dvidence que l'apparition d'une

combinatoire ne saurait rendre compte de l'intensitd de la demarche lo-

gtque deployde.

Les eleves du groupe 4 sont ceux qui repondent correctement toutes les

questions.

En designant la regte implicative par A B, les reponses typiques de

ces groupes sont les suivantes:

d
1

d
2

d
3

Groupe 3 opps A nun A

Groupe 4 opps opps on A

Le probleme qui se prdsente aujourd'hui, et qui conditionnerait dans

une large mesure la forme qui devrait prendre un enseignement adequat

de la logique, est celui de savoir si un individu traverse successive-

ment les groupes que nous venons de decrire ou si, par contre, it peut

rester "plafonne" dans un de ces groupes. Ces deux situations seffblent

dgalement plausibles. En effet, nous avons pu observer des individus du

groupe 1 qui n'acceptaient pas les raisonnements des individus du groupe

3. Mais nous avons vu des individus du groupe 2 accepter des raisonne-

ments plus complexes. Au merge de ces deux possibilites, notre travail

- crayons nous- met en dvidence que la difficulte a raisonner logique-

ment, et en particulier a distinguer entre cause et effet, est tras

Tide a is possibilite de l'individu a se mettre dans une situation

hypothetique, et ce:i ne va pas de sal. Un but de l'enseignement de la

logique serait donc de proposer aux dleves des activitds qui leur con-

duisent a des situations hypothdtiques op
s'exercer. Et cela ne peut

pas se faire dans une logique depourvue de contenu, c'est-a-dire dans
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une logique formelle. C'est d'ailleurs cet aspect qui nous semble 'etre

A la base de l'dchec des cours traditionnels de logique (S2), que ce

soit sous forme de tables de vEritd ou de thdorie axiomatique. line solu-

tion peut se trouver dans ce que nous avons appele logique semiformelle

(R1). Celle-ci se distingue de la logique formelle en ce que les propo-

sitions ont un contenu et s'dloigne de la logique du langage ou du dis-

cours en ce que, come la logique formelle, 1 'univers du discours est

fixd d'avance. C'est ici que nous placons les raisonnemencs mathdma-

tiques (la phrase "soit f une fonction continue" nest pas traitde,

come en logique formelle, a la maniere d'une proposition p quelconque).

Certains jeux, tonne les echecs, se ddroulent ici aussi. C'est peut-ttre

la qu'il faudrait envisager l'enseignement de la logique dans les lycdes.

Probablement les etudes que nous menons actuellement au Guatemala, pour-

ront apporter quelques reponses aux problemes encore ouverts de la lo-

gique et son enseignement.
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The Research Agenda Project

Judith Threadgill Sowder
San Diego State University

The Research Agenda Project focuses on research areas where
previous work indicates that some conceptual and
methodological consensus saems likely, providing that a
vehicle is furnished for this purpose. Accordingly, four
conferences have been held, in the areas of problem
solving, effective mathematics teaching, algebra, and
middle school mathematics. Conference proceedings will be
published by the National Council of Teachers of
Mathematics.

The Research Advisory Committee of the National Coun:11 of Teachers

of Mathematics in 1985 proposed to the National Science Foundation

that funding be provided for the purpose of establishing a research

agenda in mathematics education. We believed that such a project

was needed at this time for two reasons: first, to direct research

efforts toward important questions, and second, to indicate

potential support mechanisms essential to collaborative chains of

inquiry.

There are many important unanswered questions about learning and

teaching mathematics for which real solutions will be found only

through scholarly inquiry. We agree with the critics that, in some

areas, past research on the learning and teaching of mathematics

has been inadequate. Many past research studies can be

characterized as piecemeal inquiries rather than sets of studies

reflecting conceptual coherence. Many studies have been based on

inadequate conceptualization of the problem being investigated and

have employed less than adequate instrumentation and methodology.

Such weaknesses are typical of emerging field. of inquiry. Kuhn

(1970) has argued that in the early stages of the development of

any science; different scholars confronting different portions of

the same phenomenon arrive at different descriptions and

1348



- 1+02 -

intepretations. Real research progress occurs only when a group of
investigators agree on a specific area of specialization, arrive at
a consensus on a common framework or paradigm to guide their
investigations, and accept the methodologies associated with that
paradigm as a means of communicating questions and results among
the group's members.

We clearly know more today about teaching and learning mathematics
than.we did twenty years ago, before there was substantial
financial support for educational research. In particular, we can

point to several significant sets of studies now being carried out

which are based on emerging theoretical frameworks. For example,

young children's early number learning and older children's

understanding. of rational numers have been the subject of several

recent or current studies. Most researchers would agree that

single, isolated studies are rarely of much value and profitable

research proceeds by a series of small steps taken within the same

framework. A conference on the acquisition of number concepts and

skills (Carpenter, Moser, and Romberg, 1982) has served as an

example of the role such a meeting can play in providing a vehicle

for increased communication, synthesis, summary, and

cross-disciplinary fertilization among researchers working within a

specialized area of mathematical learning.

Other such specializations have emerged which could also benefit

from such collaborative efforts. We believed that the most

effective way of setting a research agenda would be to focus on

areas where conceptual and methodological consensus was likely.

Four such specialized areas were selected for this project: the

teaching and learning of algebra; the teaching and assessment of

problem solving; the teaching and learning of middle school

mathematics concepts; and effective mathematics teaching.
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The plan for the project included a working group conference in

each of the four areas, with monographs of conference proceedings

to be published by NCTM, A fifth overview monograph, written by

advisory board members, is also planned. The NCTM Research

Advisory Committee asked Judith Sowder to prepare the formal

proposal and direct the project, and suggested names for the

advisory board and for conference directors and monograph editors.

The advisory board for the project consists of eight people:

Joseph Crosswhite, James Greeno, Jeremy Kilpatrick, Douglas McLeod,

Thomas Romberg, George Springer, James Stigler, and Jane Swafford.

For each of the !Our selected areas, two researchers serve as

conference co-directors and en coeditors of the monograph of

conference proceedings. These pairs are Sigrid Wag.ter and Carolyn

Kieran for learning and teaching algebra; Edward Silver and Randall

Charles for teaching and assessing problem solving; Merlyn Bohr and

James Hiebert for middle school number learning; and Douglas Grouws

and Thomas Cooney for effective mathematics teaching.

The project began with a planning conference of advisory board

members and conference directors. Besides identifying issues to be

addressed and possible paper topics for each conference, tentative

lists of invitees for each conference were drawn up to include

representation from mathematics eduction researchers, both

established and new to the field, both U.S. and foreign,

researchers from relevant fields of psychology and from

mathematics, and practitioners. The concept of working group

conferences funded for 25 people precluded expandi,ig the conference

to all interested persons. We therefore decided to invite people

to attend only one conference, thus maximizing the number of people

involved in setting a research agenda.

The four conferences were scheduled
for the spring cf 1987, tc

allow adequate time in the fall for invitees to prepare conference
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papers. The conference on teaching and evaluating problem solving
was held in January in San Diego, California; the conference on
effective mathematics teaching was held in early March in Columbia,
Missouri; the conference on the teaching and learning of algebra
was held in late March in Athens, Georgia; and the conference on
middle school number learning was held in May in DeKalb, Illinois.
Each of the conferences was indeed a working conference. Difficult
questions were addressed, discussions were lively and intense, and
new understandings were reached among individual researchers across
the discipline and viewpoints represented.

A second meeting of the advisory board is scheduled for June of
1987, for the purpose of evaluating the conferences and planning an
overview monograph. At the PHE session associated with this paper,

I will discuss the contents planned for the overview monograph.
All five monographs are scheduled for publication in early 1988.
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LEARNING IN MIDDLE SCHOOL NUMBER CONCEPTS

Merlyn J. Behr James Hiebert

Northern Illinois University University of Delaware

The working group for middle school number
concepts, part of the Research Agenda Project of the
National Council of Teachers of Mathematics and the
National Science Foundation (Grant No. MDR 8550614), met
in DeKalb, Illinois, May 12-15, 1987. Because of the
deadlines for printing these Proceedings, the following
summary was prepared before the conference. The

comments are based on first drafts of the papers written
for the conference. We would like to acknowledge the
authors of the papers for generating the basis for the
observations recorded here, but we do not claim that
this brief summary does justice to their ideas. The

authors are: Merlyn Behr, Robbie Case, Kathleen Hart,
James Hiebert, Thomas Kieran, Richard Leah, Perla
Nesher, Stollen Ohlsson, Thomas Post, Robert Sandieson,
Judah Schwartz, Judith Sowder, Leslie Steffe, Gerard
Vergnaud, and Diana Wearne. Discussants of the papers

at the conference were: Ferdinando Arzarello, Alan

Bell, Brian Greer, Magdalene Lampert, Glenda Lappan,
Richard Lash, Jack Lochheed, Douglas McLeod, Joseph
Payne, Robert Reys, and Ipke Wachsmuth. Robbie Case and

Karen Fuson served as summarizers during the final con-
ference session.

The past decade has witnessed a significant increase in research

on children's knowledge for and learning of middle school mathematics

(about ages 8-13). Much of this research has focused on rational

number learning, including the development of proportional reasoning

skills. More recently, attention also has been directed toward

multiplication and division, with emphasis on whole numbers. The aim

of the conference was to reflect on the variety of individual

research programs that are flourishing in this domain and to search

for common themes and theories that could servo as avenues of

communication. Those points of contact would not only inform the

participants' own work, but also would provide a means for relating

with other significant work in the field, and would provide an

appropriate foundation for setting a research agenda in this domain.
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Middle School Number Concepts - New Complexities

Perhaps the most striking theme of the papers presented at the

conference is that the mathematics students encounter in middle

school is dramatically different than the early number and

addition/subtraction concepts and skills of the earlier years of

school. The complexities increase co markedly that the mathematics

appears to be qualitatively different than anything students have

encountered before.

There are two primary sources for ia* new difficulties of

middle school mathematics. One is that the situations that generate

mathematics are mostly multiplicative rather than additive. For

example, how many outfits can be created from four different skirts

and three different blouses? Or, how many pizzas are needed for 20

people, if three pizzas are just right for seven people? To handle

even the simplest multiplication situation at an appropriate level,

students must develop the notion that a unit can be composed of more

than one object. This achievement requires a significant shift in

their thinking, a shift that occurs over a prolonged period. The

redefinition of unit is essential In multiplicative situations which

are not reducible to additive ones. New concepts emerge, such as

intensive quantity (e.g., represented by "per" in 25 miles per

gallon), which have no appropriate analogue in addition. Using

additive strategies often is inadequate and, further, may inhibit

appropriate multiplicative strategies from developing. So the new

complexities of multiplicative situations demand a significant

extension and reorientation in children's cognitive structures for

mathematics.

A second amerce of difficulty for students is that the number

system introduced to handle multiplicative structures brings with it

a host of new complexities. The system of rational numbers, although

powerful and elegant, is far more complex than the whole numbers

encountered to this point. Rational numbers can be represented with

two very different-looking symbol systems common fractions and

decimal fractions. Each of these systems introduces complexities

that move well beyond the multiplicative situations that motivated

their appearance. Procedures for handling the symbols, such as
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arithmetic operations for fractions and decimals, generating

equivalent fractions, and shifting between common and decimal

fraction form, become objects of study in their own right. Many of

the procedures have subtle connections with well-practiced nroceduren

on whole numbers, connections that are important but not

straightforward. Sorting out the atm/antic and syntactic similarities

and differences between symbol systems presents a significant

challenge for students,

Current Status-Descriptive AElllysel21LSubject Matter

Because most of the work on students' learning of middle school

number concepts and skills is relatively new, research efforts

generally are directed toward descElhing the phenomena in some

detail. Careful analyses of subject matter, and descriptions of

tasks designed to tap students' knowledge of the subject matter, and

of their responses on such tasks characterize much of the current

work in the field.

It is apparent that the analysis of subject matter is

especially important in a domain with the mathematical complexities

noted above. It is difficult to imagine making progress in research

on children' learning of these substantive mathematical topics

without a thorough foundational understanding (by the researchers) of

the mathematics to be learned. Although there now exists a wealth of

information on the children's knowledge and learning of beginning

addition and subtraction concepts and skills, very little of the

information has helped to anticipate the complexities of middle

school number learning. Much of the information on children's early

number skills looms almost irrelevant. Of course, there may be

important relationships between the domains that have yet to be

uncovered. There does exist eviuence to suggest that some primitive

models which children have for whole number concepts interfer with

the acquisition of concepts for multiplicative situations. It is

clear, however, that current theories' of learning middle school level

mathematics are domain specific, and that the analysis of this

subject matter plays a crucial role in the development of the

theories.
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Consequences. for Instruction

Instructional programa in middle school mathematics ordinarily

present a limited and overly simplified, view of the topics discussed

above. Multiplication is treated as repeated addition; fractions are

treated as parts-of-a-whole. The more fundamental conceptual balms

for these quantitative notions rarely are treated in a systematic

way. Further, the symbol systems of common and decimal fractions are

handled by sets of syntactic rules. The semantics of the systems

receive relatively little attention.

Although results from descriptive research cannot prescribe

specific instructional programs, there are some important

implications emerging from the rich descriptive work in thin domain

and form several recent instructional projects. Two points seem

especially significant. First, there sway be a significant cost to

students' understanding and subsequent learning, of emphasizing, at:

an early point in the curriculum, (1) simplified, limited versions

of concepts and (2) syntactic rules for manipulating symboie. It

appears that in addition to providing only limited view of topics

such as multiplication of whole numbers and operational with

fractions. en *upbeats on overly simplistic concepts and strategies

interferes with later efforts to acquire more complete notions of the

target concepts. Students often hold on to primitive strategies,

even when they are inadequate or inappropriate. Similarly, early

routinization of symbol manipulation rules may inhibit the

development of more conceptual, flexible solution strategies.

A second implication emerging from current research is that to

improve instructional programs in middle school mathematics it will

be necessary to identify the central conceptual content that

underlies the various topics, and the cognitive processes that are

essential for making th. appropriate connections. Identifying the

central concepts and processes is an important first step for several

reasons. First, learning may be enhanced through instructional

programs that emphasize the central concepts initially. These

provide a context within which the more limiting aspects of the

concepts can be treated in a meaningful way. Second, several key

cognitive processes seem to be responsible for connecting the
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conceptual content with its symbolic representation. Because moat of

middle school mathematics is conducted and communicated with written

symbols, instructional programs umat encourage atudente to engage the

cognitive processes that promote appropriate meanings for symbols.

Third, central concepts and process.. may hold the key to the problem

of transfer, There is an overwhelming amount of knowledge presented

in middle school mathematics programs. It is impossible iur students

to develop competence by acquiring each piece of information

separately. They must be able to generalize acquired eweepts to new

situations. The central, foundational concepts show the most promit;o

for generalizing appropriately, and the key cognitive processes

support such transfer by establishing connections for the learner

between related concepts and between concepts and their repre-

sentations.

The current state of research in middle ochr)l mathematics

suggests that the identification of central concepts and processes in

not yet complete. There is a convergence of views, but not yet a

consensus. In a sense, the conference could be viewed as the first

conscious, collective step in this field of research toward such a

consensus,
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RESEARCH AGENDA CONFERENCE ON EFFECTIVE MATHEMATICS TEACHING

Thomas J. Cooney
University of Georgia

Douglas A. Grouws
University of Missouri

Research on mathematics teaching was broadly interpreted for the

conference to include classroom studies, policy studies, studies of

teachers, conceptual work, and philosophical studies. Discussion at the

conference centered on a wide range of topics with particular attention

given to the issues addressed by the ten invited papers. To give a feel

for the conference we briefly summarize each of the presented papers and

then close with a short description of some of the most important themes

that seemed to emerge from the discussions.

Teachin for Higher-Order Thinking in Mathematics (Penelope Peterson,

University of Wisconsin)

The focus of the paper was on determining factors related to higher

order thinking by elementary students and the means by which teachers

can promote such thinking. The author characterizes the teaching of

elementary school mathematics in the following way. It consists of

essentially two activities: whole group instruction and seat work. In

either case, the interaction among students or between teachers and

students Is minimal. Teachers seem to hold the view that problem

solving can not begin until reasonable competence with computational

skills is acquired. Further, most of the instructional time involves

the teaching and learning of lower order skills. In the main,

elementary teachers do not facilitate students' higher order thinking in

mathematics.

The issue then becomes one of determining what factors contribute

to higher order thinking and how teachers can be trained to encourage

and promote those factors. The author describes three examples of ways
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to promote students' higher order thinking: (a) using small-group

cooperative learning techniques to foster students' autonomy and

independence as well as students' learning of cognitive strategies and

metacognitive strategies; (b) explicit teaching of cognitive strategies

and metacognitive strategies to elementary students; and (c) teaching

first-grade teachers about results of recent cognitive science research

in mathematics to enable them to devise appropriate curricula and

instructional strategies.

Central to much of the research is the notion of "cognitively

guided instruction". Such instruction is based on a teachers' sound

knowledge of mathematics and relevant research findings, the teachers'

ability to assess whether and how students solve problems, and the

ability of the teacher to use this information to develop effective

teaching strategies. A fundamental question associated with this

research is the extent to which a cause-effect relationship exists

between the teaching process and students' higher order achievement.

Interaction, Construction, and Knowledge: Alternative perspectives for

mathematics education (Heinrich Bauersfeld, Universitet Bielefeld)

Bauersfeld calls into question the universality of research

findings and argues for the necessity of looking at research in

mathematics education from perspectives outside the field of mathematics

education. He reflected upon his own experience with an extensive

project in which teachers were trying new curricula and analyses

involved analytical statistical designs. The researchers concluded that

"softer" methods were needed to understand the complexities associated

with teachers trying new curricula, the nature of the teachers'

realities, and, in particular, the nature of students' errors. In

general, the author saw the researchers shifting their attention away

from subject matter structures and related student achievement and
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toward a perspective of social interaction and construction. The issue

became one of understanding a teacher's reality and underlying

structures of the teaching/learning process rather than searching for

variables to determine the effectiveness of a training program. Thus

classroom interaction between teachers and students is better conceived

as s matter of social interaction investigated through the lens of

symbolic interactionalism.

Bauersfeld argues for the importance of understanding meanings

teachers hold and questions the applications of (and even the existence

of) general knowledge that applies universally to classroom situations.

Knowledge is not content :ree, it is always determined and defined by

the social context in which the researcher works. Reality of teachers,

students./and/researchers is a product of constructions by each of the

parties involved. Thus research is not a matter of "discovering" some

objective reality which can be revealed by carefully defined

experimental analyses; reality is a matter of individual construction.

Bauersfeld's position is based on the notion of fundamental

relativism. From this perspective, "the usual research game of turning

disturbing interventions into main objects of follow-up investigations

and in effect of extending theory this way is doomed to circularity and

failure.°

Expertise in Instructional Lessons: An example from fractions (Gaea

Leinhardt, University of Pittsburgh)

This paper deals with expertise in the teaching of elementary

school mathematics, with an emphasis on fractions. it draws an three

frames of reference: classroom processes and effectiveness research,

mathematical education, and cognitive psychology. The context for the

research is the public school classroom and focuses on the teaching of

"expert" and "novice" teachers. Lesson segments, routines, scripts, and
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agendas were of particular interest in comparing experts and novices.

Effective teaching is seen as "carefully crafted patterns consisting of

short segments, each of which accomplishes a different goal and

encompasses a different set of student and teacher actions."

The work reflects a micro-analysis of lessons in which segments and

routines are analyzed in detail. Expert teachers tend to have an

efficient set of basic routines and seem to have "scripts" which enable

them to teach a lesson in which adjustment can be made for the

individual students but, in the main, enables them to move through the

lesson in an efficient way. For the novice who does not possess such

scripts, there are the problems of wasting time and failing to

anticipate the crucial features of a given lesson. Thus, a task for

mathematics education researchers is to build a rich taxonomy of lesson

scripts that are known to be successful. Too, expert teachers have

agendas that are accumulations of considerable experience and knowledge

that help define goals. Overall experts have routines, patterns of

lesson segments, and scripts that all work more smoothly than those of

novices. Experts also have richer agendas at their fingertips.

Generally, novices have an absence of useable plans.

With respect to analyses of experts and novices in the teaching of

fractions, experts were able to coordinate numerical and concrete

demonstrations in the successful completion of a lesson while novices

failed to complete even rudimentary aspects of the lesson. A central

issue is how we can assist teachers to make their patterns more complex,

elaborate, and useful, thereby enriching students' mathematical

experiences.

Implications of Research on Pedagogical Expertise and Experience for

Mathematics Teaching (David Berliner, University of Arizona)

This paper also dealt with differences between expert and novice
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teachers. Berliner gives four reasons for studying expert teachers.

First, is the question of whether expert teachers resemble experts in

other fields. Second, is the purpose of getting access to the

cognitions that accompany behaviors that research has associated with

effective teaching. Third, is to influence state and local school

district policies regarding master teachers. Fourth, is to influence

current policies in certain states.

Research suggests that expert teachers have more sophisticated

means of analyzing instructional problems. Too, experts are more

deliberate in analyzing classroom scenarios and seem to have a richer

problem representation than do novice mathematics teachers.

In a'study involving experts, novices, and postulants (scientists

and engineers from business who were interested in teaching careers but

who had no formal training or experience as teachers) in science and

mathematics at the secondary level, it was found that both experts and

postulants could provide a more detailed label for a given problem than

could novices. Further, the experts could provide a detailed task

analysis in a way that the postulants could not. Experts were also more

sophisticated than postulants and novices in terms of their knowledge

about the way students thought about mathematics and science and were

better able to identify incorrect algorithms.

When shown slides depicting classroom situations, the postulants

and novices provided literal descriptions that were accurate but the

experts responded with inferences about what they saw. The experts were

able to identify information that was deemed important; the novices and

postulants were much less discerning. Too, experts tended to focus on

the more dynamic aspects of teaching, e.g., "students working

independently" while novices and postulants tended to focus on the more

static aspects of teachieg and generally did not describe students'
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activities any more than the physical aspects of the room. Experts

could describe what is and is not going on; novices' descriptions tended

to be step by step accounts with fewer inferences about what was

happening. In general, the experts were better able to agree on what is

important in classrooms, provide richer analyses of students' conceptual

problems, and had an image of what is to be expected.

Content Determinants In Elementary School Mathematics (Andrew Porter,

Robert Floden, Donald Freeman, William Schmidt, John Schwille, Michigan

State University)

The authors distinguish content from method in an effort to focus

on factors that affect what is taught. In light of competing notions of

what mathematics should be taught and the limited amount of time given

to teaching mathematics, it is essential that we understand factors that

affect the selection of content. In some sense content decisions for

elementary teachers are secondary to the selection of activities or

concerns about such things as citizenship. Generally, teachers will

teach that content with which they feel comfortable.

The authors used five different studies to reach various

conclusions. They bring into question whether or not, and the extent to

which, teachers follow the textbook. They conclude that first year

teachers are more likely to follow the text but that more experienced

teachers use the text more as a source book from which content is

selected. It also appears that teachers are not influenced very much

by standardized tests given once a year. There are, however, important

influences of testing on teaching when the tests are tied to curriculum,

e.g., tests involved In a management system.

Students also influence what is taught. The authors found

considerable variance regarding content covered within classes. Slower

students spent more time on computational skills than did their brighter
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counterparts. There also seemed to be some gender differences. For

example, girls encountered more topics than boys; boys tend to encounter

more conceptual and application oriented content than do girls.

Principals were not significant factors in determining content.

Teachers' convictions did have some impact in content decisions. While

teachers uniformly felt computational skills constituted the most

important content, there was considerable variance among teachers in the

time devoted to computational skills. Their convictions, however, seem

to be generally unexamined by both themselves and others.

From Fragmentation to Synthesis: An integrated approach to research on

the teaching of mathematics (Celia Hoyles, University of London

Institute of Education)

The author reviews some major research themes relevant to

mathematics teaching. Included are discussions of the ORACLE research

programme in the United Kingdom., as well as other studies of teaching.

An omission in much of this research is that there is no real

consideration to the content being taught. The author argues that

research on teaching more generally is not likely to improve the

teaching of mathematics.

The Mathematics Teaching Project in England is described which

takes account of both pupils' and teachers' perspectives. Pupils were

asked to react to ten different factors that might be associated with

desirable characteristics of a mathematics teacher. Teachers'

perspectives included their expectations about pupil performance, e.g.,

teachers tend to ignore responses or questions from less able students.

Gender also plays a role: boys tend to monopolize the teacher's time

through questions asked and initiated. Teachers' conceptions about

mathematics are additional factors that influence what happens in the

teaching of mathematics.
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The author provides these central recommendations: the need to

preserve the complexity of the research, the need to work with teachers

as research collaborators, and the need to acknowledge that teacher and

pupil behavior in the context of a classroom cannot be understood

through analysis of mathematical content or its related psychological

complexity alone. The recontextualisation of the mathematics in order

for it to be socially enacted in schools and the constraints of

classroom relationships must also be considered. The use of

microcomputers as a special learning environment within the theoretical

model proposed is described. The author argues that researchers should

resist the temptation to cope with the complexity of mathematics

teaching by concentrating on only a single aspect of teaching, e.g.,

cognitive aspects, but rather to consider other aspects as well, e.g.,

attitudinal considerations and the milieu of the classroom.

Computer Usage in the Teaching of Mathematics: Issues which need

answers (Janet Schofield, David Verban, University of Pittsburghl

The study which served as a basis for the paper occurred in a

large, four-year high school located in an urban setting with

approximately 1300 students. The research was primarily enthnographic

in nature.

The authors found that, the exception of a field test of the

computer-based geometry tutor, computers were rarely, if ever, used in

teaching mathematics. In general, the "mathematics teachers appeared to

have little conception of what parts of the curriculum might well be

taught using computers, and when and how they should be used for drill

and practice, for simulations, for their graphic capabilities, or the

like."

The authors identified several impediments to the utilization of

computer technology in mathematics education. Lack of familiarity with
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computers was considered to be a major barrier. Potential embarrassment

which undermined the teachers' sense of competence was one fallout from

a lack of familiarity. More recently trained teachers may solve part of

the problem but rapid technological advances and the general aging of

the teaching profession, suggest that research is needed on how best to

overcome the problem. Another barrier is the work "overload" of

knowledge teachers. Since computer knowledge rested with only a select

few teachers, those few had responsibilities above and beyond those of

their less computer-wise counterparts.

While providing information may solve part of the problem,

attitudinal factors need to be addressed as well. That is, remedies

will be effective only if teachers want to use computers. It may be the

case that computers pose a threat to the teachers' autonomy and to

predictability in teaching. There was some concern that computers might

somehow replace teachers.

Other barriers that the authors identified were logistical and

practical impediments to computer usage. The use of computers requires

extra preparation time and sometimes presents logistical problems in

terms of moving the class to a laboratory setting.

A problem that needs to be considered is the availability of

computers to minorities and females. This will become more critical as

the population in the United States becomes proportionally more

minority. As is the case with mathematics, computer science is seen as

a male dominated field.

The authors suggest several areas worthy of consideration for

promoting computer usage. One of these is a greater emphasis on

individualization and another is consideration of alternative evaluation

schemes- -for both students and teachers.

The authors conclude that research on computers and mathematics
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instruction needs to be grounded ;II a conception of why an how computers

can be effectively used.

Teacher Thought and Teacher Behavior in Mathematics Instruction: The

need for observational resources (Tom Good, Bruce Biddle, University of

Missouri)

Good and Biddle argue that observational research in classrooms has

not been utilized sufficiently to improve mathematics education. They

contend that the expansion of observational research can yield better

theories for understanding the learning of mathematics and can produce

more adequate models for improving mathematics teaching.

The authors discuss various reform efforts in American public

education when sweeping recommendations for educational reform were

made. Unfortunately, these often involved simplistic ideas about

schools or curriculum problems and included little, if any,

documentation of the classroom problems that reforms were intended to

address. Too often reformers claimed that all teaching was similar and

that all practice rieeded to be reformed in a simple way. Such claims

are wrong and are demeaning and unfair to excellent teachers. Many of

these reforms seemed to reflect an unwillingness to view teaching as a

complex, challenging, multifaceted process that still inadequately

understood. Rather, it was assumed that both the problems and solutions

for improving American education were obvious. In addition, many of

these reforms were eventually judged to have failed, but since little,

if any, observational data had been collected to examine their effects

in classrooms, it was difficult to say why the reforms failed.

To illustrate the problems associated with past reforms, the

authors discuss two reform efforts: discovery learning, and the

curricular reforms of the School Mathematics Study Group. They also

note that the cycle of reform continues today and curriculum changes are
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still advocated with little attention to the effects of these changes on

classroom practice.

Observational studies of classrooms find consistently that

educational problems vary among schools and classroom, thus

observational research conducted before curricular reform is undertaken

can lead to improved understanding and the testing of alternative

solutions to problems. As well, observational research is needed during

periods of curricular reform to establish the effects, if any, of those

reform efforts. To illustrate the values of observational studies, the

authors describe two programs of classroom research: one that focuses

on teacher expectations; the other, the studies that produced the

Missouri Mathematics Program.

Can Teachers Be Professionals? (Tom Romberg, University of Wisconsin)

Romberg claims that today's mathematics teachers are not

professionals, but neither are they given the opportunity to be

professional. He suggests that in order for teachers to become

professionals--and he firmly believes that they can--there must be a

reconceptualization of the teacher's role and a radically different work

environment. The author offers a definition of professionals as those

who, through education and experience, have a "professed" knowledge that

sets them apart from others; professionals also make use of this special

knowledge when making judgments and decisions in their occupations.

Romberg suggests that current routinized and textbook-based

classroom teaching does not require teachers to make use of their

professional knowledge. He claims that a feeling of collegiality is

vital If teachers are to become professional; however, there are many

impediments to the establishment of this collegial relationship. Among

these are the constraints of time, scheduling, and the conception of the

teacher's role as being primarily managerial.
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Three projects are describ'd which represent the kind of work

needed if teachers are to become professional. The first is the Urban

Collaborative Projects sponsored by the Ford Foundation. The Ford

Foundation projects are intended to provide a framework for enhanced

teacher professional activities, primarily through the encouragement of

collegial networks. A second project reported is the Mathematics

Curriculum and Teaching Project, sponsored by the Australian federal

government, The government ilas endeavored to provide the best possible

illustrations of classroom practice and to encourage and support

teachers in their efforts to implement materials and reflect on their

use. The third project cited is the University of Wisconsin's

Cognitively Guided Instruction Project. The aim of this project is to

enrich the knowledge base of teachers so that they can make better

(professional) judgments and decisions in their classrooms.

The author closes by offering suggestions that would make teaching

an occupation for professionals. This requires a new conception of

mathematical literacy which sees as its primary goal long-term learning.

It must include the creation of epistemic and generative situations in

which children explore problems, create structures, and generate

questions and reflect on patterns. This requires mathematics teachers

to have flexible approach and to value informal and multiple

representations. The vision also requires a new school organization.

This means that the public must offer teachers a professional work

environment. The author offers guidelines for such an environment.

Cross-cultural Studies of Mathematics Teaching and Learning: Recent

findings and new directions (Jim Stigler, Marcia Perry, University of

Chicago)

The authors describe the cross-cultural
studies done by the

International Association for the Evaluation of Educational Achievement
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(lEA) which compared mathematics achievement in numerous countries and

two studies done by the Center for Human Growth and Development at the

University of Michigan which compared the teaching of mathematics in the

United States, Japan, and Taiwan. The authors suggest that there have

blen too few cross-cultural studies and that past studies have had too

narrow a scope. The TEA studies have been ground-breaking in their

analyses of curriculum and achievement, but have not pursued some of the

more important cultural factors that surround the teaching of

mathematics, nor have they examined student outcomes other than

achievement.

The authors feel that more students are needed that focus

particularly on how mathematics is taught in classrooms In different

cultures. They describe in some detail the Michigan studies' attempt to

do this, reporting on the varying amounts of time available for

classroom instruction, the organization of that time, the coherence of

the lesson and the amount of reflectivity promoted by teachers In

different cultures. The authors claim that many aspects of culture are

brought to bear in the teaching and learning of mathematics, including

beliefs, attitudes, practices, tools, and traditions. They also claim

that there can be no doubt that what happens in the classroom is in some

sense a reflection of the wider society within which the classroom

exists. Nevertheless, if reform of mathematics teaching is a goal, it

seems that the classroom is good place to start. Although it is

difficult to change what happens in classrooms, it is far more difficult

to change broader aspects of the culture.

Included in the paper are preliminary analyses of narrative

observations of first-grade mathematics classrooms in Japan, Taiwan, and

the United States. The authors suggest that there is a great deal that

we can learn about ourselves by carefully observing others in
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cross-cultural studies.

Research Issues and Themes

Discussion of the preceding papers raised many issues and important

research questions. It is impossible to list them all, so we now

summairize some of the more important and most frequently mentioned

ideas.

1. While current research paradigms have helped establish much of

our contemporary knowledge base about effective mathematics teaching,

future research should not be restricted to current designs. In fact,

there is a great need for more theory building research and studies that

approach questions from a variety of philosophical perspectives.

2. The study of expert teachers of mathematics is becoming more

prevalent. Future research of this type must carefully add 'ss the

mathematics content taught and the sample of expert teachers studied

must be carefully defined and described. Within this research area

attention to special need situations such as mathematics learning in

minority and English as a second language classrooms might be

particularly appropriate.

3. There is a need for observation as an integral part of many

research studies. This may help characterize the effects of reform

movements, document the nature of instructional treatments, and assist

in understanding why treatments work or fail to work.

4. Studi.!s of teacher knowledge and teacher beliefs and especially

how they moderate teaching behavior and student learning are needed. It

may be particularly useful if such studies concentrate on particular

teacher knowledge (e.g., knowledge of how students learn basic addition

and subtraction problem solving strategies) or beliefs about specific

things (e.g., the nature of mathematics).

5. The professional life of teachers in all its many aspects both
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inside and outside the classr;om needs further study. The effects of

cultural, financial, and societal factors on what is taught, how it is

taught, and what mathematics learning takes place is needed.

6. Additional cross cultural studies of student mathematics

learning should be conducted and concomitantly there needs to be a

better understanding of the factors associated with the differences

uncovered in such studies.

7. Finally, just as teacher development and teacher education

interact in important ways with mathematics teaching, so to does

research in these areas. For theoretical and practical reasons, it Is

essential that our knowledge of teacher education move forward

hand-in-hand with advances in our understanding of mathematics teaching.

In closing, it is important to point out that there is a need for

much more high quality research on mathematics teaching. Research along

the themes just mentioned is important, at the same time there Is always

a need for innovative methods and new ways to look at familiar problems.
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R.A.P. CONFERENCE ON THE TEACHING AND LEARNING OF ALGEBRA

Carolyn Item
Univeralti du Quebec 3 Montreal

Sigrid Wagner
University of Georgia

This paper summarizes the alma, activities, and rasulta of a

four-day working conference on the teaching and learning of algebra.

This conference was part of the Research Agenda Project (R.A.P.), a

two-year project (1986-1988) conducted by the National Council of

Teachers of Mathematics with funding provided by the National Science

Foundation. The aim of the project Is to develop conceptual frameworks

and research agendas in four critical areas of mathematics education

research -- namely, middle school number concepts, the teaching and

learning of algebra, the teaching and evaluation of problem solving, and

effective mathematicc teaching. To achieve these goals, four diffferent

working groups, each with about 25 participants, met early this year to

consider the signIficant issues in each area of research. The task of

these working meetings was to synthesize the current knowledge base In

the given area and to identify Important directions for future research.

Five monographs are to be produced -- the proceedings from each working

group conference, plus an overview monograph to be written by members of

the project advisory board.

The algebra working group met in March at the University of Georgia

In Athens. It brought together mathematicians, psychologists,

technologists, mathematics educators, researchers, teachers, and
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curriculum developers. SomIt of the more general questions and Muss

underlying the structure of the planned program were* (1) What is

algebra? (2) What doss research say about the learning and teaching of

algebra? (3) What is algebraic thinking and how does It relate to

general mathematical thinking? (4) What is the significance of

representation In algebra? (6) What should algebra be, particularly in

view of continuing technological advances.

The conference opened with a mathematician's porspective on the

nature of algebra and on the factors involved in the learning of algebra

at the school level. Several topics were examined for potential

inclusion In a modified curriculum using the three criteria of intrinsic

value, pedagogical value, and intrinsic excitement. The concept of

function, distance formula, percentages. graphs, probability and

statistics were all suggested as examples of topics with clear intrinsic

value, that le, they are or will be important in the lives of the

students. Topics considered to be important because of their

pedagogical value, that is, not for their own utility but rather because

they form a foundation for some other topic with intrinsic value.

include the technique for completing the square. Certain topics were

proposed because they are just so interesting and exciting that their

Inclusion in the curriculum does not require any other Justification,

for example, exponential growth and decal!, the ideas of chaotic

dynamics, and tomography (the science of reconstructing images of the

interior of an object from shadow images, such as, those obtained from

CAT scans). Standard Items In the secontiary school algebra curriculum

were then examined from the perspective of these three criteria. A case

was made for using both a function dpproach to the teaching of algebra

and the dacimal representation et real numbers.
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In order to provide the group with another mathematician's

perspective, a reaction to the opening session was given by a second

mathematician. This presenter also underlined the need to change our

approach to teaching algebra. It was argued that we must make essential

concepts more understandable to students and strive to give them access

to topics that otherwise would be delayed until late in the curriculum.

The availability of calculators and computers permits a numerical

approach to algebra quite different from the formal axiomatic approach

of recent years. Furthermore, experience with computing functional

values in concrete situations can provide students with a foundation for

understanding functions which are represented by expressions involving

variables. It was also suggested that, In order to make the teaching of

mathematics exciting and interesting, teachers should be constantly on

the lookout for examples of new developments in mathematics, and for

applications that make sense to students.

These two presentations were followed by two reviews of the

research literature by mathematics education researchers, one covering

the early learning of algebra (an introduction on pre-algebra, followed

by the literature on literal terms, algebraic expressions, equations and

equation solving, and algebra word problems), and the other dealing with

the later learning of algebra (equations in two variables, graphs, and

the concept of function). The first research review traced the

experience of elementary school children with simple algebra-like

equations, and pointed out that children rarely use equation!, as a tool

for solving word problems. When students are Introduced to algebraic

representations and procedures in secondary school, their orientation

toward finding tamers makes them unreceptive to the task of expressing

mathematical relationships with variables and algebraic expressions.
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Other negative effects of their arithmetic knowledge concern the veto of

the equal sign (a atonal to find an &newer rather than a symbol for

equivalence) and their understanding of the principle of concatenation

(4c meaning 4 + c rather than 4 * c). It was also reported that when

learning procedures for solving equations, some students show a

preference for arithmetic methods such as substitution and that others

prefer algebraic methods such as transposing. There la en indication

that those who prefer arithmetic solving methods may have a better senee

of the left-right balance structure of an equation and may be more able

to make eense of the symmetric solving procedure of performing the same

operation on both sides of the equation than are those who prefer the

transposing solving method.

However, the difficulties encountered by students In the early

learning of algebra are not all rooted in their previous arithmetic

experience. Research shown that beginning algebra students lack

knowledge of the structure underlying algebraic expressions and

equations. For example, they will evaluate a given expression one way

on one occasion and do It another way on the next. Without a knowledge

of structure, beginning algebra students cannot be consistent In their

approach to testing conditions before performing some operation, nor

with the process of performing the operations.

The next review that dealt with the mathematics education research

literature on the later learning of algebra focused on the 'cognitive

obstacles' involved in learning algebra, Cognitive obstacles were

characterized as difficulties that arise when (1) the learner attempts

to use a mental structure that is not appropriate for the algebraic

material to be learned, but la valid In another domain such as

arithmetic or natural lanquagei or (2) there is an inherent
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historical-epistemological obstacle In the material to be presented for

which the learner has no structure to which it can be assimilated.

Examples of various cognitive obstacles were presented. Students'

misuse of literal terms In the context of two-variable equations was

found to be based on their use of symbols and abbreviations in everyday

language situations. On the other hand, the graphing of equations in

two variables involves grasping the notion of continuity, a concept

requiring a major epistemological Jump. Finally, students' difficulties

with functions appear to be related more to the inadequacies of a formal

approach to teaching functions rather than to the nature of students'

intuitions of the concept of function.

The conference program continued with two presentations from

cognitive psychologists, one of whom spoke on the research literature,

related to algebra word problem solving. An aim of this report was to

describe the perspective that psychologists use to study algebra problem

solving. In general, cognitive research done by psychologists has not

examined the question of what 13 to be counted as 'algebra'. Most of the

studies have taken textbook problems as the definition of algebra. It

was also pointed out that their algebra research has often proceeded In

terms of what can be done, as opposed to what is needed. Thus, the stu4

of the cognitive aspects of problem solving has illuminated the kinds of

intellectual problems that students face In solving these problems, but

It has not addressed the pedagogical problems of presenting the material

so that students are Interested in it, or of decomposing the Instruction

Into manageable units. It was suggested that some sensitivity will be

required on the part of mathematics educators who are Interested in

using these research results to guide their practice.

The second presentation by a psychologist focused on a cognitive
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model of algebraic reasoning and included discussion of general

cognitive science techniques for modelling complex human behavior and a

proposal for testing the model by using it to design instruction. The

cognitive model was a two-tiered one. It involved a

representation-building part which acts on the data and builds a richer

data structure, and a problem-solving part which acts on the enriched

data structure. The errors which beginning algebra students make were

hypothesized to be due to their construction of a rather different data

structure (a string structure) than that which experienced students

build (a hierarchical tree structure). A specific instructional display

that makes explicit the hierarchical structure of an equation was

proposed as a possibly powerful means of helping algebra students to

construct more adequate data strucures.

The potential role and impact of technology was taken up in

subsequent presentations. One of these considered recent developments

in Intelligent computer - assisted instruction (ICAI) and cautiously

described the power of ICAI for task and concept analysis, along with

the potential of such systems for presenting algebraic content in

substantially new ways. It was pointed out that, in the ICAI

literature, competence in algebra is depicted as the possession of a set

of correct algebraic rules: thus, errors are manifestations of

Incorrectly learned rules. However, this view of competence falls to

look at incompetence as stemming from impoverished conceptual knowledge.

Recent non-ICAI work suggests that if algebra instruction were to

emphasize the concept of an expression as an entity having an internal

structure, and if 'rules' were proposed as structure-modifying

transformations which leave some aspect of an expression invariant, then

the common errors which have been reported in the ICAI literature may
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Another presentation of this segment of the program focused on the

issue of representation in algebra, In particular, on the use of

technology to support simultaneous multiple representations (e.g.,

tables, graphs, equations) of algebraic subject matter. It was

hypothesized that appropriate experience in a multiple, linked

representation environment can provide the referential meaning missing

from much of school mathematics, and also help the learner to generate

the cognitive control structures required to move from one

representation to another. Though Bose inroads have been made in

developing software that embodies these Ideas, It was pointed out that

research has not been able to keep step with these advances. We need to

address the issue of the kinds of learning which take place in

representation-rich environments.

The last presentation of the program provided a mathematics

educator's perspective on the impact that recent and future developments

in computer technology should have on our conception of algebra, and

suggested dramatic ways of modifying the curriculum, based on an

assumption of universal access to the new technology. One suggestion

was to rebalance the relation among akin, understanding, and

problem-solving objectives In algebra. Computer tool software allows us

to modify our skill-dominated conception of school algebra. Another

suggestion focused on the power of literal symbols when used as

JUselables in realistic problem situations (as opposed to viewing literal

symbols merely as letters that represent numbers or as symbols that

stand for any one of the elements of a given set). The kinds of problem

situations chosen are those where one or more input variables are used

to predict one output variable; in other words, the output is a function

1378



-432 -

of the input. However, it was pointed out that this computer-based

problem-solving approach to algebra makes use of a °guess-and-test'

solving strategy which may be quite unsettling to many who believe that

algebra is a subject where there is always a systematic method. The

presentation concluded with challenge to generate a rich agenda of new

research questions based on the opportunities provided by impressive

technological capabilities.

Interspersed among the preceding presentations were both large and

small group discussions. The large group discussions, led by a

discussant, generally focused on the presentation which had just taken

Place and provided Q forum for participants to state how the presented

ideas Informed their own research. The small group discussions were an

attempt to draw out the commonalities among the various presentations

and to pull together and synthesize the ideas which had been presented.

Some of the questions dealt with by the small groups were: (1) What Is

algebra, as reflected In the papers? (2) What learning/teaching

theories guide our research? (3) What research has/has not been done

from a content perspective? (4) What research has/has not been done

from a learning theory perspective?

The above paper presentations and discussion sessions constituted

the first pact of the program. They were followed by the second part --

the generatirn of issues to be considered for a research agenda in

algebra. '.his proved to be a rather difficult exercise for several

reasons. To begin with, it was clear that we could only predict what It

would be useful to know on the basis of what we knew already. Secondly,

the task was even more complex in that we were attempting to predict for

a situation in which changes can happen so fast. The potential

relationship between school algebra and technology made it seem
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impossible to be able to design a long-term research program that would

retain its precise relevance throughout an extended period of time.

Thus, It was considered unrealistic to expect to generate a sequential

plan for a research agenda In algebra; all that could be hoped for was a

grouping together of lames which were considered by individual

participants to be important not Just for the present but for the future

too.

In generating issues for the research agenda, four broad categories

emerged -- content, learning, instruction, and representation. In

brief, the content dimension Included Issues such as the

interconnections between symbolic manipulation and conceptual

understanding in algebra, the appropriateness of certain algebraic ideas

for different population, of students at different points in their

school careers, and the cognitive and affective outcome, of different

'approaches to algebra. The learning dimension included issues such as

the characterization and development of algebraic thinking, levels of

understanding In algebraic thinking with respect to specific concepts

and processes, and the Identification of difficulties Inherent in the

learning of algebra. The Instruction dimension included issues such as

the effectiveness of alternative modes of instruction and novel

technological approaches, the need for improved theories of learning In

order to have a possible effect on algebra instruction, the study of the

interaction between methods of evaluation and instruction, and the

Identification of expert algebra teachers' knowledge and skill. The

representation dimension included Issues such as the study of how

students learn to use and coordinate multiple representations of a

situation, and the extent to which dynamically-linked representations

enhance or inhibit metacognitIve processes.
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The asall-group session devoted to generating these items for the

research agenda came to an end well before conference participants had

had time to reflect on them or to react to them as a coherent set. This

is currently being done by means of correspondence between the

conference organizers and participants. Despite the fact that the

agenda was far from being In Its final form by the time of the closing

sessions, the ideas which had been generated served as a basis for the

two closing panels. One of these panel sessions provided four different

perspectives on the embryonic research agenda -- that of a mathematics

educator, a curriculum developer, a cognitive scientist, and a school

board person. Some of the main issues which panelists tended to

emphasize were implementation Imes. For example, it was pointed out

that a primary goal of mathematics education research has always been to

have an impact on classroom practice. If research is to have an Impact,

teachers must be brought into the research process, Into both the

conceptualizing and designing phases of research. It was also suggested

that research Issues and results be incorporated Into preservice and

inservice teacher education courses. But it was pointed out that more

than research studies and results are needed. It is necessary to have

curriculum and assessment materials that reflect the implications of

research. Other Issues raised by panelists concerned: (1) the kinds of

algebraic skills and understandings required by today's students, and

(2) what teachers can and should do with technology.

The other closing panel session of the four-day conference focused

on the issue of theoretical and conceptual frameworks. Three panelists

from different research traditions discussed the existence (or

non-existence) and desirability of theory In algebra research. Some of

the ideas emerging from this exchange concerned the two-way relationship
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practice and the need to build theories based on the

experience of practitioners. It was also suggested that theories need

to be constructed in order to attempt to tie together the results of

researchers and to be able to predict how algebra learning might take

place.

In closing, it needs to be mentioned that this paper has merely

skimmed the surface of the richness of the presentations and discussions

which took place at the RAP algebra working conference. It Is hoped

that the monograph of the conference proceedings which is currently in

preparation will be able to convey more profoundly the contributions of

all the conference participants.
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FM fano, Tars..
Centro de Inmost. & Esti&
Avon. del LPN
Molls San Juan No.1421,
Col. Del Vale
Maxico, D.F. 03100
MEXICO

Rosen, Gershon
Dot of Science Teaching
Weizman. Insbutei for Science
Rehovot 76100
ISRAEL

Rouohier, Andra
Universal) d'Orliars - BP 6759
I.R.E.M. Dep. de Malt et crInfo.
45067 °deans Codex 2
FRANCE

Flulz-Zunlga, Anal.
Escueia de Matematicas
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